MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cxpval Structured version   Visualization version   GIF version

Theorem cxpval 26610
Description: Value of the complex power function. (Contributed by Mario Carneiro, 2-Aug-2014.)
Assertion
Ref Expression
cxpval ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴𝑐𝐵) = if(𝐴 = 0, if(𝐵 = 0, 1, 0), (exp‘(𝐵 · (log‘𝐴)))))

Proof of Theorem cxpval
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 482 . . . 4 ((𝑥 = 𝐴𝑦 = 𝐵) → 𝑥 = 𝐴)
21eqeq1d 2735 . . 3 ((𝑥 = 𝐴𝑦 = 𝐵) → (𝑥 = 0 ↔ 𝐴 = 0))
3 simpr 484 . . . . 5 ((𝑥 = 𝐴𝑦 = 𝐵) → 𝑦 = 𝐵)
43eqeq1d 2735 . . . 4 ((𝑥 = 𝐴𝑦 = 𝐵) → (𝑦 = 0 ↔ 𝐵 = 0))
54ifbid 4500 . . 3 ((𝑥 = 𝐴𝑦 = 𝐵) → if(𝑦 = 0, 1, 0) = if(𝐵 = 0, 1, 0))
61fveq2d 6835 . . . . 5 ((𝑥 = 𝐴𝑦 = 𝐵) → (log‘𝑥) = (log‘𝐴))
73, 6oveq12d 7373 . . . 4 ((𝑥 = 𝐴𝑦 = 𝐵) → (𝑦 · (log‘𝑥)) = (𝐵 · (log‘𝐴)))
87fveq2d 6835 . . 3 ((𝑥 = 𝐴𝑦 = 𝐵) → (exp‘(𝑦 · (log‘𝑥))) = (exp‘(𝐵 · (log‘𝐴))))
92, 5, 8ifbieq12d 4505 . 2 ((𝑥 = 𝐴𝑦 = 𝐵) → if(𝑥 = 0, if(𝑦 = 0, 1, 0), (exp‘(𝑦 · (log‘𝑥)))) = if(𝐴 = 0, if(𝐵 = 0, 1, 0), (exp‘(𝐵 · (log‘𝐴)))))
10 df-cxp 26503 . 2 𝑐 = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ if(𝑥 = 0, if(𝑦 = 0, 1, 0), (exp‘(𝑦 · (log‘𝑥)))))
11 ax-1cn 11074 . . . . 5 1 ∈ ℂ
12 0cn 11114 . . . . 5 0 ∈ ℂ
1311, 12ifcli 4524 . . . 4 if(𝐵 = 0, 1, 0) ∈ ℂ
1413elexi 3461 . . 3 if(𝐵 = 0, 1, 0) ∈ V
15 fvex 6844 . . 3 (exp‘(𝐵 · (log‘𝐴))) ∈ V
1614, 15ifex 4527 . 2 if(𝐴 = 0, if(𝐵 = 0, 1, 0), (exp‘(𝐵 · (log‘𝐴)))) ∈ V
179, 10, 16ovmpoa 7510 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴𝑐𝐵) = if(𝐴 = 0, if(𝐵 = 0, 1, 0), (exp‘(𝐵 · (log‘𝐴)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  ifcif 4476  cfv 6489  (class class class)co 7355  cc 11014  0cc0 11016  1c1 11017   · cmul 11021  expce 15978  logclog 26500  𝑐ccxp 26501
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pr 5374  ax-1cn 11074  ax-icn 11075  ax-addcl 11076  ax-mulcl 11078  ax-i2m1 11084
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2883  df-ne 2931  df-ral 3050  df-rex 3059  df-rab 3398  df-v 3440  df-sbc 3739  df-dif 3902  df-un 3904  df-ss 3916  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-br 5096  df-opab 5158  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-iota 6445  df-fun 6491  df-fv 6497  df-ov 7358  df-oprab 7359  df-mpo 7360  df-cxp 26503
This theorem is referenced by:  cxpef  26611  0cxp  26612  cxpexp  26614  cxpcl  26620  recxpcl  26621
  Copyright terms: Public domain W3C validator