MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cxpval Structured version   Visualization version   GIF version

Theorem cxpval 26625
Description: Value of the complex power function. (Contributed by Mario Carneiro, 2-Aug-2014.)
Assertion
Ref Expression
cxpval ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴𝑐𝐵) = if(𝐴 = 0, if(𝐵 = 0, 1, 0), (exp‘(𝐵 · (log‘𝐴)))))

Proof of Theorem cxpval
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 482 . . . 4 ((𝑥 = 𝐴𝑦 = 𝐵) → 𝑥 = 𝐴)
21eqeq1d 2737 . . 3 ((𝑥 = 𝐴𝑦 = 𝐵) → (𝑥 = 0 ↔ 𝐴 = 0))
3 simpr 484 . . . . 5 ((𝑥 = 𝐴𝑦 = 𝐵) → 𝑦 = 𝐵)
43eqeq1d 2737 . . . 4 ((𝑥 = 𝐴𝑦 = 𝐵) → (𝑦 = 0 ↔ 𝐵 = 0))
54ifbid 4524 . . 3 ((𝑥 = 𝐴𝑦 = 𝐵) → if(𝑦 = 0, 1, 0) = if(𝐵 = 0, 1, 0))
61fveq2d 6880 . . . . 5 ((𝑥 = 𝐴𝑦 = 𝐵) → (log‘𝑥) = (log‘𝐴))
73, 6oveq12d 7423 . . . 4 ((𝑥 = 𝐴𝑦 = 𝐵) → (𝑦 · (log‘𝑥)) = (𝐵 · (log‘𝐴)))
87fveq2d 6880 . . 3 ((𝑥 = 𝐴𝑦 = 𝐵) → (exp‘(𝑦 · (log‘𝑥))) = (exp‘(𝐵 · (log‘𝐴))))
92, 5, 8ifbieq12d 4529 . 2 ((𝑥 = 𝐴𝑦 = 𝐵) → if(𝑥 = 0, if(𝑦 = 0, 1, 0), (exp‘(𝑦 · (log‘𝑥)))) = if(𝐴 = 0, if(𝐵 = 0, 1, 0), (exp‘(𝐵 · (log‘𝐴)))))
10 df-cxp 26518 . 2 𝑐 = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ if(𝑥 = 0, if(𝑦 = 0, 1, 0), (exp‘(𝑦 · (log‘𝑥)))))
11 ax-1cn 11187 . . . . 5 1 ∈ ℂ
12 0cn 11227 . . . . 5 0 ∈ ℂ
1311, 12ifcli 4548 . . . 4 if(𝐵 = 0, 1, 0) ∈ ℂ
1413elexi 3482 . . 3 if(𝐵 = 0, 1, 0) ∈ V
15 fvex 6889 . . 3 (exp‘(𝐵 · (log‘𝐴))) ∈ V
1614, 15ifex 4551 . 2 if(𝐴 = 0, if(𝐵 = 0, 1, 0), (exp‘(𝐵 · (log‘𝐴)))) ∈ V
179, 10, 16ovmpoa 7562 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴𝑐𝐵) = if(𝐴 = 0, if(𝐵 = 0, 1, 0), (exp‘(𝐵 · (log‘𝐴)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  ifcif 4500  cfv 6531  (class class class)co 7405  cc 11127  0cc0 11129  1c1 11130   · cmul 11134  expce 16077  logclog 26515  𝑐ccxp 26516
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-mulcl 11191  ax-i2m1 11197
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-sbc 3766  df-dif 3929  df-un 3931  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-iota 6484  df-fun 6533  df-fv 6539  df-ov 7408  df-oprab 7409  df-mpo 7410  df-cxp 26518
This theorem is referenced by:  cxpef  26626  0cxp  26627  cxpexp  26629  cxpcl  26635  recxpcl  26636
  Copyright terms: Public domain W3C validator