Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cxpval | Structured version Visualization version GIF version |
Description: Value of the complex power function. (Contributed by Mario Carneiro, 2-Aug-2014.) |
Ref | Expression |
---|---|
cxpval | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴↑𝑐𝐵) = if(𝐴 = 0, if(𝐵 = 0, 1, 0), (exp‘(𝐵 · (log‘𝐴))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 483 | . . . 4 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → 𝑥 = 𝐴) | |
2 | 1 | eqeq1d 2740 | . . 3 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝑥 = 0 ↔ 𝐴 = 0)) |
3 | simpr 485 | . . . . 5 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → 𝑦 = 𝐵) | |
4 | 3 | eqeq1d 2740 | . . . 4 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝑦 = 0 ↔ 𝐵 = 0)) |
5 | 4 | ifbid 4482 | . . 3 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → if(𝑦 = 0, 1, 0) = if(𝐵 = 0, 1, 0)) |
6 | 1 | fveq2d 6778 | . . . . 5 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (log‘𝑥) = (log‘𝐴)) |
7 | 3, 6 | oveq12d 7293 | . . . 4 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝑦 · (log‘𝑥)) = (𝐵 · (log‘𝐴))) |
8 | 7 | fveq2d 6778 | . . 3 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (exp‘(𝑦 · (log‘𝑥))) = (exp‘(𝐵 · (log‘𝐴)))) |
9 | 2, 5, 8 | ifbieq12d 4487 | . 2 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → if(𝑥 = 0, if(𝑦 = 0, 1, 0), (exp‘(𝑦 · (log‘𝑥)))) = if(𝐴 = 0, if(𝐵 = 0, 1, 0), (exp‘(𝐵 · (log‘𝐴))))) |
10 | df-cxp 25713 | . 2 ⊢ ↑𝑐 = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ if(𝑥 = 0, if(𝑦 = 0, 1, 0), (exp‘(𝑦 · (log‘𝑥))))) | |
11 | ax-1cn 10929 | . . . . 5 ⊢ 1 ∈ ℂ | |
12 | 0cn 10967 | . . . . 5 ⊢ 0 ∈ ℂ | |
13 | 11, 12 | ifcli 4506 | . . . 4 ⊢ if(𝐵 = 0, 1, 0) ∈ ℂ |
14 | 13 | elexi 3451 | . . 3 ⊢ if(𝐵 = 0, 1, 0) ∈ V |
15 | fvex 6787 | . . 3 ⊢ (exp‘(𝐵 · (log‘𝐴))) ∈ V | |
16 | 14, 15 | ifex 4509 | . 2 ⊢ if(𝐴 = 0, if(𝐵 = 0, 1, 0), (exp‘(𝐵 · (log‘𝐴)))) ∈ V |
17 | 9, 10, 16 | ovmpoa 7428 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴↑𝑐𝐵) = if(𝐴 = 0, if(𝐵 = 0, 1, 0), (exp‘(𝐵 · (log‘𝐴))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ifcif 4459 ‘cfv 6433 (class class class)co 7275 ℂcc 10869 0cc0 10871 1c1 10872 · cmul 10876 expce 15771 logclog 25710 ↑𝑐ccxp 25711 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-mulcl 10933 ax-i2m1 10939 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-iota 6391 df-fun 6435 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-cxp 25713 |
This theorem is referenced by: cxpef 25820 0cxp 25821 cxpexp 25823 cxpcl 25829 recxpcl 25830 |
Copyright terms: Public domain | W3C validator |