| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cxpval | Structured version Visualization version GIF version | ||
| Description: Value of the complex power function. (Contributed by Mario Carneiro, 2-Aug-2014.) |
| Ref | Expression |
|---|---|
| cxpval | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴↑𝑐𝐵) = if(𝐴 = 0, if(𝐵 = 0, 1, 0), (exp‘(𝐵 · (log‘𝐴))))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 482 | . . . 4 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → 𝑥 = 𝐴) | |
| 2 | 1 | eqeq1d 2731 | . . 3 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝑥 = 0 ↔ 𝐴 = 0)) |
| 3 | simpr 484 | . . . . 5 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → 𝑦 = 𝐵) | |
| 4 | 3 | eqeq1d 2731 | . . . 4 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝑦 = 0 ↔ 𝐵 = 0)) |
| 5 | 4 | ifbid 4512 | . . 3 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → if(𝑦 = 0, 1, 0) = if(𝐵 = 0, 1, 0)) |
| 6 | 1 | fveq2d 6862 | . . . . 5 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (log‘𝑥) = (log‘𝐴)) |
| 7 | 3, 6 | oveq12d 7405 | . . . 4 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝑦 · (log‘𝑥)) = (𝐵 · (log‘𝐴))) |
| 8 | 7 | fveq2d 6862 | . . 3 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (exp‘(𝑦 · (log‘𝑥))) = (exp‘(𝐵 · (log‘𝐴)))) |
| 9 | 2, 5, 8 | ifbieq12d 4517 | . 2 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → if(𝑥 = 0, if(𝑦 = 0, 1, 0), (exp‘(𝑦 · (log‘𝑥)))) = if(𝐴 = 0, if(𝐵 = 0, 1, 0), (exp‘(𝐵 · (log‘𝐴))))) |
| 10 | df-cxp 26466 | . 2 ⊢ ↑𝑐 = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ if(𝑥 = 0, if(𝑦 = 0, 1, 0), (exp‘(𝑦 · (log‘𝑥))))) | |
| 11 | ax-1cn 11126 | . . . . 5 ⊢ 1 ∈ ℂ | |
| 12 | 0cn 11166 | . . . . 5 ⊢ 0 ∈ ℂ | |
| 13 | 11, 12 | ifcli 4536 | . . . 4 ⊢ if(𝐵 = 0, 1, 0) ∈ ℂ |
| 14 | 13 | elexi 3470 | . . 3 ⊢ if(𝐵 = 0, 1, 0) ∈ V |
| 15 | fvex 6871 | . . 3 ⊢ (exp‘(𝐵 · (log‘𝐴))) ∈ V | |
| 16 | 14, 15 | ifex 4539 | . 2 ⊢ if(𝐴 = 0, if(𝐵 = 0, 1, 0), (exp‘(𝐵 · (log‘𝐴)))) ∈ V |
| 17 | 9, 10, 16 | ovmpoa 7544 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴↑𝑐𝐵) = if(𝐴 = 0, if(𝐵 = 0, 1, 0), (exp‘(𝐵 · (log‘𝐴))))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ifcif 4488 ‘cfv 6511 (class class class)co 7387 ℂcc 11066 0cc0 11068 1c1 11069 · cmul 11073 expce 16027 logclog 26463 ↑𝑐ccxp 26464 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-mulcl 11130 ax-i2m1 11136 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-iota 6464 df-fun 6513 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-cxp 26466 |
| This theorem is referenced by: cxpef 26574 0cxp 26575 cxpexp 26577 cxpcl 26583 recxpcl 26584 |
| Copyright terms: Public domain | W3C validator |