MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cxpval Structured version   Visualization version   GIF version

Theorem cxpval 26580
Description: Value of the complex power function. (Contributed by Mario Carneiro, 2-Aug-2014.)
Assertion
Ref Expression
cxpval ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴𝑐𝐵) = if(𝐴 = 0, if(𝐵 = 0, 1, 0), (exp‘(𝐵 · (log‘𝐴)))))

Proof of Theorem cxpval
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 482 . . . 4 ((𝑥 = 𝐴𝑦 = 𝐵) → 𝑥 = 𝐴)
21eqeq1d 2732 . . 3 ((𝑥 = 𝐴𝑦 = 𝐵) → (𝑥 = 0 ↔ 𝐴 = 0))
3 simpr 484 . . . . 5 ((𝑥 = 𝐴𝑦 = 𝐵) → 𝑦 = 𝐵)
43eqeq1d 2732 . . . 4 ((𝑥 = 𝐴𝑦 = 𝐵) → (𝑦 = 0 ↔ 𝐵 = 0))
54ifbid 4515 . . 3 ((𝑥 = 𝐴𝑦 = 𝐵) → if(𝑦 = 0, 1, 0) = if(𝐵 = 0, 1, 0))
61fveq2d 6865 . . . . 5 ((𝑥 = 𝐴𝑦 = 𝐵) → (log‘𝑥) = (log‘𝐴))
73, 6oveq12d 7408 . . . 4 ((𝑥 = 𝐴𝑦 = 𝐵) → (𝑦 · (log‘𝑥)) = (𝐵 · (log‘𝐴)))
87fveq2d 6865 . . 3 ((𝑥 = 𝐴𝑦 = 𝐵) → (exp‘(𝑦 · (log‘𝑥))) = (exp‘(𝐵 · (log‘𝐴))))
92, 5, 8ifbieq12d 4520 . 2 ((𝑥 = 𝐴𝑦 = 𝐵) → if(𝑥 = 0, if(𝑦 = 0, 1, 0), (exp‘(𝑦 · (log‘𝑥)))) = if(𝐴 = 0, if(𝐵 = 0, 1, 0), (exp‘(𝐵 · (log‘𝐴)))))
10 df-cxp 26473 . 2 𝑐 = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ if(𝑥 = 0, if(𝑦 = 0, 1, 0), (exp‘(𝑦 · (log‘𝑥)))))
11 ax-1cn 11133 . . . . 5 1 ∈ ℂ
12 0cn 11173 . . . . 5 0 ∈ ℂ
1311, 12ifcli 4539 . . . 4 if(𝐵 = 0, 1, 0) ∈ ℂ
1413elexi 3473 . . 3 if(𝐵 = 0, 1, 0) ∈ V
15 fvex 6874 . . 3 (exp‘(𝐵 · (log‘𝐴))) ∈ V
1614, 15ifex 4542 . 2 if(𝐴 = 0, if(𝐵 = 0, 1, 0), (exp‘(𝐵 · (log‘𝐴)))) ∈ V
179, 10, 16ovmpoa 7547 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴𝑐𝐵) = if(𝐴 = 0, if(𝐵 = 0, 1, 0), (exp‘(𝐵 · (log‘𝐴)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  ifcif 4491  cfv 6514  (class class class)co 7390  cc 11073  0cc0 11075  1c1 11076   · cmul 11080  expce 16034  logclog 26470  𝑐ccxp 26471
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-mulcl 11137  ax-i2m1 11143
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-dif 3920  df-un 3922  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-iota 6467  df-fun 6516  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-cxp 26473
This theorem is referenced by:  cxpef  26581  0cxp  26582  cxpexp  26584  cxpcl  26590  recxpcl  26591
  Copyright terms: Public domain W3C validator