Detailed syntax breakdown of Definition df-dic
| Step | Hyp | Ref
| Expression |
| 1 | | cdic 41115 |
. 2
class
DIsoC |
| 2 | | vk |
. . 3
setvar 𝑘 |
| 3 | | cvv 3464 |
. . 3
class
V |
| 4 | | vw |
. . . 4
setvar 𝑤 |
| 5 | 2 | cv 1538 |
. . . . 5
class 𝑘 |
| 6 | | clh 39927 |
. . . . 5
class
LHyp |
| 7 | 5, 6 | cfv 6542 |
. . . 4
class
(LHyp‘𝑘) |
| 8 | | vq |
. . . . 5
setvar 𝑞 |
| 9 | | vr |
. . . . . . . . 9
setvar 𝑟 |
| 10 | 9 | cv 1538 |
. . . . . . . 8
class 𝑟 |
| 11 | 4 | cv 1538 |
. . . . . . . 8
class 𝑤 |
| 12 | | cple 17284 |
. . . . . . . . 9
class
le |
| 13 | 5, 12 | cfv 6542 |
. . . . . . . 8
class
(le‘𝑘) |
| 14 | 10, 11, 13 | wbr 5125 |
. . . . . . 7
wff 𝑟(le‘𝑘)𝑤 |
| 15 | 14 | wn 3 |
. . . . . 6
wff ¬
𝑟(le‘𝑘)𝑤 |
| 16 | | catm 39205 |
. . . . . . 7
class
Atoms |
| 17 | 5, 16 | cfv 6542 |
. . . . . 6
class
(Atoms‘𝑘) |
| 18 | 15, 9, 17 | crab 3420 |
. . . . 5
class {𝑟 ∈ (Atoms‘𝑘) ∣ ¬ 𝑟(le‘𝑘)𝑤} |
| 19 | | vf |
. . . . . . . . 9
setvar 𝑓 |
| 20 | 19 | cv 1538 |
. . . . . . . 8
class 𝑓 |
| 21 | | coc 17285 |
. . . . . . . . . . . . . 14
class
oc |
| 22 | 5, 21 | cfv 6542 |
. . . . . . . . . . . . 13
class
(oc‘𝑘) |
| 23 | 11, 22 | cfv 6542 |
. . . . . . . . . . . 12
class
((oc‘𝑘)‘𝑤) |
| 24 | | vg |
. . . . . . . . . . . . 13
setvar 𝑔 |
| 25 | 24 | cv 1538 |
. . . . . . . . . . . 12
class 𝑔 |
| 26 | 23, 25 | cfv 6542 |
. . . . . . . . . . 11
class (𝑔‘((oc‘𝑘)‘𝑤)) |
| 27 | 8 | cv 1538 |
. . . . . . . . . . 11
class 𝑞 |
| 28 | 26, 27 | wceq 1539 |
. . . . . . . . . 10
wff (𝑔‘((oc‘𝑘)‘𝑤)) = 𝑞 |
| 29 | | cltrn 40044 |
. . . . . . . . . . . 12
class
LTrn |
| 30 | 5, 29 | cfv 6542 |
. . . . . . . . . . 11
class
(LTrn‘𝑘) |
| 31 | 11, 30 | cfv 6542 |
. . . . . . . . . 10
class
((LTrn‘𝑘)‘𝑤) |
| 32 | 28, 24, 31 | crio 7370 |
. . . . . . . . 9
class
(℩𝑔
∈ ((LTrn‘𝑘)‘𝑤)(𝑔‘((oc‘𝑘)‘𝑤)) = 𝑞) |
| 33 | | vs |
. . . . . . . . . 10
setvar 𝑠 |
| 34 | 33 | cv 1538 |
. . . . . . . . 9
class 𝑠 |
| 35 | 32, 34 | cfv 6542 |
. . . . . . . 8
class (𝑠‘(℩𝑔 ∈ ((LTrn‘𝑘)‘𝑤)(𝑔‘((oc‘𝑘)‘𝑤)) = 𝑞)) |
| 36 | 20, 35 | wceq 1539 |
. . . . . . 7
wff 𝑓 = (𝑠‘(℩𝑔 ∈ ((LTrn‘𝑘)‘𝑤)(𝑔‘((oc‘𝑘)‘𝑤)) = 𝑞)) |
| 37 | | ctendo 40695 |
. . . . . . . . . 10
class
TEndo |
| 38 | 5, 37 | cfv 6542 |
. . . . . . . . 9
class
(TEndo‘𝑘) |
| 39 | 11, 38 | cfv 6542 |
. . . . . . . 8
class
((TEndo‘𝑘)‘𝑤) |
| 40 | 34, 39 | wcel 2107 |
. . . . . . 7
wff 𝑠 ∈ ((TEndo‘𝑘)‘𝑤) |
| 41 | 36, 40 | wa 395 |
. . . . . 6
wff (𝑓 = (𝑠‘(℩𝑔 ∈ ((LTrn‘𝑘)‘𝑤)(𝑔‘((oc‘𝑘)‘𝑤)) = 𝑞)) ∧ 𝑠 ∈ ((TEndo‘𝑘)‘𝑤)) |
| 42 | 41, 19, 33 | copab 5187 |
. . . . 5
class
{〈𝑓, 𝑠〉 ∣ (𝑓 = (𝑠‘(℩𝑔 ∈ ((LTrn‘𝑘)‘𝑤)(𝑔‘((oc‘𝑘)‘𝑤)) = 𝑞)) ∧ 𝑠 ∈ ((TEndo‘𝑘)‘𝑤))} |
| 43 | 8, 18, 42 | cmpt 5207 |
. . . 4
class (𝑞 ∈ {𝑟 ∈ (Atoms‘𝑘) ∣ ¬ 𝑟(le‘𝑘)𝑤} ↦ {〈𝑓, 𝑠〉 ∣ (𝑓 = (𝑠‘(℩𝑔 ∈ ((LTrn‘𝑘)‘𝑤)(𝑔‘((oc‘𝑘)‘𝑤)) = 𝑞)) ∧ 𝑠 ∈ ((TEndo‘𝑘)‘𝑤))}) |
| 44 | 4, 7, 43 | cmpt 5207 |
. . 3
class (𝑤 ∈ (LHyp‘𝑘) ↦ (𝑞 ∈ {𝑟 ∈ (Atoms‘𝑘) ∣ ¬ 𝑟(le‘𝑘)𝑤} ↦ {〈𝑓, 𝑠〉 ∣ (𝑓 = (𝑠‘(℩𝑔 ∈ ((LTrn‘𝑘)‘𝑤)(𝑔‘((oc‘𝑘)‘𝑤)) = 𝑞)) ∧ 𝑠 ∈ ((TEndo‘𝑘)‘𝑤))})) |
| 45 | 2, 3, 44 | cmpt 5207 |
. 2
class (𝑘 ∈ V ↦ (𝑤 ∈ (LHyp‘𝑘) ↦ (𝑞 ∈ {𝑟 ∈ (Atoms‘𝑘) ∣ ¬ 𝑟(le‘𝑘)𝑤} ↦ {〈𝑓, 𝑠〉 ∣ (𝑓 = (𝑠‘(℩𝑔 ∈ ((LTrn‘𝑘)‘𝑤)(𝑔‘((oc‘𝑘)‘𝑤)) = 𝑞)) ∧ 𝑠 ∈ ((TEndo‘𝑘)‘𝑤))}))) |
| 46 | 1, 45 | wceq 1539 |
1
wff DIsoC =
(𝑘 ∈ V ↦ (𝑤 ∈ (LHyp‘𝑘) ↦ (𝑞 ∈ {𝑟 ∈ (Atoms‘𝑘) ∣ ¬ 𝑟(le‘𝑘)𝑤} ↦ {〈𝑓, 𝑠〉 ∣ (𝑓 = (𝑠‘(℩𝑔 ∈ ((LTrn‘𝑘)‘𝑤)(𝑔‘((oc‘𝑘)‘𝑤)) = 𝑞)) ∧ 𝑠 ∈ ((TEndo‘𝑘)‘𝑤))}))) |