Detailed syntax breakdown of Definition df-dic
Step | Hyp | Ref
| Expression |
1 | | cdic 39193 |
. 2
class
DIsoC |
2 | | vk |
. . 3
setvar 𝑘 |
3 | | cvv 3433 |
. . 3
class
V |
4 | | vw |
. . . 4
setvar 𝑤 |
5 | 2 | cv 1538 |
. . . . 5
class 𝑘 |
6 | | clh 38005 |
. . . . 5
class
LHyp |
7 | 5, 6 | cfv 6437 |
. . . 4
class
(LHyp‘𝑘) |
8 | | vq |
. . . . 5
setvar 𝑞 |
9 | | vr |
. . . . . . . . 9
setvar 𝑟 |
10 | 9 | cv 1538 |
. . . . . . . 8
class 𝑟 |
11 | 4 | cv 1538 |
. . . . . . . 8
class 𝑤 |
12 | | cple 16978 |
. . . . . . . . 9
class
le |
13 | 5, 12 | cfv 6437 |
. . . . . . . 8
class
(le‘𝑘) |
14 | 10, 11, 13 | wbr 5075 |
. . . . . . 7
wff 𝑟(le‘𝑘)𝑤 |
15 | 14 | wn 3 |
. . . . . 6
wff ¬
𝑟(le‘𝑘)𝑤 |
16 | | catm 37284 |
. . . . . . 7
class
Atoms |
17 | 5, 16 | cfv 6437 |
. . . . . 6
class
(Atoms‘𝑘) |
18 | 15, 9, 17 | crab 3069 |
. . . . 5
class {𝑟 ∈ (Atoms‘𝑘) ∣ ¬ 𝑟(le‘𝑘)𝑤} |
19 | | vf |
. . . . . . . . 9
setvar 𝑓 |
20 | 19 | cv 1538 |
. . . . . . . 8
class 𝑓 |
21 | | coc 16979 |
. . . . . . . . . . . . . 14
class
oc |
22 | 5, 21 | cfv 6437 |
. . . . . . . . . . . . 13
class
(oc‘𝑘) |
23 | 11, 22 | cfv 6437 |
. . . . . . . . . . . 12
class
((oc‘𝑘)‘𝑤) |
24 | | vg |
. . . . . . . . . . . . 13
setvar 𝑔 |
25 | 24 | cv 1538 |
. . . . . . . . . . . 12
class 𝑔 |
26 | 23, 25 | cfv 6437 |
. . . . . . . . . . 11
class (𝑔‘((oc‘𝑘)‘𝑤)) |
27 | 8 | cv 1538 |
. . . . . . . . . . 11
class 𝑞 |
28 | 26, 27 | wceq 1539 |
. . . . . . . . . 10
wff (𝑔‘((oc‘𝑘)‘𝑤)) = 𝑞 |
29 | | cltrn 38122 |
. . . . . . . . . . . 12
class
LTrn |
30 | 5, 29 | cfv 6437 |
. . . . . . . . . . 11
class
(LTrn‘𝑘) |
31 | 11, 30 | cfv 6437 |
. . . . . . . . . 10
class
((LTrn‘𝑘)‘𝑤) |
32 | 28, 24, 31 | crio 7240 |
. . . . . . . . 9
class
(℩𝑔
∈ ((LTrn‘𝑘)‘𝑤)(𝑔‘((oc‘𝑘)‘𝑤)) = 𝑞) |
33 | | vs |
. . . . . . . . . 10
setvar 𝑠 |
34 | 33 | cv 1538 |
. . . . . . . . 9
class 𝑠 |
35 | 32, 34 | cfv 6437 |
. . . . . . . 8
class (𝑠‘(℩𝑔 ∈ ((LTrn‘𝑘)‘𝑤)(𝑔‘((oc‘𝑘)‘𝑤)) = 𝑞)) |
36 | 20, 35 | wceq 1539 |
. . . . . . 7
wff 𝑓 = (𝑠‘(℩𝑔 ∈ ((LTrn‘𝑘)‘𝑤)(𝑔‘((oc‘𝑘)‘𝑤)) = 𝑞)) |
37 | | ctendo 38773 |
. . . . . . . . . 10
class
TEndo |
38 | 5, 37 | cfv 6437 |
. . . . . . . . 9
class
(TEndo‘𝑘) |
39 | 11, 38 | cfv 6437 |
. . . . . . . 8
class
((TEndo‘𝑘)‘𝑤) |
40 | 34, 39 | wcel 2107 |
. . . . . . 7
wff 𝑠 ∈ ((TEndo‘𝑘)‘𝑤) |
41 | 36, 40 | wa 396 |
. . . . . 6
wff (𝑓 = (𝑠‘(℩𝑔 ∈ ((LTrn‘𝑘)‘𝑤)(𝑔‘((oc‘𝑘)‘𝑤)) = 𝑞)) ∧ 𝑠 ∈ ((TEndo‘𝑘)‘𝑤)) |
42 | 41, 19, 33 | copab 5137 |
. . . . 5
class
{〈𝑓, 𝑠〉 ∣ (𝑓 = (𝑠‘(℩𝑔 ∈ ((LTrn‘𝑘)‘𝑤)(𝑔‘((oc‘𝑘)‘𝑤)) = 𝑞)) ∧ 𝑠 ∈ ((TEndo‘𝑘)‘𝑤))} |
43 | 8, 18, 42 | cmpt 5158 |
. . . 4
class (𝑞 ∈ {𝑟 ∈ (Atoms‘𝑘) ∣ ¬ 𝑟(le‘𝑘)𝑤} ↦ {〈𝑓, 𝑠〉 ∣ (𝑓 = (𝑠‘(℩𝑔 ∈ ((LTrn‘𝑘)‘𝑤)(𝑔‘((oc‘𝑘)‘𝑤)) = 𝑞)) ∧ 𝑠 ∈ ((TEndo‘𝑘)‘𝑤))}) |
44 | 4, 7, 43 | cmpt 5158 |
. . 3
class (𝑤 ∈ (LHyp‘𝑘) ↦ (𝑞 ∈ {𝑟 ∈ (Atoms‘𝑘) ∣ ¬ 𝑟(le‘𝑘)𝑤} ↦ {〈𝑓, 𝑠〉 ∣ (𝑓 = (𝑠‘(℩𝑔 ∈ ((LTrn‘𝑘)‘𝑤)(𝑔‘((oc‘𝑘)‘𝑤)) = 𝑞)) ∧ 𝑠 ∈ ((TEndo‘𝑘)‘𝑤))})) |
45 | 2, 3, 44 | cmpt 5158 |
. 2
class (𝑘 ∈ V ↦ (𝑤 ∈ (LHyp‘𝑘) ↦ (𝑞 ∈ {𝑟 ∈ (Atoms‘𝑘) ∣ ¬ 𝑟(le‘𝑘)𝑤} ↦ {〈𝑓, 𝑠〉 ∣ (𝑓 = (𝑠‘(℩𝑔 ∈ ((LTrn‘𝑘)‘𝑤)(𝑔‘((oc‘𝑘)‘𝑤)) = 𝑞)) ∧ 𝑠 ∈ ((TEndo‘𝑘)‘𝑤))}))) |
46 | 1, 45 | wceq 1539 |
1
wff DIsoC =
(𝑘 ∈ V ↦ (𝑤 ∈ (LHyp‘𝑘) ↦ (𝑞 ∈ {𝑟 ∈ (Atoms‘𝑘) ∣ ¬ 𝑟(le‘𝑘)𝑤} ↦ {〈𝑓, 𝑠〉 ∣ (𝑓 = (𝑠‘(℩𝑔 ∈ ((LTrn‘𝑘)‘𝑤)(𝑔‘((oc‘𝑘)‘𝑤)) = 𝑞)) ∧ 𝑠 ∈ ((TEndo‘𝑘)‘𝑤))}))) |