![]() |
Metamath
Proof Explorer Theorem List (p. 404 of 480) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-30209) |
![]() (30210-31732) |
![]() (31733-47936) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | dihatexv 40301* | There is a nonzero vector that maps to every lattice atom. (Contributed by NM, 16-Aug-2014.) |
β’ π΅ = (BaseβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π» = (LHypβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ 0 = (0gβπ) & β’ π = (LSpanβπ) & β’ πΌ = ((DIsoHβπΎ)βπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β π β π΅) β β’ (π β (π β π΄ β βπ₯ β (π β { 0 })(πΌβπ) = (πβ{π₯}))) | ||
Theorem | dihatexv2 40302* | There is a nonzero vector that maps to every lattice atom. (Contributed by NM, 17-Aug-2014.) |
β’ π΄ = (AtomsβπΎ) & β’ π» = (LHypβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ 0 = (0gβπ) & β’ π = (LSpanβπ) & β’ πΌ = ((DIsoHβπΎ)βπ) & β’ (π β (πΎ β HL β§ π β π»)) β β’ (π β (π β π΄ β βπ₯ β (π β { 0 })π = (β‘πΌβ(πβ{π₯})))) | ||
Theorem | dihglblem6 40303* | Isomorphism H of a lattice glb. (Contributed by NM, 9-Apr-2014.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ β§ = (meetβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ πΊ = (glbβπΎ) & β’ π» = (LHypβπΎ) & β’ πΌ = ((DIsoHβπΎ)βπ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (LSubSpβπ) & β’ π· = (LSAtomsβπ) β β’ (((πΎ β HL β§ π β π») β§ (π β π΅ β§ π β β )) β (πΌβ(πΊβπ)) = β© π₯ β π (πΌβπ₯)) | ||
Theorem | dihglb 40304* | Isomorphism H of a lattice glb. (Contributed by NM, 11-Apr-2014.) |
β’ π΅ = (BaseβπΎ) & β’ πΊ = (glbβπΎ) & β’ π» = (LHypβπΎ) & β’ πΌ = ((DIsoHβπΎ)βπ) β β’ (((πΎ β HL β§ π β π») β§ (π β π΅ β§ π β β )) β (πΌβ(πΊβπ)) = β© π₯ β π (πΌβπ₯)) | ||
Theorem | dihglb2 40305* | Isomorphism H of a lattice glb. (Contributed by NM, 11-Apr-2014.) |
β’ π΅ = (BaseβπΎ) & β’ πΊ = (glbβπΎ) & β’ π» = (LHypβπΎ) & β’ πΌ = ((DIsoHβπΎ)βπ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) β β’ (((πΎ β HL β§ π β π») β§ π β π) β (πΌβ(πΊβ{π₯ β π΅ β£ π β (πΌβπ₯)})) = β© {π¦ β ran πΌ β£ π β π¦}) | ||
Theorem | dihmeet 40306 | Isomorphism H of a lattice meet. (Contributed by NM, 13-Apr-2014.) |
β’ π΅ = (BaseβπΎ) & β’ β§ = (meetβπΎ) & β’ π» = (LHypβπΎ) & β’ πΌ = ((DIsoHβπΎ)βπ) β β’ (((πΎ β HL β§ π β π») β§ π β π΅ β§ π β π΅) β (πΌβ(π β§ π)) = ((πΌβπ) β© (πΌβπ))) | ||
Theorem | dihintcl 40307 | The intersection of closed subspaces (the range of isomorphism H) is a closed subspace. (Contributed by NM, 14-Apr-2014.) |
β’ π» = (LHypβπΎ) & β’ πΌ = ((DIsoHβπΎ)βπ) β β’ (((πΎ β HL β§ π β π») β§ (π β ran πΌ β§ π β β )) β β© π β ran πΌ) | ||
Theorem | dihmeetcl 40308 | Closure of closed subspace meet for DVecH vector space. (Contributed by NM, 5-Aug-2014.) |
β’ π» = (LHypβπΎ) & β’ πΌ = ((DIsoHβπΎ)βπ) β β’ (((πΎ β HL β§ π β π») β§ (π β ran πΌ β§ π β ran πΌ)) β (π β© π) β ran πΌ) | ||
Theorem | dihmeet2 40309 | Reverse isomorphism H of a closed subspace intersection. (Contributed by NM, 15-Jan-2015.) |
β’ β§ = (meetβπΎ) & β’ π» = (LHypβπΎ) & β’ πΌ = ((DIsoHβπΎ)βπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β π β ran πΌ) & β’ (π β π β ran πΌ) β β’ (π β (β‘πΌβ(π β© π)) = ((β‘πΌβπ) β§ (β‘πΌβπ))) | ||
Syntax | coch 40310 | Extend class notation with subspace orthocomplement for DVecH vector space. |
class ocH | ||
Definition | df-doch 40311* | Define subspace orthocomplement for DVecH vector space. Temporarily, we are using the range of the isomorphism instead of the set of closed subspaces. Later, when inner product is introduced, we will show that these are the same. (Contributed by NM, 14-Mar-2014.) |
β’ ocH = (π β V β¦ (π€ β (LHypβπ) β¦ (π₯ β π« (Baseβ((DVecHβπ)βπ€)) β¦ (((DIsoHβπ)βπ€)β((ocβπ)β((glbβπ)β{π¦ β (Baseβπ) β£ π₯ β (((DIsoHβπ)βπ€)βπ¦)})))))) | ||
Theorem | dochffval 40312* | Subspace orthocomplement for DVecH vector space. (Contributed by NM, 14-Mar-2014.) |
β’ π΅ = (BaseβπΎ) & β’ πΊ = (glbβπΎ) & β’ β₯ = (ocβπΎ) & β’ π» = (LHypβπΎ) β β’ (πΎ β π β (ocHβπΎ) = (π€ β π» β¦ (π₯ β π« (Baseβ((DVecHβπΎ)βπ€)) β¦ (((DIsoHβπΎ)βπ€)β( β₯ β(πΊβ{π¦ β π΅ β£ π₯ β (((DIsoHβπΎ)βπ€)βπ¦)})))))) | ||
Theorem | dochfval 40313* | Subspace orthocomplement for DVecH vector space. (Contributed by NM, 14-Mar-2014.) |
β’ π΅ = (BaseβπΎ) & β’ πΊ = (glbβπΎ) & β’ β₯ = (ocβπΎ) & β’ π» = (LHypβπΎ) & β’ πΌ = ((DIsoHβπΎ)βπ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ π = ((ocHβπΎ)βπ) β β’ ((πΎ β π β§ π β π») β π = (π₯ β π« π β¦ (πΌβ( β₯ β(πΊβ{π¦ β π΅ β£ π₯ β (πΌβπ¦)}))))) | ||
Theorem | dochval 40314* | Subspace orthocomplement for DVecH vector space. (Contributed by NM, 14-Mar-2014.) |
β’ π΅ = (BaseβπΎ) & β’ πΊ = (glbβπΎ) & β’ β₯ = (ocβπΎ) & β’ π» = (LHypβπΎ) & β’ πΌ = ((DIsoHβπΎ)βπ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ π = ((ocHβπΎ)βπ) β β’ (((πΎ β π β§ π β π») β§ π β π) β (πβπ) = (πΌβ( β₯ β(πΊβ{π¦ β π΅ β£ π β (πΌβπ¦)})))) | ||
Theorem | dochval2 40315* | Subspace orthocomplement for DVecH vector space. (Contributed by NM, 14-Apr-2014.) |
β’ β₯ = (ocβπΎ) & β’ π» = (LHypβπΎ) & β’ πΌ = ((DIsoHβπΎ)βπ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ π = ((ocHβπΎ)βπ) β β’ (((πΎ β HL β§ π β π») β§ π β π) β (πβπ) = (πΌβ( β₯ β(β‘πΌββ© {π§ β ran πΌ β£ π β π§})))) | ||
Theorem | dochcl 40316 | Closure of subspace orthocomplement for DVecH vector space. (Contributed by NM, 9-Mar-2014.) |
β’ π» = (LHypβπΎ) & β’ πΌ = ((DIsoHβπΎ)βπ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ β₯ = ((ocHβπΎ)βπ) β β’ (((πΎ β HL β§ π β π») β§ π β π) β ( β₯ βπ) β ran πΌ) | ||
Theorem | dochlss 40317 | A subspace orthocomplement is a subspace of the DVecH vector space. (Contributed by NM, 22-Jul-2014.) |
β’ π» = (LHypβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ π = (LSubSpβπ) & β’ β₯ = ((ocHβπΎ)βπ) β β’ (((πΎ β HL β§ π β π») β§ π β π) β ( β₯ βπ) β π) | ||
Theorem | dochssv 40318 | A subspace orthocomplement belongs to the DVecH vector space. (Contributed by NM, 22-Jul-2014.) |
β’ π» = (LHypβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ β₯ = ((ocHβπΎ)βπ) β β’ (((πΎ β HL β§ π β π») β§ π β π) β ( β₯ βπ) β π) | ||
Theorem | dochfN 40319 | Domain and codomain of the subspace orthocomplement for the DVecH vector space. (Contributed by NM, 27-Dec-2014.) (New usage is discouraged.) |
β’ π» = (LHypβπΎ) & β’ πΌ = ((DIsoHβπΎ)βπ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ β₯ = ((ocHβπΎ)βπ) & β’ (π β (πΎ β HL β§ π β π»)) β β’ (π β β₯ :π« πβΆran πΌ) | ||
Theorem | dochvalr 40320 | Orthocomplement of a closed subspace. (Contributed by NM, 14-Mar-2014.) |
β’ β₯ = (ocβπΎ) & β’ π» = (LHypβπΎ) & β’ πΌ = ((DIsoHβπΎ)βπ) & β’ π = ((ocHβπΎ)βπ) β β’ (((πΎ β HL β§ π β π») β§ π β ran πΌ) β (πβπ) = (πΌβ( β₯ β(β‘πΌβπ)))) | ||
Theorem | doch0 40321 | Orthocomplement of the zero subspace. (Contributed by NM, 19-Jun-2014.) |
β’ π» = (LHypβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ β₯ = ((ocHβπΎ)βπ) & β’ π = (Baseβπ) & β’ 0 = (0gβπ) β β’ ((πΎ β HL β§ π β π») β ( β₯ β{ 0 }) = π) | ||
Theorem | doch1 40322 | Orthocomplement of the unit subspace (all vectors). (Contributed by NM, 19-Jun-2014.) |
β’ π» = (LHypβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ β₯ = ((ocHβπΎ)βπ) & β’ π = (Baseβπ) & β’ 0 = (0gβπ) β β’ ((πΎ β HL β§ π β π») β ( β₯ βπ) = { 0 }) | ||
Theorem | dochoc0 40323 | The zero subspace is closed. (Contributed by NM, 16-Feb-2015.) |
β’ π» = (LHypβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ β₯ = ((ocHβπΎ)βπ) & β’ 0 = (0gβπ) & β’ (π β (πΎ β HL β§ π β π»)) β β’ (π β ( β₯ β( β₯ β{ 0 })) = { 0 }) | ||
Theorem | dochoc1 40324 | The unit subspace (all vectors) is closed. (Contributed by NM, 16-Feb-2015.) |
β’ π» = (LHypβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ β₯ = ((ocHβπΎ)βπ) & β’ π = (Baseβπ) & β’ (π β (πΎ β HL β§ π β π»)) β β’ (π β ( β₯ β( β₯ βπ)) = π) | ||
Theorem | dochvalr2 40325 | Orthocomplement of a closed subspace. (Contributed by NM, 21-Jul-2014.) |
β’ π΅ = (BaseβπΎ) & β’ β₯ = (ocβπΎ) & β’ π» = (LHypβπΎ) & β’ πΌ = ((DIsoHβπΎ)βπ) & β’ π = ((ocHβπΎ)βπ) β β’ (((πΎ β HL β§ π β π») β§ π β π΅) β (πβ(πΌβπ)) = (πΌβ( β₯ βπ))) | ||
Theorem | dochvalr3 40326 | Orthocomplement of a closed subspace. (Contributed by NM, 15-Jan-2015.) |
β’ β₯ = (ocβπΎ) & β’ π» = (LHypβπΎ) & β’ πΌ = ((DIsoHβπΎ)βπ) & β’ π = ((ocHβπΎ)βπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β π β ran πΌ) β β’ (π β ( β₯ β(β‘πΌβπ)) = (β‘πΌβ(πβπ))) | ||
Theorem | doch2val2 40327* | Double orthocomplement for DVecH vector space. (Contributed by NM, 26-Jul-2014.) |
β’ π» = (LHypβπΎ) & β’ πΌ = ((DIsoHβπΎ)βπ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ β₯ = ((ocHβπΎ)βπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β π β π) β β’ (π β ( β₯ β( β₯ βπ)) = β© {π§ β ran πΌ β£ π β π§}) | ||
Theorem | dochss 40328 | Subset law for orthocomplement. (Contributed by NM, 16-Apr-2014.) |
β’ π» = (LHypβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ β₯ = ((ocHβπΎ)βπ) β β’ (((πΎ β HL β§ π β π») β§ π β π β§ π β π) β ( β₯ βπ) β ( β₯ βπ)) | ||
Theorem | dochocss 40329 | Double negative law for orthocomplement of an arbitrary set of vectors. (Contributed by NM, 16-Apr-2014.) |
β’ π» = (LHypβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ β₯ = ((ocHβπΎ)βπ) β β’ (((πΎ β HL β§ π β π») β§ π β π) β π β ( β₯ β( β₯ βπ))) | ||
Theorem | dochoc 40330 | Double negative law for orthocomplement of a closed subspace. (Contributed by NM, 14-Mar-2014.) |
β’ π» = (LHypβπΎ) & β’ πΌ = ((DIsoHβπΎ)βπ) & β’ β₯ = ((ocHβπΎ)βπ) β β’ (((πΎ β HL β§ π β π») β§ π β ran πΌ) β ( β₯ β( β₯ βπ)) = π) | ||
Theorem | dochsscl 40331 | If a set of vectors is included in a closed set, so is its closure. (Contributed by NM, 17-Jun-2015.) |
β’ π» = (LHypβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ πΌ = ((DIsoHβπΎ)βπ) & β’ β₯ = ((ocHβπΎ)βπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β π β π) & β’ (π β π β ran πΌ) β β’ (π β (π β π β ( β₯ β( β₯ βπ)) β π)) | ||
Theorem | dochoccl 40332 | A set of vectors is closed iff it equals its double orthocomplent. (Contributed by NM, 1-Jan-2015.) |
β’ π» = (LHypβπΎ) & β’ πΌ = ((DIsoHβπΎ)βπ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ β₯ = ((ocHβπΎ)βπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β π β π) β β’ (π β (π β ran πΌ β ( β₯ β( β₯ βπ)) = π)) | ||
Theorem | dochord 40333 | Ordering law for orthocomplement. (Contributed by NM, 12-Aug-2014.) |
β’ π» = (LHypβπΎ) & β’ πΌ = ((DIsoHβπΎ)βπ) & β’ β₯ = ((ocHβπΎ)βπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β π β ran πΌ) & β’ (π β π β ran πΌ) β β’ (π β (π β π β ( β₯ βπ) β ( β₯ βπ))) | ||
Theorem | dochord2N 40334 | Ordering law for orthocomplement. (Contributed by NM, 29-Oct-2014.) (New usage is discouraged.) |
β’ π» = (LHypβπΎ) & β’ πΌ = ((DIsoHβπΎ)βπ) & β’ β₯ = ((ocHβπΎ)βπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β π β ran πΌ) & β’ (π β π β ran πΌ) β β’ (π β (( β₯ βπ) β π β ( β₯ βπ) β π)) | ||
Theorem | dochord3 40335 | Ordering law for orthocomplement. (Contributed by NM, 9-Mar-2015.) |
β’ π» = (LHypβπΎ) & β’ πΌ = ((DIsoHβπΎ)βπ) & β’ β₯ = ((ocHβπΎ)βπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β π β ran πΌ) & β’ (π β π β ran πΌ) β β’ (π β (π β ( β₯ βπ) β π β ( β₯ βπ))) | ||
Theorem | doch11 40336 | Orthocomplement is one-to-one. (Contributed by NM, 12-Aug-2014.) |
β’ π» = (LHypβπΎ) & β’ πΌ = ((DIsoHβπΎ)βπ) & β’ β₯ = ((ocHβπΎ)βπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β π β ran πΌ) & β’ (π β π β ran πΌ) β β’ (π β (( β₯ βπ) = ( β₯ βπ) β π = π)) | ||
Theorem | dochsordN 40337 | Strict ordering law for orthocomplement. (Contributed by NM, 12-Aug-2014.) (New usage is discouraged.) |
β’ π» = (LHypβπΎ) & β’ πΌ = ((DIsoHβπΎ)βπ) & β’ β₯ = ((ocHβπΎ)βπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β π β ran πΌ) & β’ (π β π β ran πΌ) β β’ (π β (π β π β ( β₯ βπ) β ( β₯ βπ))) | ||
Theorem | dochn0nv 40338 | An orthocomplement is nonzero iff the double orthocomplement is not the whole vector space. (Contributed by NM, 1-Jan-2015.) |
β’ π» = (LHypβπΎ) & β’ β₯ = ((ocHβπΎ)βπ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ 0 = (0gβπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β π β π) β β’ (π β (( β₯ βπ) β { 0 } β ( β₯ β( β₯ βπ)) β π)) | ||
Theorem | dihoml4c 40339 | Version of dihoml4 40340 with closed subspaces. (Contributed by NM, 15-Jan-2015.) |
β’ π» = (LHypβπΎ) & β’ πΌ = ((DIsoHβπΎ)βπ) & β’ β₯ = ((ocHβπΎ)βπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β π β ran πΌ) & β’ (π β π β ran πΌ) & β’ (π β π β π) β β’ (π β (( β₯ β(( β₯ βπ) β© π)) β© π) = π) | ||
Theorem | dihoml4 40340 | Orthomodular law for constructed vector space H. Lemma 3.3(1) in [Holland95] p. 215. (poml4N 38916 analog.) (Contributed by NM, 15-Jan-2015.) |
β’ π» = (LHypβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (LSubSpβπ) & β’ β₯ = ((ocHβπΎ)βπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β π β π) & β’ (π β π β π) & β’ (π β ( β₯ β( β₯ βπ)) = π) & β’ (π β π β π) β β’ (π β (( β₯ β(( β₯ βπ) β© π)) β© π) = ( β₯ β( β₯ βπ))) | ||
Theorem | dochspss 40341 | The span of a set of vectors is included in their double orthocomplement. (Contributed by NM, 26-Jul-2014.) |
β’ π» = (LHypβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ β₯ = ((ocHβπΎ)βπ) & β’ π = (Baseβπ) & β’ π = (LSpanβπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β π β π) β β’ (π β (πβπ) β ( β₯ β( β₯ βπ))) | ||
Theorem | dochocsp 40342 | The span of an orthocomplement equals the orthocomplement of the span. (Contributed by NM, 7-Aug-2014.) |
β’ π» = (LHypβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ β₯ = ((ocHβπΎ)βπ) & β’ π = (Baseβπ) & β’ π = (LSpanβπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β π β π) β β’ (π β ( β₯ β(πβπ)) = ( β₯ βπ)) | ||
Theorem | dochspocN 40343 | The span of an orthocomplement equals the orthocomplement of the span. (Contributed by NM, 7-Aug-2014.) (New usage is discouraged.) |
β’ π» = (LHypβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ β₯ = ((ocHβπΎ)βπ) & β’ π = (Baseβπ) & β’ π = (LSpanβπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β π β π) β β’ (π β (πβ( β₯ βπ)) = ( β₯ β(πβπ))) | ||
Theorem | dochocsn 40344 | The double orthocomplement of a singleton is its span. (Contributed by NM, 13-Jan-2015.) |
β’ π» = (LHypβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ β₯ = ((ocHβπΎ)βπ) & β’ π = (Baseβπ) & β’ π = (LSpanβπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β π β π) β β’ (π β ( β₯ β( β₯ β{π})) = (πβ{π})) | ||
Theorem | dochsncom 40345 | Swap vectors in an orthocomplement of a singleton. (Contributed by NM, 17-Jun-2015.) |
β’ π» = (LHypβπΎ) & β’ β₯ = ((ocHβπΎ)βπ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β π β π) & β’ (π β π β π) β β’ (π β (π β ( β₯ β{π}) β π β ( β₯ β{π}))) | ||
Theorem | dochsat 40346 | The double orthocomplement of an atom is an atom. (Contributed by NM, 29-Oct-2014.) |
β’ π» = (LHypβπΎ) & β’ β₯ = ((ocHβπΎ)βπ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (LSubSpβπ) & β’ π΄ = (LSAtomsβπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β π β π) β β’ (π β (( β₯ β( β₯ βπ)) β π΄ β π β π΄)) | ||
Theorem | dochshpncl 40347 | If a hyperplane is not closed, its closure equals the vector space. (Contributed by NM, 29-Oct-2014.) |
β’ π» = (LHypβπΎ) & β’ β₯ = ((ocHβπΎ)βπ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ π = (LSHypβπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β π β π) β β’ (π β (( β₯ β( β₯ βπ)) β π β ( β₯ β( β₯ βπ)) = π)) | ||
Theorem | dochlkr 40348 | Equivalent conditions for the closure of a kernel to be a hyperplane. (Contributed by NM, 29-Oct-2014.) |
β’ π» = (LHypβπΎ) & β’ β₯ = ((ocHβπΎ)βπ) & β’ π = ((DVecHβπΎ)βπ) & β’ πΉ = (LFnlβπ) & β’ π = (LSHypβπ) & β’ πΏ = (LKerβπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β πΊ β πΉ) β β’ (π β (( β₯ β( β₯ β(πΏβπΊ))) β π β (( β₯ β( β₯ β(πΏβπΊ))) = (πΏβπΊ) β§ (πΏβπΊ) β π))) | ||
Theorem | dochkrshp 40349 | The closure of a kernel is a hyperplane iff it doesn't contain all vectors. (Contributed by NM, 1-Nov-2014.) |
β’ π» = (LHypβπΎ) & β’ β₯ = ((ocHβπΎ)βπ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ π = (LSHypβπ) & β’ πΉ = (LFnlβπ) & β’ πΏ = (LKerβπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β πΊ β πΉ) β β’ (π β (( β₯ β( β₯ β(πΏβπΊ))) β π β ( β₯ β( β₯ β(πΏβπΊ))) β π)) | ||
Theorem | dochkrshp2 40350 | Properties of the closure of the kernel of a functional. (Contributed by NM, 1-Jan-2015.) |
β’ π» = (LHypβπΎ) & β’ β₯ = ((ocHβπΎ)βπ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ π = (LSHypβπ) & β’ πΉ = (LFnlβπ) & β’ πΏ = (LKerβπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β πΊ β πΉ) β β’ (π β (( β₯ β( β₯ β(πΏβπΊ))) β π β (( β₯ β( β₯ β(πΏβπΊ))) = (πΏβπΊ) β§ (πΏβπΊ) β π))) | ||
Theorem | dochkrshp3 40351 | Properties of the closure of the kernel of a functional. (Contributed by NM, 1-Jan-2015.) |
β’ π» = (LHypβπΎ) & β’ β₯ = ((ocHβπΎ)βπ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ πΉ = (LFnlβπ) & β’ πΏ = (LKerβπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β πΊ β πΉ) β β’ (π β (( β₯ β( β₯ β(πΏβπΊ))) β π β (( β₯ β( β₯ β(πΏβπΊ))) = (πΏβπΊ) β§ (πΏβπΊ) β π))) | ||
Theorem | dochkrshp4 40352 | Properties of the closure of the kernel of a functional. (Contributed by NM, 1-Jan-2015.) |
β’ π» = (LHypβπΎ) & β’ β₯ = ((ocHβπΎ)βπ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ πΉ = (LFnlβπ) & β’ πΏ = (LKerβπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β πΊ β πΉ) β β’ (π β (( β₯ β( β₯ β(πΏβπΊ))) = (πΏβπΊ) β (( β₯ β( β₯ β(πΏβπΊ))) β π β¨ (πΏβπΊ) = π))) | ||
Theorem | dochdmj1 40353 | De Morgan-like law for subspace orthocomplement. (Contributed by NM, 5-Aug-2014.) |
β’ π» = (LHypβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ β₯ = ((ocHβπΎ)βπ) β β’ (((πΎ β HL β§ π β π») β§ π β π β§ π β π) β ( β₯ β(π βͺ π)) = (( β₯ βπ) β© ( β₯ βπ))) | ||
Theorem | dochnoncon 40354 | Law of noncontradiction. The intersection of a subspace and its orthocomplement is the zero subspace. (Contributed by NM, 16-Apr-2014.) |
β’ π» = (LHypβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (LSubSpβπ) & β’ 0 = (0gβπ) & β’ β₯ = ((ocHβπΎ)βπ) β β’ (((πΎ β HL β§ π β π») β§ π β π) β (π β© ( β₯ βπ)) = { 0 }) | ||
Theorem | dochnel2 40355 | A nonzero member of a subspace doesn't belong to the orthocomplement of the subspace. (Contributed by NM, 28-Feb-2015.) |
β’ π» = (LHypβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (LSubSpβπ) & β’ 0 = (0gβπ) & β’ β₯ = ((ocHβπΎ)βπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β π β π) & β’ (π β π β (π β { 0 })) β β’ (π β Β¬ π β ( β₯ βπ)) | ||
Theorem | dochnel 40356 | A nonzero vector doesn't belong to the orthocomplement of its singleton. (Contributed by NM, 27-Oct-2014.) |
β’ π» = (LHypβπΎ) & β’ β₯ = ((ocHβπΎ)βπ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ 0 = (0gβπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β π β (π β { 0 })) β β’ (π β Β¬ π β ( β₯ β{π})) | ||
Syntax | cdjh 40357 | Extend class notation with subspace join for DVecH vector space. |
class joinH | ||
Definition | df-djh 40358* | Define (closed) subspace join for DVecH vector space. (Contributed by NM, 19-Jul-2014.) |
β’ joinH = (π β V β¦ (π€ β (LHypβπ) β¦ (π₯ β π« (Baseβ((DVecHβπ)βπ€)), π¦ β π« (Baseβ((DVecHβπ)βπ€)) β¦ (((ocHβπ)βπ€)β((((ocHβπ)βπ€)βπ₯) β© (((ocHβπ)βπ€)βπ¦)))))) | ||
Theorem | djhffval 40359* | Subspace join for DVecH vector space. (Contributed by NM, 19-Jul-2014.) |
β’ π» = (LHypβπΎ) β β’ (πΎ β π β (joinHβπΎ) = (π€ β π» β¦ (π₯ β π« (Baseβ((DVecHβπΎ)βπ€)), π¦ β π« (Baseβ((DVecHβπΎ)βπ€)) β¦ (((ocHβπΎ)βπ€)β((((ocHβπΎ)βπ€)βπ₯) β© (((ocHβπΎ)βπ€)βπ¦)))))) | ||
Theorem | djhfval 40360* | Subspace join for DVecH vector space. (Contributed by NM, 19-Jul-2014.) |
β’ π» = (LHypβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ β₯ = ((ocHβπΎ)βπ) & β’ β¨ = ((joinHβπΎ)βπ) β β’ ((πΎ β π β§ π β π») β β¨ = (π₯ β π« π, π¦ β π« π β¦ ( β₯ β(( β₯ βπ₯) β© ( β₯ βπ¦))))) | ||
Theorem | djhval 40361 | Subspace join for DVecH vector space. (Contributed by NM, 19-Jul-2014.) |
β’ π» = (LHypβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ β₯ = ((ocHβπΎ)βπ) & β’ β¨ = ((joinHβπΎ)βπ) β β’ (((πΎ β HL β§ π β π») β§ (π β π β§ π β π)) β (π β¨ π) = ( β₯ β(( β₯ βπ) β© ( β₯ βπ)))) | ||
Theorem | djhval2 40362 | Value of subspace join for DVecH vector space. (Contributed by NM, 6-Aug-2014.) |
β’ π» = (LHypβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ β₯ = ((ocHβπΎ)βπ) & β’ β¨ = ((joinHβπΎ)βπ) β β’ (((πΎ β HL β§ π β π») β§ π β π β§ π β π) β (π β¨ π) = ( β₯ β( β₯ β(π βͺ π)))) | ||
Theorem | djhcl 40363 | Closure of subspace join for DVecH vector space. (Contributed by NM, 19-Jul-2014.) |
β’ π» = (LHypβπΎ) & β’ πΌ = ((DIsoHβπΎ)βπ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ β¨ = ((joinHβπΎ)βπ) β β’ (((πΎ β HL β§ π β π») β§ (π β π β§ π β π)) β (π β¨ π) β ran πΌ) | ||
Theorem | djhlj 40364 | Transfer lattice join to DVecH vector space closed subspace join. (Contributed by NM, 19-Jul-2014.) |
β’ π΅ = (BaseβπΎ) & β’ β¨ = (joinβπΎ) & β’ π» = (LHypβπΎ) & β’ πΌ = ((DIsoHβπΎ)βπ) & β’ π½ = ((joinHβπΎ)βπ) β β’ (((πΎ β HL β§ π β π») β§ (π β π΅ β§ π β π΅)) β (πΌβ(π β¨ π)) = ((πΌβπ)π½(πΌβπ))) | ||
Theorem | djhljjN 40365 | Lattice join in terms of DVecH vector space closed subspace join. (Contributed by NM, 17-Aug-2014.) (New usage is discouraged.) |
β’ π΅ = (BaseβπΎ) & β’ β¨ = (joinβπΎ) & β’ π» = (LHypβπΎ) & β’ πΌ = ((DIsoHβπΎ)βπ) & β’ π½ = ((joinHβπΎ)βπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β π β π΅) & β’ (π β π β π΅) β β’ (π β (π β¨ π) = (β‘πΌβ((πΌβπ)π½(πΌβπ)))) | ||
Theorem | djhjlj 40366 | DVecH vector space closed subspace join in terms of lattice join. (Contributed by NM, 9-Aug-2014.) |
β’ β¨ = (joinβπΎ) & β’ π» = (LHypβπΎ) & β’ πΌ = ((DIsoHβπΎ)βπ) & β’ π½ = ((joinHβπΎ)βπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β π β ran πΌ) & β’ (π β π β ran πΌ) β β’ (π β (ππ½π) = (πΌβ((β‘πΌβπ) β¨ (β‘πΌβπ)))) | ||
Theorem | djhj 40367 | DVecH vector space closed subspace join in terms of lattice join. (Contributed by NM, 17-Aug-2014.) |
β’ β¨ = (joinβπΎ) & β’ π» = (LHypβπΎ) & β’ πΌ = ((DIsoHβπΎ)βπ) & β’ π½ = ((joinHβπΎ)βπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β π β ran πΌ) & β’ (π β π β ran πΌ) β β’ (π β (β‘πΌβ(ππ½π)) = ((β‘πΌβπ) β¨ (β‘πΌβπ))) | ||
Theorem | djhcom 40368 | Subspace join commutes. (Contributed by NM, 8-Aug-2014.) |
β’ π» = (LHypβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ β¨ = ((joinHβπΎ)βπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β π β π) & β’ (π β π β π) β β’ (π β (π β¨ π) = (π β¨ π)) | ||
Theorem | djhspss 40369 | Subspace span of union is a subset of subspace join. (Contributed by NM, 6-Aug-2014.) |
β’ π» = (LHypβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ π = (LSpanβπ) & β’ β¨ = ((joinHβπΎ)βπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β π β π) & β’ (π β π β π) β β’ (π β (πβ(π βͺ π)) β (π β¨ π)) | ||
Theorem | djhsumss 40370 | Subspace sum is a subset of subspace join. (Contributed by NM, 6-Aug-2014.) |
β’ π» = (LHypβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ β = (LSSumβπ) & β’ β¨ = ((joinHβπΎ)βπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β π β π) & β’ (π β π β π) β β’ (π β (π β π) β (π β¨ π)) | ||
Theorem | dihsumssj 40371 | The subspace sum of two isomorphisms of lattice elements is less than the isomorphism of their lattice join. (Contributed by NM, 23-Sep-2014.) |
β’ π΅ = (BaseβπΎ) & β’ π» = (LHypβπΎ) & β’ β¨ = (joinβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ β = (LSSumβπ) & β’ πΌ = ((DIsoHβπΎ)βπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β π β π΅) & β’ (π β π β π΅) β β’ (π β ((πΌβπ) β (πΌβπ)) β (πΌβ(π β¨ π))) | ||
Theorem | djhunssN 40372 | Subspace union is a subset of subspace join. (Contributed by NM, 6-Aug-2014.) (New usage is discouraged.) |
β’ π» = (LHypβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ β¨ = ((joinHβπΎ)βπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β π β π) & β’ (π β π β π) β β’ (π β (π βͺ π) β (π β¨ π)) | ||
Theorem | dochdmm1 40373 | De Morgan-like law for closed subspace orthocomplement. (Contributed by NM, 13-Jan-2015.) |
β’ π» = (LHypβπΎ) & β’ πΌ = ((DIsoHβπΎ)βπ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ β₯ = ((ocHβπΎ)βπ) & β’ β¨ = ((joinHβπΎ)βπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β π β ran πΌ) & β’ (π β π β ran πΌ) β β’ (π β ( β₯ β(π β© π)) = (( β₯ βπ) β¨ ( β₯ βπ))) | ||
Theorem | djhexmid 40374 | Excluded middle property of DVecH vector space closed subspace join. (Contributed by NM, 22-Jul-2014.) |
β’ π» = (LHypβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ β₯ = ((ocHβπΎ)βπ) & β’ β¨ = ((joinHβπΎ)βπ) β β’ (((πΎ β HL β§ π β π») β§ π β π) β (π β¨ ( β₯ βπ)) = π) | ||
Theorem | djh01 40375 | Closed subspace join with zero. (Contributed by NM, 9-Aug-2014.) |
β’ π» = (LHypβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ 0 = (0gβπ) & β’ πΌ = ((DIsoHβπΎ)βπ) & β’ β¨ = ((joinHβπΎ)βπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β π β ran πΌ) β β’ (π β (π β¨ { 0 }) = π) | ||
Theorem | djh02 40376 | Closed subspace join with zero. (Contributed by NM, 9-Aug-2014.) |
β’ π» = (LHypβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ 0 = (0gβπ) & β’ πΌ = ((DIsoHβπΎ)βπ) & β’ β¨ = ((joinHβπΎ)βπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β π β ran πΌ) β β’ (π β ({ 0 } β¨ π) = π) | ||
Theorem | djhlsmcl 40377 | A closed subspace sum equals subspace join. (shjshseli 30784 analog.) (Contributed by NM, 13-Aug-2014.) |
β’ π» = (LHypβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ π = (LSubSpβπ) & β’ β = (LSSumβπ) & β’ πΌ = ((DIsoHβπΎ)βπ) & β’ β¨ = ((joinHβπΎ)βπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β π β π) & β’ (π β π β π) β β’ (π β ((π β π) β ran πΌ β (π β π) = (π β¨ π))) | ||
Theorem | djhcvat42 40378* | A covering property. (cvrat42 38407 analog.) (Contributed by NM, 17-Aug-2014.) |
β’ π» = (LHypβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ 0 = (0gβπ) & β’ π = (LSpanβπ) & β’ πΌ = ((DIsoHβπΎ)βπ) & β’ β¨ = ((joinHβπΎ)βπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β π β ran πΌ) & β’ (π β π β (π β { 0 })) & β’ (π β π β (π β { 0 })) β β’ (π β ((π β { 0 } β§ (πβ{π}) β (π β¨ (πβ{π}))) β βπ§ β (π β { 0 })((πβ{π§}) β π β§ (πβ{π}) β ((πβ{π§}) β¨ (πβ{π}))))) | ||
Theorem | dihjatb 40379 | Isomorphism H of lattice join of two atoms under the fiducial hyperplane. (Contributed by NM, 23-Sep-2014.) |
β’ β€ = (leβπΎ) & β’ π» = (LHypβπΎ) & β’ β¨ = (joinβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ β = (LSSumβπ) & β’ πΌ = ((DIsoHβπΎ)βπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β (π β π΄ β§ π β€ π)) & β’ (π β (π β π΄ β§ π β€ π)) β β’ (π β (πΌβ(π β¨ π)) = ((πΌβπ) β (πΌβπ))) | ||
Theorem | dihjatc 40380 | Isomorphism H of lattice join of an element under the fiducial hyperplane with atom not under it. (Contributed by NM, 26-Aug-2014.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ π» = (LHypβπΎ) & β’ β¨ = (joinβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ β = (LSSumβπ) & β’ πΌ = ((DIsoHβπΎ)βπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β (π β π΅ β§ π β€ π)) & β’ (π β (π β π΄ β§ Β¬ π β€ π)) β β’ (π β (πΌβ(π β¨ π)) = ((πΌβπ) β (πΌβπ))) | ||
Theorem | dihjatcclem1 40381 | Lemma for isomorphism H of lattice join of two atoms not under the fiducial hyperplane. (Contributed by NM, 26-Sep-2014.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ π» = (LHypβπΎ) & β’ β¨ = (joinβπΎ) & β’ β§ = (meetβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ β = (LSSumβπ) & β’ πΌ = ((DIsoHβπΎ)βπ) & β’ π = ((π β¨ π) β§ π) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β (π β π΄ β§ Β¬ π β€ π)) & β’ (π β (π β π΄ β§ Β¬ π β€ π)) β β’ (π β (πΌβ(π β¨ π)) = (((πΌβπ) β (πΌβπ)) β (πΌβπ))) | ||
Theorem | dihjatcclem2 40382 | Lemma for isomorphism H of lattice join of two atoms not under the fiducial hyperplane. (Contributed by NM, 26-Sep-2014.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ π» = (LHypβπΎ) & β’ β¨ = (joinβπΎ) & β’ β§ = (meetβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ β = (LSSumβπ) & β’ πΌ = ((DIsoHβπΎ)βπ) & β’ π = ((π β¨ π) β§ π) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β (π β π΄ β§ Β¬ π β€ π)) & β’ (π β (π β π΄ β§ Β¬ π β€ π)) & β’ (π β (πΌβπ) β ((πΌβπ) β (πΌβπ))) β β’ (π β (πΌβ(π β¨ π)) = ((πΌβπ) β (πΌβπ))) | ||
Theorem | dihjatcclem3 40383* | Lemma for dihjatcc 40385. (Contributed by NM, 28-Sep-2014.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ π» = (LHypβπΎ) & β’ β¨ = (joinβπΎ) & β’ β§ = (meetβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ β = (LSSumβπ) & β’ πΌ = ((DIsoHβπΎ)βπ) & β’ π = ((π β¨ π) β§ π) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β (π β π΄ β§ Β¬ π β€ π)) & β’ (π β (π β π΄ β§ Β¬ π β€ π)) & β’ πΆ = ((ocβπΎ)βπ) & β’ π = ((LTrnβπΎ)βπ) & β’ π = ((trLβπΎ)βπ) & β’ πΈ = ((TEndoβπΎ)βπ) & β’ πΊ = (β©π β π (πβπΆ) = π) & β’ π· = (β©π β π (πβπΆ) = π) β β’ (π β (π β(πΊ β β‘π·)) = π) | ||
Theorem | dihjatcclem4 40384* | Lemma for isomorphism H of lattice join of two atoms not under the fiducial hyperplane. (Contributed by NM, 29-Sep-2014.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ π» = (LHypβπΎ) & β’ β¨ = (joinβπΎ) & β’ β§ = (meetβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ β = (LSSumβπ) & β’ πΌ = ((DIsoHβπΎ)βπ) & β’ π = ((π β¨ π) β§ π) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β (π β π΄ β§ Β¬ π β€ π)) & β’ (π β (π β π΄ β§ Β¬ π β€ π)) & β’ πΆ = ((ocβπΎ)βπ) & β’ π = ((LTrnβπΎ)βπ) & β’ π = ((trLβπΎ)βπ) & β’ πΈ = ((TEndoβπΎ)βπ) & β’ πΊ = (β©π β π (πβπΆ) = π) & β’ π· = (β©π β π (πβπΆ) = π) & β’ π = (π β πΈ β¦ (π β π β¦ β‘(πβπ))) & β’ 0 = (π β π β¦ ( I βΎ π΅)) & β’ π½ = (π β πΈ, π β πΈ β¦ (π β π β¦ ((πβπ) β (πβπ)))) β β’ (π β (πΌβπ) β ((πΌβπ) β (πΌβπ))) | ||
Theorem | dihjatcc 40385 | Isomorphism H of lattice join of two atoms not under the fiducial hyperplane. (Contributed by NM, 29-Sep-2014.) |
β’ β€ = (leβπΎ) & β’ π» = (LHypβπΎ) & β’ β¨ = (joinβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ β = (LSSumβπ) & β’ πΌ = ((DIsoHβπΎ)βπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β (π β π΄ β§ Β¬ π β€ π)) & β’ (π β (π β π΄ β§ Β¬ π β€ π)) β β’ (π β (πΌβ(π β¨ π)) = ((πΌβπ) β (πΌβπ))) | ||
Theorem | dihjat 40386 | Isomorphism H of lattice join of two atoms. (Contributed by NM, 29-Sep-2014.) |
β’ π» = (LHypβπΎ) & β’ β¨ = (joinβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ β = (LSSumβπ) & β’ πΌ = ((DIsoHβπΎ)βπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β π β π΄) & β’ (π β π β π΄) β β’ (π β (πΌβ(π β¨ π)) = ((πΌβπ) β (πΌβπ))) | ||
Theorem | dihprrnlem1N 40387 | Lemma for dihprrn 40389, showing one of 4 cases. (Contributed by NM, 30-Aug-2014.) (New usage is discouraged.) |
β’ π» = (LHypβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ π = (LSpanβπ) & β’ πΌ = ((DIsoHβπΎ)βπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β π β π) & β’ (π β π β π) & β’ β€ = (leβπΎ) & β’ 0 = (0gβπ) & β’ (π β π β 0 ) & β’ (π β (β‘πΌβ(πβ{π})) β€ π) & β’ (π β Β¬ (β‘πΌβ(πβ{π})) β€ π) β β’ (π β (πβ{π, π}) β ran πΌ) | ||
Theorem | dihprrnlem2 40388 | Lemma for dihprrn 40389. (Contributed by NM, 29-Sep-2014.) |
β’ π» = (LHypβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ π = (LSpanβπ) & β’ πΌ = ((DIsoHβπΎ)βπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β π β π) & β’ (π β π β π) & β’ 0 = (0gβπ) & β’ (π β π β 0 ) & β’ (π β π β 0 ) β β’ (π β (πβ{π, π}) β ran πΌ) | ||
Theorem | dihprrn 40389 | The span of a vector pair belongs to the range of isomorphism H i.e. is a closed subspace. (Contributed by NM, 29-Sep-2014.) |
β’ π» = (LHypβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ π = (LSpanβπ) & β’ πΌ = ((DIsoHβπΎ)βπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β π β π) & β’ (π β π β π) β β’ (π β (πβ{π, π}) β ran πΌ) | ||
Theorem | djhlsmat 40390 | The sum of two subspace atoms equals their join. TODO: seems convoluted to go via dihprrn 40389; should we directly use dihjat 40386? (Contributed by NM, 13-Aug-2014.) |
β’ π» = (LHypβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ β = (LSSumβπ) & β’ π = (LSpanβπ) & β’ πΌ = ((DIsoHβπΎ)βπ) & β’ β¨ = ((joinHβπΎ)βπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β π β π) & β’ (π β π β π) β β’ (π β ((πβ{π}) β (πβ{π})) = ((πβ{π}) β¨ (πβ{π}))) | ||
Theorem | dihjat1lem 40391 | Subspace sum of a closed subspace and an atom. (pmapjat1 38816 analog.) TODO: merge into dihjat1 40392? (Contributed by NM, 18-Aug-2014.) |
β’ π» = (LHypβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ β = (LSSumβπ) & β’ π = (LSpanβπ) & β’ πΌ = ((DIsoHβπΎ)βπ) & β’ β¨ = ((joinHβπΎ)βπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β π β ran πΌ) & β’ 0 = (0gβπ) & β’ (π β π β (π β { 0 })) β β’ (π β (π β¨ (πβ{π})) = (π β (πβ{π}))) | ||
Theorem | dihjat1 40392 | Subspace sum of a closed subspace and an atom. (pmapjat1 38816 analog.) (Contributed by NM, 1-Oct-2014.) |
β’ π» = (LHypβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ β = (LSSumβπ) & β’ π = (LSpanβπ) & β’ πΌ = ((DIsoHβπΎ)βπ) & β’ β¨ = ((joinHβπΎ)βπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β π β ran πΌ) & β’ (π β π β π) β β’ (π β (π β¨ (πβ{π})) = (π β (πβ{π}))) | ||
Theorem | dihsmsprn 40393 | Subspace sum of a closed subspace and the span of a singleton. (Contributed by NM, 17-Jan-2015.) |
β’ π» = (LHypβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ β = (LSSumβπ) & β’ π = (LSpanβπ) & β’ πΌ = ((DIsoHβπΎ)βπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β π β ran πΌ) & β’ (π β π β π) β β’ (π β (π β (πβ{π})) β ran πΌ) | ||
Theorem | dihjat2 40394 | The subspace sum of a closed subspace and an atom is the same as their subspace join. (Contributed by NM, 1-Oct-2014.) |
β’ π» = (LHypβπΎ) & β’ πΌ = ((DIsoHβπΎ)βπ) & β’ β¨ = ((joinHβπΎ)βπ) & β’ π = ((DVecHβπΎ)βπ) & β’ β = (LSSumβπ) & β’ π΄ = (LSAtomsβπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β π β ran πΌ) & β’ (π β π β π΄) β β’ (π β (π β¨ π) = (π β π)) | ||
Theorem | dihjat3 40395 | Isomorphism H of lattice join with an atom. (Contributed by NM, 25-Apr-2015.) |
β’ π΅ = (BaseβπΎ) & β’ π» = (LHypβπΎ) & β’ β¨ = (joinβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ β = (LSSumβπ) & β’ πΌ = ((DIsoHβπΎ)βπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β π β π΅) & β’ (π β π β π΄) β β’ (π β (πΌβ(π β¨ π)) = ((πΌβπ) β (πΌβπ))) | ||
Theorem | dihjat4 40396 | Transfer the subspace sum of a closed subspace and an atom back to lattice join. (Contributed by NM, 25-Apr-2015.) |
β’ β¨ = (joinβπΎ) & β’ π» = (LHypβπΎ) & β’ πΌ = ((DIsoHβπΎ)βπ) & β’ π = ((DVecHβπΎ)βπ) & β’ β = (LSSumβπ) & β’ π΄ = (LSAtomsβπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β π β ran πΌ) & β’ (π β π β π΄) β β’ (π β (π β π) = (πΌβ((β‘πΌβπ) β¨ (β‘πΌβπ)))) | ||
Theorem | dihjat6 40397 | Transfer the subspace sum of a closed subspace and an atom back to lattice join. (Contributed by NM, 25-Apr-2015.) |
β’ β¨ = (joinβπΎ) & β’ π» = (LHypβπΎ) & β’ πΌ = ((DIsoHβπΎ)βπ) & β’ π = ((DVecHβπΎ)βπ) & β’ β = (LSSumβπ) & β’ π΄ = (LSAtomsβπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β π β ran πΌ) & β’ (π β π β π΄) β β’ (π β (β‘πΌβ(π β π)) = ((β‘πΌβπ) β¨ (β‘πΌβπ))) | ||
Theorem | dihsmsnrn 40398 | The subspace sum of two singleton spans is closed. (Contributed by NM, 27-Feb-2015.) |
β’ π» = (LHypβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ β = (LSSumβπ) & β’ π = (LSpanβπ) & β’ πΌ = ((DIsoHβπΎ)βπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β π β π) & β’ (π β π β π) β β’ (π β ((πβ{π}) β (πβ{π})) β ran πΌ) | ||
Theorem | dihsmatrn 40399 | The subspace sum of a closed subspace and an atom is closed. TODO: see if proof at http://math.stackexchange.com/a/1233211/50776 and Mon, 13 Apr 2015 20:44:07 -0400 email could be used instead of this and dihjat2 40394. (Contributed by NM, 15-Jan-2015.) |
β’ π» = (LHypβπΎ) & β’ πΌ = ((DIsoHβπΎ)βπ) & β’ π = ((DVecHβπΎ)βπ) & β’ β = (LSSumβπ) & β’ π΄ = (LSAtomsβπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β π β ran πΌ) & β’ (π β π β π΄) β β’ (π β (π β π) β ran πΌ) | ||
Theorem | dihjat5N 40400 | Transfer lattice join with atom to subspace sum. (Contributed by NM, 25-Apr-2015.) (New usage is discouraged.) |
β’ π΅ = (BaseβπΎ) & β’ π» = (LHypβπΎ) & β’ β¨ = (joinβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ β = (LSSumβπ) & β’ πΌ = ((DIsoHβπΎ)βπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β π β π΅) & β’ (π β π β π΄) β β’ (π β (π β¨ π) = (β‘πΌβ((πΌβπ) β (πΌβπ)))) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |