![]() |
Metamath
Proof Explorer Theorem List (p. 404 of 474) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-29923) |
![]() (29924-31446) |
![]() (31447-47372) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | hvmap1o2 40301 | The vector to functional map provides a bijection from nonzero vectors 𝑉 to nonzero functionals with closed kernels 𝐶. (Contributed by NM, 27-Mar-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 0 = (0g‘𝑈) & ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) & ⊢ 𝐹 = (Base‘𝐶) & ⊢ 𝑂 = (0g‘𝐶) & ⊢ 𝑀 = ((HVMap‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) ⇒ ⊢ (𝜑 → 𝑀:(𝑉 ∖ { 0 })–1-1-onto→(𝐹 ∖ {𝑂})) | ||
Theorem | hvmapcl2 40302 | Closure of the vector to functional map. (Contributed by NM, 27-Mar-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 0 = (0g‘𝑈) & ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) & ⊢ 𝐹 = (Base‘𝐶) & ⊢ 𝑂 = (0g‘𝐶) & ⊢ 𝑀 = ((HVMap‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) ⇒ ⊢ (𝜑 → (𝑀‘𝑋) ∈ (𝐹 ∖ {𝑂})) | ||
Theorem | hvmaplfl 40303 | The vector to functional map value is a functional. (Contributed by NM, 28-Mar-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 0 = (0g‘𝑈) & ⊢ 𝐹 = (LFnl‘𝑈) & ⊢ 𝑀 = ((HVMap‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) ⇒ ⊢ (𝜑 → (𝑀‘𝑋) ∈ 𝐹) | ||
Theorem | hvmaplkr 40304 | Kernel of the vector to functional map. TODO: make this become lcfrlem11 40089. (Contributed by NM, 29-Mar-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑂 = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 0 = (0g‘𝑈) & ⊢ 𝐿 = (LKer‘𝑈) & ⊢ 𝑀 = ((HVMap‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) ⇒ ⊢ (𝜑 → (𝐿‘(𝑀‘𝑋)) = (𝑂‘{𝑋})) | ||
Theorem | mapdhvmap 40305 | Relationship between mapd and HVMap, which can be used to satisfy the last hypothesis of mapdpg 40242. Equation 10 of [Baer] p. 48. (Contributed by NM, 29-Mar-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 0 = (0g‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) & ⊢ 𝐽 = (LSpan‘𝐶) & ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) & ⊢ 𝑃 = ((HVMap‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) ⇒ ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{(𝑃‘𝑋)})) | ||
Theorem | lspindp5 40306 | Obtain an independent vector set 𝑈, 𝑋, 𝑌 from a vector 𝑈 dependent on 𝑋 and 𝑍 and another independent set 𝑍, 𝑋, 𝑌. (Here we don't show the (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}) part of the independence, which passes straight through. We also don't show nonzero vector requirements that are redundant for this theorem. Different orderings can be obtained using lspexch 20649 and prcom 4698.) (Contributed by NM, 4-May-2015.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LVec) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ (𝜑 → 𝑍 ∈ (𝑁‘{𝑋, 𝑈})) & ⊢ (𝜑 → ¬ 𝑍 ∈ (𝑁‘{𝑋, 𝑌})) ⇒ ⊢ (𝜑 → ¬ 𝑈 ∈ (𝑁‘{𝑋, 𝑌})) | ||
Theorem | hdmaplem1 40307 | Lemma to convert a frequently-used union condition. TODO: see if this can be applied to other hdmap* theorems. (Contributed by NM, 17-May-2015.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝑍 ∈ 𝑉) & ⊢ (𝜑 → ¬ 𝑍 ∈ ((𝑁‘{𝑋}) ∪ (𝑁‘{𝑌}))) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) ⇒ ⊢ (𝜑 → (𝑁‘{𝑍}) ≠ (𝑁‘{𝑋})) | ||
Theorem | hdmaplem2N 40308 | Lemma to convert a frequently-used union condition. TODO: see if this can be applied to other hdmap* theorems. (Contributed by NM, 17-May-2015.) (New usage is discouraged.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝑍 ∈ 𝑉) & ⊢ (𝜑 → ¬ 𝑍 ∈ ((𝑁‘{𝑋}) ∪ (𝑁‘{𝑌}))) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) ⇒ ⊢ (𝜑 → (𝑁‘{𝑍}) ≠ (𝑁‘{𝑌})) | ||
Theorem | hdmaplem3 40309 | Lemma to convert a frequently-used union condition. TODO: see if this can be applied to other hdmap* theorems. (Contributed by NM, 17-May-2015.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝑍 ∈ 𝑉) & ⊢ (𝜑 → ¬ 𝑍 ∈ ((𝑁‘{𝑋}) ∪ (𝑁‘{𝑌}))) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) & ⊢ 0 = (0g‘𝑊) ⇒ ⊢ (𝜑 → 𝑍 ∈ (𝑉 ∖ { 0 })) | ||
Theorem | hdmaplem4 40310 | Lemma to convert a frequently-used union condition. TODO: see if this can be applied to other hdmap* theorems. (Contributed by NM, 17-May-2015.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) & ⊢ 0 = (0g‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LVec) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) & ⊢ (𝜑 → 𝑍 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → (𝑁‘{𝑍}) ≠ (𝑁‘{𝑋})) & ⊢ (𝜑 → (𝑁‘{𝑍}) ≠ (𝑁‘{𝑌})) ⇒ ⊢ (𝜑 → ¬ 𝑍 ∈ ((𝑁‘{𝑋}) ∪ (𝑁‘{𝑌}))) | ||
Theorem | mapdh8a 40311* | Part of Part (8) in [Baer] p. 48. (Contributed by NM, 5-May-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ − = (-g‘𝑈) & ⊢ 0 = (0g‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) & ⊢ 𝐷 = (Base‘𝐶) & ⊢ 𝑅 = (-g‘𝐶) & ⊢ 𝑄 = (0g‘𝐶) & ⊢ 𝐽 = (LSpan‘𝐶) & ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) & ⊢ 𝐼 = (𝑥 ∈ V ↦ if((2nd ‘𝑥) = 0 , 𝑄, (℩ℎ ∈ 𝐷 ((𝑀‘(𝑁‘{(2nd ‘𝑥)})) = (𝐽‘{ℎ}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st ‘𝑥)) − (2nd ‘𝑥))})) = (𝐽‘{((2nd ‘(1st ‘𝑥))𝑅ℎ)}))))) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝐹 ∈ 𝐷) & ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹})) & ⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, 𝑌〉) = 𝐺) & ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑇})) & ⊢ (𝜑 → 𝑇 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑇})) ⇒ ⊢ (𝜑 → (𝐼‘〈𝑌, 𝐺, 𝑇〉) = (𝐼‘〈𝑋, 𝐹, 𝑇〉)) | ||
Theorem | mapdh8aa 40312* | Part of Part (8) in [Baer] p. 48. (Contributed by NM, 12-May-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ − = (-g‘𝑈) & ⊢ 0 = (0g‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) & ⊢ 𝐷 = (Base‘𝐶) & ⊢ 𝑅 = (-g‘𝐶) & ⊢ 𝑄 = (0g‘𝐶) & ⊢ 𝐽 = (LSpan‘𝐶) & ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) & ⊢ 𝐼 = (𝑥 ∈ V ↦ if((2nd ‘𝑥) = 0 , 𝑄, (℩ℎ ∈ 𝐷 ((𝑀‘(𝑁‘{(2nd ‘𝑥)})) = (𝐽‘{ℎ}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st ‘𝑥)) − (2nd ‘𝑥))})) = (𝐽‘{((2nd ‘(1st ‘𝑥))𝑅ℎ)}))))) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝐹 ∈ 𝐷) & ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹})) & ⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, 𝑌〉) = 𝐺) & ⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, 𝑍〉) = 𝐸) & ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → 𝑍 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → (𝑁‘{𝑍}) ≠ (𝑁‘{𝑇})) & ⊢ (𝜑 → 𝑇 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → ¬ 𝑌 ∈ (𝑁‘{𝑍, 𝑇})) & ⊢ (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍})) ⇒ ⊢ (𝜑 → (𝐼‘〈𝑌, 𝐺, 𝑇〉) = (𝐼‘〈𝑍, 𝐸, 𝑇〉)) | ||
Theorem | mapdh8ab 40313* | Part of Part (8) in [Baer] p. 48. (Contributed by NM, 13-May-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ − = (-g‘𝑈) & ⊢ 0 = (0g‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) & ⊢ 𝐷 = (Base‘𝐶) & ⊢ 𝑅 = (-g‘𝐶) & ⊢ 𝑄 = (0g‘𝐶) & ⊢ 𝐽 = (LSpan‘𝐶) & ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) & ⊢ 𝐼 = (𝑥 ∈ V ↦ if((2nd ‘𝑥) = 0 , 𝑄, (℩ℎ ∈ 𝐷 ((𝑀‘(𝑁‘{(2nd ‘𝑥)})) = (𝐽‘{ℎ}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st ‘𝑥)) − (2nd ‘𝑥))})) = (𝐽‘{((2nd ‘(1st ‘𝑥))𝑅ℎ)}))))) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝐹 ∈ 𝐷) & ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹})) & ⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, 𝑌〉) = 𝐺) & ⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, 𝑍〉) = 𝐸) & ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → 𝑍 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → 𝑇 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑍})) & ⊢ (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍})) & ⊢ (𝜑 → (𝑁‘{𝑋}) = (𝑁‘{𝑇})) ⇒ ⊢ (𝜑 → (𝐼‘〈𝑌, 𝐺, 𝑇〉) = (𝐼‘〈𝑍, 𝐸, 𝑇〉)) | ||
Theorem | mapdh8ac 40314* | Part of Part (8) in [Baer] p. 48. (Contributed by NM, 13-May-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ − = (-g‘𝑈) & ⊢ 0 = (0g‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) & ⊢ 𝐷 = (Base‘𝐶) & ⊢ 𝑅 = (-g‘𝐶) & ⊢ 𝑄 = (0g‘𝐶) & ⊢ 𝐽 = (LSpan‘𝐶) & ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) & ⊢ 𝐼 = (𝑥 ∈ V ↦ if((2nd ‘𝑥) = 0 , 𝑄, (℩ℎ ∈ 𝐷 ((𝑀‘(𝑁‘{(2nd ‘𝑥)})) = (𝐽‘{ℎ}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st ‘𝑥)) − (2nd ‘𝑥))})) = (𝐽‘{((2nd ‘(1st ‘𝑥))𝑅ℎ)}))))) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝐹 ∈ 𝐷) & ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹})) & ⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, 𝑌〉) = 𝐺) & ⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, 𝑍〉) = 𝐸) & ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → 𝑍 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → 𝑇 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → (𝑁‘{𝑋}) = (𝑁‘{𝑇})) & ⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, 𝑤〉) = 𝐵) & ⊢ (𝜑 → 𝑤 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑤})) & ⊢ (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑤})) & ⊢ (𝜑 → (𝑁‘{𝑤}) ≠ (𝑁‘{𝑍})) & ⊢ (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑤, 𝑍})) ⇒ ⊢ (𝜑 → (𝐼‘〈𝑌, 𝐺, 𝑇〉) = (𝐼‘〈𝑍, 𝐸, 𝑇〉)) | ||
Theorem | mapdh8ad 40315* | Part of Part (8) in [Baer] p. 48. (Contributed by NM, 13-May-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ − = (-g‘𝑈) & ⊢ 0 = (0g‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) & ⊢ 𝐷 = (Base‘𝐶) & ⊢ 𝑅 = (-g‘𝐶) & ⊢ 𝑄 = (0g‘𝐶) & ⊢ 𝐽 = (LSpan‘𝐶) & ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) & ⊢ 𝐼 = (𝑥 ∈ V ↦ if((2nd ‘𝑥) = 0 , 𝑄, (℩ℎ ∈ 𝐷 ((𝑀‘(𝑁‘{(2nd ‘𝑥)})) = (𝐽‘{ℎ}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st ‘𝑥)) − (2nd ‘𝑥))})) = (𝐽‘{((2nd ‘(1st ‘𝑥))𝑅ℎ)}))))) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝐹 ∈ 𝐷) & ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹})) & ⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, 𝑌〉) = 𝐺) & ⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, 𝑍〉) = 𝐸) & ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → 𝑍 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → 𝑇 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → (𝑁‘{𝑋}) = (𝑁‘{𝑇})) & ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) & ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑍})) ⇒ ⊢ (𝜑 → (𝐼‘〈𝑌, 𝐺, 𝑇〉) = (𝐼‘〈𝑍, 𝐸, 𝑇〉)) | ||
Theorem | mapdh8b 40316* | Part of Part (8) in [Baer] p. 48. (Contributed by NM, 6-May-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ − = (-g‘𝑈) & ⊢ 0 = (0g‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) & ⊢ 𝐷 = (Base‘𝐶) & ⊢ 𝑅 = (-g‘𝐶) & ⊢ 𝑄 = (0g‘𝐶) & ⊢ 𝐽 = (LSpan‘𝐶) & ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) & ⊢ 𝐼 = (𝑥 ∈ V ↦ if((2nd ‘𝑥) = 0 , 𝑄, (℩ℎ ∈ 𝐷 ((𝑀‘(𝑁‘{(2nd ‘𝑥)})) = (𝐽‘{ℎ}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st ‘𝑥)) − (2nd ‘𝑥))})) = (𝐽‘{((2nd ‘(1st ‘𝑥))𝑅ℎ)}))))) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝐺 ∈ 𝐷) & ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝐺})) & ⊢ (𝜑 → (𝐼‘〈𝑌, 𝐺, 𝑤〉) = 𝐸) & ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → 𝑤 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → (𝑁‘{𝑤}) ≠ (𝑁‘{𝑇})) & ⊢ (𝜑 → 𝑇 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑤})) & ⊢ (𝜑 → 𝑋 ∈ (𝑁‘{𝑌, 𝑇})) & ⊢ (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑤})) ⇒ ⊢ (𝜑 → (𝐼‘〈𝑤, 𝐸, 𝑇〉) = (𝐼‘〈𝑌, 𝐺, 𝑇〉)) | ||
Theorem | mapdh8c 40317* | Part of Part (8) in [Baer] p. 48. (Contributed by NM, 6-May-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ − = (-g‘𝑈) & ⊢ 0 = (0g‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) & ⊢ 𝐷 = (Base‘𝐶) & ⊢ 𝑅 = (-g‘𝐶) & ⊢ 𝑄 = (0g‘𝐶) & ⊢ 𝐽 = (LSpan‘𝐶) & ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) & ⊢ 𝐼 = (𝑥 ∈ V ↦ if((2nd ‘𝑥) = 0 , 𝑄, (℩ℎ ∈ 𝐷 ((𝑀‘(𝑁‘{(2nd ‘𝑥)})) = (𝐽‘{ℎ}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st ‘𝑥)) − (2nd ‘𝑥))})) = (𝐽‘{((2nd ‘(1st ‘𝑥))𝑅ℎ)}))))) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝐹 ∈ 𝐷) & ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹})) & ⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, 𝑤〉) = 𝐸) & ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → 𝑇 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑇})) & ⊢ (𝜑 → 𝑤 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → (𝑁‘{𝑤}) ≠ (𝑁‘{𝑇})) & ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑇})) & ⊢ (𝜑 → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑤})) & ⊢ (𝜑 → 𝑋 ∈ (𝑁‘{𝑌, 𝑇})) & ⊢ (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑤})) ⇒ ⊢ (𝜑 → (𝐼‘〈𝑤, 𝐸, 𝑇〉) = (𝐼‘〈𝑋, 𝐹, 𝑇〉)) | ||
Theorem | mapdh8d0N 40318* | Part of Part (8) in [Baer] p. 48. (Contributed by NM, 10-May-2015.) (New usage is discouraged.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ − = (-g‘𝑈) & ⊢ 0 = (0g‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) & ⊢ 𝐷 = (Base‘𝐶) & ⊢ 𝑅 = (-g‘𝐶) & ⊢ 𝑄 = (0g‘𝐶) & ⊢ 𝐽 = (LSpan‘𝐶) & ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) & ⊢ 𝐼 = (𝑥 ∈ V ↦ if((2nd ‘𝑥) = 0 , 𝑄, (℩ℎ ∈ 𝐷 ((𝑀‘(𝑁‘{(2nd ‘𝑥)})) = (𝐽‘{ℎ}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st ‘𝑥)) − (2nd ‘𝑥))})) = (𝐽‘{((2nd ‘(1st ‘𝑥))𝑅ℎ)}))))) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝐹 ∈ 𝐷) & ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹})) & ⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, 𝑌〉) = 𝐺) & ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → 𝑇 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑇})) & ⊢ (𝜑 → 𝑤 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → (𝑁‘{𝑤}) ≠ (𝑁‘{𝑇})) & ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑇})) & ⊢ (𝜑 → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑤})) & ⊢ (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑤})) & ⊢ (𝜑 → 𝑋 ∈ (𝑁‘{𝑌, 𝑇})) ⇒ ⊢ (𝜑 → (𝐼‘〈𝑌, 𝐺, 𝑇〉) = (𝐼‘〈𝑋, 𝐹, 𝑇〉)) | ||
Theorem | mapdh8d 40319* | Part of Part (8) in [Baer] p. 48. (Contributed by NM, 6-May-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ − = (-g‘𝑈) & ⊢ 0 = (0g‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) & ⊢ 𝐷 = (Base‘𝐶) & ⊢ 𝑅 = (-g‘𝐶) & ⊢ 𝑄 = (0g‘𝐶) & ⊢ 𝐽 = (LSpan‘𝐶) & ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) & ⊢ 𝐼 = (𝑥 ∈ V ↦ if((2nd ‘𝑥) = 0 , 𝑄, (℩ℎ ∈ 𝐷 ((𝑀‘(𝑁‘{(2nd ‘𝑥)})) = (𝐽‘{ℎ}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st ‘𝑥)) − (2nd ‘𝑥))})) = (𝐽‘{((2nd ‘(1st ‘𝑥))𝑅ℎ)}))))) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝐹 ∈ 𝐷) & ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹})) & ⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, 𝑌〉) = 𝐺) & ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → 𝑇 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑇})) & ⊢ (𝜑 → 𝑤 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → (𝑁‘{𝑤}) ≠ (𝑁‘{𝑇})) & ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑇})) & ⊢ (𝜑 → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑤})) & ⊢ (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑤})) ⇒ ⊢ (𝜑 → (𝐼‘〈𝑌, 𝐺, 𝑇〉) = (𝐼‘〈𝑋, 𝐹, 𝑇〉)) | ||
Theorem | mapdh8e 40320* | Part of Part (8) in [Baer] p. 48. Eliminate 𝑤. (Contributed by NM, 10-May-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ − = (-g‘𝑈) & ⊢ 0 = (0g‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) & ⊢ 𝐷 = (Base‘𝐶) & ⊢ 𝑅 = (-g‘𝐶) & ⊢ 𝑄 = (0g‘𝐶) & ⊢ 𝐽 = (LSpan‘𝐶) & ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) & ⊢ 𝐼 = (𝑥 ∈ V ↦ if((2nd ‘𝑥) = 0 , 𝑄, (℩ℎ ∈ 𝐷 ((𝑀‘(𝑁‘{(2nd ‘𝑥)})) = (𝐽‘{ℎ}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st ‘𝑥)) − (2nd ‘𝑥))})) = (𝐽‘{((2nd ‘(1st ‘𝑥))𝑅ℎ)}))))) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝐹 ∈ 𝐷) & ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹})) & ⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, 𝑌〉) = 𝐺) & ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → 𝑇 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) & ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑇})) & ⊢ (𝜑 → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑇})) & ⊢ (𝜑 → 𝑋 ∈ (𝑁‘{𝑌, 𝑇})) ⇒ ⊢ (𝜑 → (𝐼‘〈𝑌, 𝐺, 𝑇〉) = (𝐼‘〈𝑋, 𝐹, 𝑇〉)) | ||
Theorem | mapdh8g 40321* | Part of Part (8) in [Baer] p. 48. Eliminate 𝑋 ∈ (𝑁‘{𝑌, 𝑇}). TODO: break out 𝑇 ≠ 0 in mapdh8e 40320 so we can share hypotheses. Also, look at hypothesis sharing for earlier mapdh8* and mapdh75* stuff. (Contributed by NM, 10-May-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ − = (-g‘𝑈) & ⊢ 0 = (0g‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) & ⊢ 𝐷 = (Base‘𝐶) & ⊢ 𝑅 = (-g‘𝐶) & ⊢ 𝑄 = (0g‘𝐶) & ⊢ 𝐽 = (LSpan‘𝐶) & ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) & ⊢ 𝐼 = (𝑥 ∈ V ↦ if((2nd ‘𝑥) = 0 , 𝑄, (℩ℎ ∈ 𝐷 ((𝑀‘(𝑁‘{(2nd ‘𝑥)})) = (𝐽‘{ℎ}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st ‘𝑥)) − (2nd ‘𝑥))})) = (𝐽‘{((2nd ‘(1st ‘𝑥))𝑅ℎ)}))))) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝐹 ∈ 𝐷) & ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹})) & ⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, 𝑌〉) = 𝐺) & ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → 𝑇 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) & ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑇})) & ⊢ (𝜑 → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑇})) ⇒ ⊢ (𝜑 → (𝐼‘〈𝑌, 𝐺, 𝑇〉) = (𝐼‘〈𝑋, 𝐹, 𝑇〉)) | ||
Theorem | mapdh8i 40322* | Part of Part (8) in [Baer] p. 48. (Contributed by NM, 11-May-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ − = (-g‘𝑈) & ⊢ 0 = (0g‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) & ⊢ 𝐷 = (Base‘𝐶) & ⊢ 𝑅 = (-g‘𝐶) & ⊢ 𝑄 = (0g‘𝐶) & ⊢ 𝐽 = (LSpan‘𝐶) & ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) & ⊢ 𝐼 = (𝑥 ∈ V ↦ if((2nd ‘𝑥) = 0 , 𝑄, (℩ℎ ∈ 𝐷 ((𝑀‘(𝑁‘{(2nd ‘𝑥)})) = (𝐽‘{ℎ}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st ‘𝑥)) − (2nd ‘𝑥))})) = (𝐽‘{((2nd ‘(1st ‘𝑥))𝑅ℎ)}))))) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝐹 ∈ 𝐷) & ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹})) & ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → 𝑍 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) & ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑍})) & ⊢ (𝜑 → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑇})) & ⊢ (𝜑 → (𝑁‘{𝑍}) ≠ (𝑁‘{𝑇})) & ⊢ (𝜑 → 𝑇 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑇})) ⇒ ⊢ (𝜑 → (𝐼‘〈𝑌, (𝐼‘〈𝑋, 𝐹, 𝑌〉), 𝑇〉) = (𝐼‘〈𝑍, (𝐼‘〈𝑋, 𝐹, 𝑍〉), 𝑇〉)) | ||
Theorem | mapdh8j 40323* | Part of Part (8) in [Baer] p. 48. (Contributed by NM, 13-May-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ − = (-g‘𝑈) & ⊢ 0 = (0g‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) & ⊢ 𝐷 = (Base‘𝐶) & ⊢ 𝑅 = (-g‘𝐶) & ⊢ 𝑄 = (0g‘𝐶) & ⊢ 𝐽 = (LSpan‘𝐶) & ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) & ⊢ 𝐼 = (𝑥 ∈ V ↦ if((2nd ‘𝑥) = 0 , 𝑄, (℩ℎ ∈ 𝐷 ((𝑀‘(𝑁‘{(2nd ‘𝑥)})) = (𝐽‘{ℎ}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st ‘𝑥)) − (2nd ‘𝑥))})) = (𝐽‘{((2nd ‘(1st ‘𝑥))𝑅ℎ)}))))) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝐹 ∈ 𝐷) & ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹})) & ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → 𝑍 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) & ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑍})) & ⊢ (𝜑 → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑇})) & ⊢ (𝜑 → (𝑁‘{𝑍}) ≠ (𝑁‘{𝑇})) & ⊢ (𝜑 → 𝑇 ∈ (𝑉 ∖ { 0 })) ⇒ ⊢ (𝜑 → (𝐼‘〈𝑌, (𝐼‘〈𝑋, 𝐹, 𝑌〉), 𝑇〉) = (𝐼‘〈𝑍, (𝐼‘〈𝑋, 𝐹, 𝑍〉), 𝑇〉)) | ||
Theorem | mapdh8 40324* | Part (8) in [Baer] p. 48. Given a reference vector 𝑋, the value of function 𝐼 at a vector 𝑇 is independent of the choice of auxiliary vectors 𝑌 and 𝑍. Unlike Baer's, our version does not require 𝑋, 𝑌, and 𝑍 to be independent, and also is defined for all 𝑌 and 𝑍 that are not colinear with 𝑋 or 𝑇. We do this to make the definition of Baer's sigma function more straightforward. (This part eliminates 𝑇 ≠ 0.) (Contributed by NM, 13-May-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ − = (-g‘𝑈) & ⊢ 0 = (0g‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) & ⊢ 𝐷 = (Base‘𝐶) & ⊢ 𝑅 = (-g‘𝐶) & ⊢ 𝑄 = (0g‘𝐶) & ⊢ 𝐽 = (LSpan‘𝐶) & ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) & ⊢ 𝐼 = (𝑥 ∈ V ↦ if((2nd ‘𝑥) = 0 , 𝑄, (℩ℎ ∈ 𝐷 ((𝑀‘(𝑁‘{(2nd ‘𝑥)})) = (𝐽‘{ℎ}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st ‘𝑥)) − (2nd ‘𝑥))})) = (𝐽‘{((2nd ‘(1st ‘𝑥))𝑅ℎ)}))))) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝐹 ∈ 𝐷) & ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹})) & ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → 𝑍 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) & ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑍})) & ⊢ (𝜑 → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑇})) & ⊢ (𝜑 → (𝑁‘{𝑍}) ≠ (𝑁‘{𝑇})) & ⊢ (𝜑 → 𝑇 ∈ 𝑉) ⇒ ⊢ (𝜑 → (𝐼‘〈𝑌, (𝐼‘〈𝑋, 𝐹, 𝑌〉), 𝑇〉) = (𝐼‘〈𝑍, (𝐼‘〈𝑋, 𝐹, 𝑍〉), 𝑇〉)) | ||
Theorem | mapdh9a 40325* | Lemma for part (9) in [Baer] p. 48. TODO: why is this 50% larger than mapdh9aOLDN 40326? (Contributed by NM, 14-May-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ − = (-g‘𝑈) & ⊢ 0 = (0g‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) & ⊢ 𝐷 = (Base‘𝐶) & ⊢ 𝑅 = (-g‘𝐶) & ⊢ 𝑄 = (0g‘𝐶) & ⊢ 𝐽 = (LSpan‘𝐶) & ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) & ⊢ 𝐼 = (𝑥 ∈ V ↦ if((2nd ‘𝑥) = 0 , 𝑄, (℩ℎ ∈ 𝐷 ((𝑀‘(𝑁‘{(2nd ‘𝑥)})) = (𝐽‘{ℎ}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st ‘𝑥)) − (2nd ‘𝑥))})) = (𝐽‘{((2nd ‘(1st ‘𝑥))𝑅ℎ)}))))) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝐹 ∈ 𝐷) & ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹})) & ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → 𝑇 ∈ 𝑉) ⇒ ⊢ (𝜑 → ∃!𝑦 ∈ 𝐷 ∀𝑧 ∈ 𝑉 (¬ 𝑧 ∈ ((𝑁‘{𝑋}) ∪ (𝑁‘{𝑇})) → 𝑦 = (𝐼‘〈𝑧, (𝐼‘〈𝑋, 𝐹, 𝑧〉), 𝑇〉))) | ||
Theorem | mapdh9aOLDN 40326* | Lemma for part (9) in [Baer] p. 48. (Contributed by NM, 14-May-2015.) (New usage is discouraged.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ − = (-g‘𝑈) & ⊢ 0 = (0g‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) & ⊢ 𝐷 = (Base‘𝐶) & ⊢ 𝑅 = (-g‘𝐶) & ⊢ 𝑄 = (0g‘𝐶) & ⊢ 𝐽 = (LSpan‘𝐶) & ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) & ⊢ 𝐼 = (𝑥 ∈ V ↦ if((2nd ‘𝑥) = 0 , 𝑄, (℩ℎ ∈ 𝐷 ((𝑀‘(𝑁‘{(2nd ‘𝑥)})) = (𝐽‘{ℎ}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st ‘𝑥)) − (2nd ‘𝑥))})) = (𝐽‘{((2nd ‘(1st ‘𝑥))𝑅ℎ)}))))) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝐹 ∈ 𝐷) & ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹})) & ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → 𝑇 ∈ 𝑉) ⇒ ⊢ (𝜑 → ∃!𝑦 ∈ 𝐷 ∀𝑧 ∈ 𝑉 (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇}) → 𝑦 = (𝐼‘〈𝑧, (𝐼‘〈𝑋, 𝐹, 𝑧〉), 𝑇〉))) | ||
Syntax | chdma1 40327 | Extend class notation with preliminary map from vectors to functionals in the closed kernel dual space. |
class HDMap1 | ||
Syntax | chdma 40328 | Extend class notation with map from vectors to functionals in the closed kernel dual space. |
class HDMap | ||
Definition | df-hdmap1 40329* | Define preliminary map from vectors to functionals in the closed kernel dual space. See hdmap1fval 40332 description for more details. (Contributed by NM, 14-May-2015.) |
⊢ HDMap1 = (𝑘 ∈ V ↦ (𝑤 ∈ (LHyp‘𝑘) ↦ {𝑎 ∣ [((DVecH‘𝑘)‘𝑤) / 𝑢][(Base‘𝑢) / 𝑣][(LSpan‘𝑢) / 𝑛][((LCDual‘𝑘)‘𝑤) / 𝑐][(Base‘𝑐) / 𝑑][(LSpan‘𝑐) / 𝑗][((mapd‘𝑘)‘𝑤) / 𝑚]𝑎 ∈ (𝑥 ∈ ((𝑣 × 𝑑) × 𝑣) ↦ if((2nd ‘𝑥) = (0g‘𝑢), (0g‘𝑐), (℩ℎ ∈ 𝑑 ((𝑚‘(𝑛‘{(2nd ‘𝑥)})) = (𝑗‘{ℎ}) ∧ (𝑚‘(𝑛‘{((1st ‘(1st ‘𝑥))(-g‘𝑢)(2nd ‘𝑥))})) = (𝑗‘{((2nd ‘(1st ‘𝑥))(-g‘𝑐)ℎ)})))))})) | ||
Definition | df-hdmap 40330* | Define map from vectors to functionals in the closed kernel dual space. See hdmapfval 40363 description for more details. (Contributed by NM, 15-May-2015.) |
⊢ HDMap = (𝑘 ∈ V ↦ (𝑤 ∈ (LHyp‘𝑘) ↦ {𝑎 ∣ [〈( I ↾ (Base‘𝑘)), ( I ↾ ((LTrn‘𝑘)‘𝑤))〉 / 𝑒][((DVecH‘𝑘)‘𝑤) / 𝑢][(Base‘𝑢) / 𝑣][((HDMap1‘𝑘)‘𝑤) / 𝑖]𝑎 ∈ (𝑡 ∈ 𝑣 ↦ (℩𝑦 ∈ (Base‘((LCDual‘𝑘)‘𝑤))∀𝑧 ∈ 𝑣 (¬ 𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝑖‘〈𝑧, (𝑖‘〈𝑒, (((HVMap‘𝑘)‘𝑤)‘𝑒), 𝑧〉), 𝑡〉))))})) | ||
Theorem | hdmap1ffval 40331* | Preliminary map from vectors to functionals in the closed kernel dual space. (Contributed by NM, 14-May-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) ⇒ ⊢ (𝐾 ∈ 𝑋 → (HDMap1‘𝐾) = (𝑤 ∈ 𝐻 ↦ {𝑎 ∣ [((DVecH‘𝐾)‘𝑤) / 𝑢][(Base‘𝑢) / 𝑣][(LSpan‘𝑢) / 𝑛][((LCDual‘𝐾)‘𝑤) / 𝑐][(Base‘𝑐) / 𝑑][(LSpan‘𝑐) / 𝑗][((mapd‘𝐾)‘𝑤) / 𝑚]𝑎 ∈ (𝑥 ∈ ((𝑣 × 𝑑) × 𝑣) ↦ if((2nd ‘𝑥) = (0g‘𝑢), (0g‘𝑐), (℩ℎ ∈ 𝑑 ((𝑚‘(𝑛‘{(2nd ‘𝑥)})) = (𝑗‘{ℎ}) ∧ (𝑚‘(𝑛‘{((1st ‘(1st ‘𝑥))(-g‘𝑢)(2nd ‘𝑥))})) = (𝑗‘{((2nd ‘(1st ‘𝑥))(-g‘𝑐)ℎ)})))))})) | ||
Theorem | hdmap1fval 40332* | Preliminary map from vectors to functionals in the closed kernel dual space. TODO: change span 𝐽 to the convention 𝐿 for this section. (Contributed by NM, 15-May-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ − = (-g‘𝑈) & ⊢ 0 = (0g‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) & ⊢ 𝐷 = (Base‘𝐶) & ⊢ 𝑅 = (-g‘𝐶) & ⊢ 𝑄 = (0g‘𝐶) & ⊢ 𝐽 = (LSpan‘𝐶) & ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) & ⊢ 𝐼 = ((HDMap1‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ 𝐴 ∧ 𝑊 ∈ 𝐻)) ⇒ ⊢ (𝜑 → 𝐼 = (𝑥 ∈ ((𝑉 × 𝐷) × 𝑉) ↦ if((2nd ‘𝑥) = 0 , 𝑄, (℩ℎ ∈ 𝐷 ((𝑀‘(𝑁‘{(2nd ‘𝑥)})) = (𝐽‘{ℎ}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st ‘𝑥)) − (2nd ‘𝑥))})) = (𝐽‘{((2nd ‘(1st ‘𝑥))𝑅ℎ)})))))) | ||
Theorem | hdmap1vallem 40333* | Value of preliminary map from vectors to functionals in the closed kernel dual space. (Contributed by NM, 15-May-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ − = (-g‘𝑈) & ⊢ 0 = (0g‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) & ⊢ 𝐷 = (Base‘𝐶) & ⊢ 𝑅 = (-g‘𝐶) & ⊢ 𝑄 = (0g‘𝐶) & ⊢ 𝐽 = (LSpan‘𝐶) & ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) & ⊢ 𝐼 = ((HDMap1‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ 𝐴 ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑇 ∈ ((𝑉 × 𝐷) × 𝑉)) ⇒ ⊢ (𝜑 → (𝐼‘𝑇) = if((2nd ‘𝑇) = 0 , 𝑄, (℩ℎ ∈ 𝐷 ((𝑀‘(𝑁‘{(2nd ‘𝑇)})) = (𝐽‘{ℎ}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st ‘𝑇)) − (2nd ‘𝑇))})) = (𝐽‘{((2nd ‘(1st ‘𝑇))𝑅ℎ)}))))) | ||
Theorem | hdmap1val 40334* | Value of preliminary map from vectors to functionals in the closed kernel dual space. (Restatement of mapdhval 40260.) TODO: change 𝐼 = (𝑥 ∈ V ↦... to (𝜑 → (𝐼‘〈𝑋, 𝐹, 𝑌 > ) =... in e.g. mapdh8 40324 to shorten proofs with no $d on 𝑥. (Contributed by NM, 15-May-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ − = (-g‘𝑈) & ⊢ 0 = (0g‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) & ⊢ 𝐷 = (Base‘𝐶) & ⊢ 𝑅 = (-g‘𝐶) & ⊢ 𝑄 = (0g‘𝐶) & ⊢ 𝐽 = (LSpan‘𝐶) & ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) & ⊢ 𝐼 = ((HDMap1‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ 𝐴 ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝐹 ∈ 𝐷) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) ⇒ ⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, 𝑌〉) = if(𝑌 = 0 , 𝑄, (℩ℎ ∈ 𝐷 ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{ℎ}) ∧ (𝑀‘(𝑁‘{(𝑋 − 𝑌)})) = (𝐽‘{(𝐹𝑅ℎ)}))))) | ||
Theorem | hdmap1val0 40335 | Value of preliminary map from vectors to functionals at zero. (Restated mapdhval0 40261.) (Contributed by NM, 17-May-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 0 = (0g‘𝑈) & ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) & ⊢ 𝐷 = (Base‘𝐶) & ⊢ 𝑄 = (0g‘𝐶) & ⊢ 𝐼 = ((HDMap1‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝐹 ∈ 𝐷) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) ⇒ ⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, 0 〉) = 𝑄) | ||
Theorem | hdmap1val2 40336* | Value of preliminary map from vectors to functionals in the closed kernel dual space, for nonzero 𝑌. (Contributed by NM, 16-May-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ − = (-g‘𝑈) & ⊢ 0 = (0g‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) & ⊢ 𝐷 = (Base‘𝐶) & ⊢ 𝑅 = (-g‘𝐶) & ⊢ 𝐿 = (LSpan‘𝐶) & ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) & ⊢ 𝐼 = ((HDMap1‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝐹 ∈ 𝐷) & ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) ⇒ ⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, 𝑌〉) = (℩ℎ ∈ 𝐷 ((𝑀‘(𝑁‘{𝑌})) = (𝐿‘{ℎ}) ∧ (𝑀‘(𝑁‘{(𝑋 − 𝑌)})) = (𝐿‘{(𝐹𝑅ℎ)})))) | ||
Theorem | hdmap1eq 40337 | The defining equation for h(x,x',y)=y' in part (2) in [Baer] p. 45 line 24. (Contributed by NM, 16-May-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ − = (-g‘𝑈) & ⊢ 0 = (0g‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) & ⊢ 𝐷 = (Base‘𝐶) & ⊢ 𝑅 = (-g‘𝐶) & ⊢ 𝐿 = (LSpan‘𝐶) & ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) & ⊢ 𝐼 = ((HDMap1‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → 𝐹 ∈ 𝐷) & ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → 𝐺 ∈ 𝐷) & ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) & ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐿‘{𝐹})) ⇒ ⊢ (𝜑 → ((𝐼‘〈𝑋, 𝐹, 𝑌〉) = 𝐺 ↔ ((𝑀‘(𝑁‘{𝑌})) = (𝐿‘{𝐺}) ∧ (𝑀‘(𝑁‘{(𝑋 − 𝑌)})) = (𝐿‘{(𝐹𝑅𝐺)})))) | ||
Theorem | hdmap1cbv 40338* | Frequently used lemma to change bound variables in 𝐿 hypothesis. (Contributed by NM, 15-May-2015.) |
⊢ 𝐿 = (𝑥 ∈ V ↦ if((2nd ‘𝑥) = 0 , 𝑄, (℩ℎ ∈ 𝐷 ((𝑀‘(𝑁‘{(2nd ‘𝑥)})) = (𝐽‘{ℎ}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st ‘𝑥)) − (2nd ‘𝑥))})) = (𝐽‘{((2nd ‘(1st ‘𝑥))𝑅ℎ)}))))) ⇒ ⊢ 𝐿 = (𝑦 ∈ V ↦ if((2nd ‘𝑦) = 0 , 𝑄, (℩𝑖 ∈ 𝐷 ((𝑀‘(𝑁‘{(2nd ‘𝑦)})) = (𝐽‘{𝑖}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st ‘𝑦)) − (2nd ‘𝑦))})) = (𝐽‘{((2nd ‘(1st ‘𝑦))𝑅𝑖)}))))) | ||
Theorem | hdmap1valc 40339* | Connect the value of the preliminary map from vectors to functionals 𝐼 to the hypothesis 𝐿 used by earlier theorems. Note: the 𝑋 ∈ (𝑉 ∖ { 0 }) hypothesis could be the more general 𝑋 ∈ 𝑉 but the former will be easier to use. TODO: use the 𝐼 function directly in those theorems, so this theorem becomes unnecessary? TODO: The hdmap1cbv 40338 is probably unnecessary, but it would mean different $d's later on. (Contributed by NM, 15-May-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ − = (-g‘𝑈) & ⊢ 0 = (0g‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) & ⊢ 𝐷 = (Base‘𝐶) & ⊢ 𝑅 = (-g‘𝐶) & ⊢ 𝑄 = (0g‘𝐶) & ⊢ 𝐽 = (LSpan‘𝐶) & ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) & ⊢ 𝐼 = ((HDMap1‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → 𝐹 ∈ 𝐷) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) & ⊢ 𝐿 = (𝑥 ∈ V ↦ if((2nd ‘𝑥) = 0 , 𝑄, (℩ℎ ∈ 𝐷 ((𝑀‘(𝑁‘{(2nd ‘𝑥)})) = (𝐽‘{ℎ}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st ‘𝑥)) − (2nd ‘𝑥))})) = (𝐽‘{((2nd ‘(1st ‘𝑥))𝑅ℎ)}))))) ⇒ ⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, 𝑌〉) = (𝐿‘〈𝑋, 𝐹, 𝑌〉)) | ||
Theorem | hdmap1cl 40340 | Convert closure theorem mapdhcl 40263 to use HDMap1 function. (Contributed by NM, 15-May-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 0 = (0g‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) & ⊢ 𝐷 = (Base‘𝐶) & ⊢ 𝐿 = (LSpan‘𝐶) & ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) & ⊢ 𝐼 = ((HDMap1‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝐹 ∈ 𝐷) & ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐿‘{𝐹})) & ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) & ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) ⇒ ⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, 𝑌〉) ∈ 𝐷) | ||
Theorem | hdmap1eq2 40341 | Convert mapdheq2 40265 to use HDMap1 function. (Contributed by NM, 16-May-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 0 = (0g‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) & ⊢ 𝐷 = (Base‘𝐶) & ⊢ 𝐿 = (LSpan‘𝐶) & ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) & ⊢ 𝐼 = ((HDMap1‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝐹 ∈ 𝐷) & ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐿‘{𝐹})) & ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) & ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, 𝑌〉) = 𝐺) ⇒ ⊢ (𝜑 → (𝐼‘〈𝑌, 𝐺, 𝑋〉) = 𝐹) | ||
Theorem | hdmap1eq4N 40342 | Convert mapdheq4 40268 to use HDMap1 function. (Contributed by NM, 17-May-2015.) (New usage is discouraged.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 0 = (0g‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) & ⊢ 𝐷 = (Base‘𝐶) & ⊢ 𝐿 = (LSpan‘𝐶) & ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) & ⊢ 𝐼 = ((HDMap1‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝐹 ∈ 𝐷) & ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐿‘{𝐹})) & ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → 𝑍 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑍})) & ⊢ (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍})) & ⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, 𝑌〉) = 𝐺) & ⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, 𝑍〉) = 𝐵) ⇒ ⊢ (𝜑 → (𝐼‘〈𝑌, 𝐺, 𝑍〉) = 𝐵) | ||
Theorem | hdmap1l6lem1 40343 | Lemma for hdmap1l6 40357. Part (6) in [Baer] p. 47, lines 16-18. (Contributed by NM, 13-Apr-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ + = (+g‘𝑈) & ⊢ − = (-g‘𝑈) & ⊢ 0 = (0g‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) & ⊢ 𝐷 = (Base‘𝐶) & ⊢ ✚ = (+g‘𝐶) & ⊢ 𝑅 = (-g‘𝐶) & ⊢ 𝑄 = (0g‘𝐶) & ⊢ 𝐿 = (LSpan‘𝐶) & ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) & ⊢ 𝐼 = ((HDMap1‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝐹 ∈ 𝐷) & ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐿‘{𝐹})) & ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → 𝑍 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍})) & ⊢ (𝜑 → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑍})) & ⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, 𝑌〉) = 𝐺) & ⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, 𝑍〉) = 𝐸) ⇒ ⊢ (𝜑 → (𝑀‘(𝑁‘{(𝑋 − (𝑌 + 𝑍))})) = (𝐿‘{(𝐹𝑅(𝐺 ✚ 𝐸))})) | ||
Theorem | hdmap1l6lem2 40344 | Lemma for hdmap1l6 40357. Part (6) in [Baer] p. 47, lines 20-22. (Contributed by NM, 13-Apr-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ + = (+g‘𝑈) & ⊢ − = (-g‘𝑈) & ⊢ 0 = (0g‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) & ⊢ 𝐷 = (Base‘𝐶) & ⊢ ✚ = (+g‘𝐶) & ⊢ 𝑅 = (-g‘𝐶) & ⊢ 𝑄 = (0g‘𝐶) & ⊢ 𝐿 = (LSpan‘𝐶) & ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) & ⊢ 𝐼 = ((HDMap1‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝐹 ∈ 𝐷) & ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐿‘{𝐹})) & ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → 𝑍 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍})) & ⊢ (𝜑 → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑍})) & ⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, 𝑌〉) = 𝐺) & ⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, 𝑍〉) = 𝐸) ⇒ ⊢ (𝜑 → (𝑀‘(𝑁‘{(𝑌 + 𝑍)})) = (𝐿‘{(𝐺 ✚ 𝐸)})) | ||
Theorem | hdmap1l6a 40345 | Lemma for hdmap1l6 40357. Part (6) in [Baer] p. 47, case 1. (Contributed by NM, 23-Apr-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ + = (+g‘𝑈) & ⊢ − = (-g‘𝑈) & ⊢ 0 = (0g‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) & ⊢ 𝐷 = (Base‘𝐶) & ⊢ ✚ = (+g‘𝐶) & ⊢ 𝑅 = (-g‘𝐶) & ⊢ 𝑄 = (0g‘𝐶) & ⊢ 𝐿 = (LSpan‘𝐶) & ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) & ⊢ 𝐼 = ((HDMap1‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝐹 ∈ 𝐷) & ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐿‘{𝐹})) & ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → 𝑍 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍})) & ⊢ (𝜑 → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑍})) & ⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, 𝑌〉) = 𝐺) & ⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, 𝑍〉) = 𝐸) ⇒ ⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, (𝑌 + 𝑍)〉) = ((𝐼‘〈𝑋, 𝐹, 𝑌〉) ✚ (𝐼‘〈𝑋, 𝐹, 𝑍〉))) | ||
Theorem | hdmap1l6b0N 40346 | Lemmma for hdmap1l6 40357. (Contributed by NM, 23-Apr-2015.) (New usage is discouraged.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ + = (+g‘𝑈) & ⊢ − = (-g‘𝑈) & ⊢ 0 = (0g‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) & ⊢ 𝐷 = (Base‘𝐶) & ⊢ ✚ = (+g‘𝐶) & ⊢ 𝑅 = (-g‘𝐶) & ⊢ 𝑄 = (0g‘𝐶) & ⊢ 𝐿 = (LSpan‘𝐶) & ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) & ⊢ 𝐼 = ((HDMap1‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝐹 ∈ 𝐷) & ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐿‘{𝐹})) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) & ⊢ (𝜑 → 𝑍 ∈ 𝑉) & ⊢ (𝜑 → ((𝑁‘{𝑋}) ∩ (𝑁‘{𝑌, 𝑍})) = { 0 }) ⇒ ⊢ (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍})) | ||
Theorem | hdmap1l6b 40347 | Lemmma for hdmap1l6 40357. (Contributed by NM, 24-Apr-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ + = (+g‘𝑈) & ⊢ − = (-g‘𝑈) & ⊢ 0 = (0g‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) & ⊢ 𝐷 = (Base‘𝐶) & ⊢ ✚ = (+g‘𝐶) & ⊢ 𝑅 = (-g‘𝐶) & ⊢ 𝑄 = (0g‘𝐶) & ⊢ 𝐿 = (LSpan‘𝐶) & ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) & ⊢ 𝐼 = ((HDMap1‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝐹 ∈ 𝐷) & ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐿‘{𝐹})) & ⊢ (𝜑 → 𝑌 = 0 ) & ⊢ (𝜑 → 𝑍 ∈ 𝑉) & ⊢ (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍})) ⇒ ⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, (𝑌 + 𝑍)〉) = ((𝐼‘〈𝑋, 𝐹, 𝑌〉) ✚ (𝐼‘〈𝑋, 𝐹, 𝑍〉))) | ||
Theorem | hdmap1l6c 40348 | Lemmma for hdmap1l6 40357. (Contributed by NM, 24-Apr-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ + = (+g‘𝑈) & ⊢ − = (-g‘𝑈) & ⊢ 0 = (0g‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) & ⊢ 𝐷 = (Base‘𝐶) & ⊢ ✚ = (+g‘𝐶) & ⊢ 𝑅 = (-g‘𝐶) & ⊢ 𝑄 = (0g‘𝐶) & ⊢ 𝐿 = (LSpan‘𝐶) & ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) & ⊢ 𝐼 = ((HDMap1‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝐹 ∈ 𝐷) & ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐿‘{𝐹})) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) & ⊢ (𝜑 → 𝑍 = 0 ) & ⊢ (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍})) ⇒ ⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, (𝑌 + 𝑍)〉) = ((𝐼‘〈𝑋, 𝐹, 𝑌〉) ✚ (𝐼‘〈𝑋, 𝐹, 𝑍〉))) | ||
Theorem | hdmap1l6d 40349 | Lemmma for hdmap1l6 40357. (Contributed by NM, 1-May-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ + = (+g‘𝑈) & ⊢ − = (-g‘𝑈) & ⊢ 0 = (0g‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) & ⊢ 𝐷 = (Base‘𝐶) & ⊢ ✚ = (+g‘𝐶) & ⊢ 𝑅 = (-g‘𝐶) & ⊢ 𝑄 = (0g‘𝐶) & ⊢ 𝐿 = (LSpan‘𝐶) & ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) & ⊢ 𝐼 = ((HDMap1‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝐹 ∈ 𝐷) & ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐿‘{𝐹})) & ⊢ (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍})) & ⊢ (𝜑 → (𝑁‘{𝑌}) = (𝑁‘{𝑍})) & ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → 𝑍 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → 𝑤 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) ⇒ ⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, (𝑤 + (𝑌 + 𝑍))〉) = ((𝐼‘〈𝑋, 𝐹, 𝑤〉) ✚ (𝐼‘〈𝑋, 𝐹, (𝑌 + 𝑍)〉))) | ||
Theorem | hdmap1l6e 40350 | Lemmma for hdmap1l6 40357. Part (6) in [Baer] p. 47 line 38. (Contributed by NM, 1-May-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ + = (+g‘𝑈) & ⊢ − = (-g‘𝑈) & ⊢ 0 = (0g‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) & ⊢ 𝐷 = (Base‘𝐶) & ⊢ ✚ = (+g‘𝐶) & ⊢ 𝑅 = (-g‘𝐶) & ⊢ 𝑄 = (0g‘𝐶) & ⊢ 𝐿 = (LSpan‘𝐶) & ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) & ⊢ 𝐼 = ((HDMap1‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝐹 ∈ 𝐷) & ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐿‘{𝐹})) & ⊢ (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍})) & ⊢ (𝜑 → (𝑁‘{𝑌}) = (𝑁‘{𝑍})) & ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → 𝑍 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → 𝑤 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) ⇒ ⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, ((𝑤 + 𝑌) + 𝑍)〉) = ((𝐼‘〈𝑋, 𝐹, (𝑤 + 𝑌)〉) ✚ (𝐼‘〈𝑋, 𝐹, 𝑍〉))) | ||
Theorem | hdmap1l6f 40351 | Lemmma for hdmap1l6 40357. Part (6) in [Baer] p. 47 line 38. (Contributed by NM, 1-May-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ + = (+g‘𝑈) & ⊢ − = (-g‘𝑈) & ⊢ 0 = (0g‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) & ⊢ 𝐷 = (Base‘𝐶) & ⊢ ✚ = (+g‘𝐶) & ⊢ 𝑅 = (-g‘𝐶) & ⊢ 𝑄 = (0g‘𝐶) & ⊢ 𝐿 = (LSpan‘𝐶) & ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) & ⊢ 𝐼 = ((HDMap1‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝐹 ∈ 𝐷) & ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐿‘{𝐹})) & ⊢ (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍})) & ⊢ (𝜑 → (𝑁‘{𝑌}) = (𝑁‘{𝑍})) & ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → 𝑍 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → 𝑤 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) ⇒ ⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, (𝑤 + 𝑌)〉) = ((𝐼‘〈𝑋, 𝐹, 𝑤〉) ✚ (𝐼‘〈𝑋, 𝐹, 𝑌〉))) | ||
Theorem | hdmap1l6g 40352 | Lemmma for hdmap1l6 40357. Part (6) of [Baer] p. 47 line 39. (Contributed by NM, 1-May-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ + = (+g‘𝑈) & ⊢ − = (-g‘𝑈) & ⊢ 0 = (0g‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) & ⊢ 𝐷 = (Base‘𝐶) & ⊢ ✚ = (+g‘𝐶) & ⊢ 𝑅 = (-g‘𝐶) & ⊢ 𝑄 = (0g‘𝐶) & ⊢ 𝐿 = (LSpan‘𝐶) & ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) & ⊢ 𝐼 = ((HDMap1‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝐹 ∈ 𝐷) & ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐿‘{𝐹})) & ⊢ (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍})) & ⊢ (𝜑 → (𝑁‘{𝑌}) = (𝑁‘{𝑍})) & ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → 𝑍 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → 𝑤 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) ⇒ ⊢ (𝜑 → ((𝐼‘〈𝑋, 𝐹, 𝑤〉) ✚ (𝐼‘〈𝑋, 𝐹, (𝑌 + 𝑍)〉)) = (((𝐼‘〈𝑋, 𝐹, 𝑤〉) ✚ (𝐼‘〈𝑋, 𝐹, 𝑌〉)) ✚ (𝐼‘〈𝑋, 𝐹, 𝑍〉))) | ||
Theorem | hdmap1l6h 40353 | Lemmma for hdmap1l6 40357. Part (6) of [Baer] p. 48 line 2. (Contributed by NM, 1-May-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ + = (+g‘𝑈) & ⊢ − = (-g‘𝑈) & ⊢ 0 = (0g‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) & ⊢ 𝐷 = (Base‘𝐶) & ⊢ ✚ = (+g‘𝐶) & ⊢ 𝑅 = (-g‘𝐶) & ⊢ 𝑄 = (0g‘𝐶) & ⊢ 𝐿 = (LSpan‘𝐶) & ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) & ⊢ 𝐼 = ((HDMap1‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝐹 ∈ 𝐷) & ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐿‘{𝐹})) & ⊢ (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍})) & ⊢ (𝜑 → (𝑁‘{𝑌}) = (𝑁‘{𝑍})) & ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → 𝑍 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → 𝑤 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) ⇒ ⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, (𝑌 + 𝑍)〉) = ((𝐼‘〈𝑋, 𝐹, 𝑌〉) ✚ (𝐼‘〈𝑋, 𝐹, 𝑍〉))) | ||
Theorem | hdmap1l6i 40354 | Lemmma for hdmap1l6 40357. Eliminate auxiliary vector 𝑤. (Contributed by NM, 1-May-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ + = (+g‘𝑈) & ⊢ − = (-g‘𝑈) & ⊢ 0 = (0g‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) & ⊢ 𝐷 = (Base‘𝐶) & ⊢ ✚ = (+g‘𝐶) & ⊢ 𝑅 = (-g‘𝐶) & ⊢ 𝑄 = (0g‘𝐶) & ⊢ 𝐿 = (LSpan‘𝐶) & ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) & ⊢ 𝐼 = ((HDMap1‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝐹 ∈ 𝐷) & ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐿‘{𝐹})) & ⊢ (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍})) & ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → 𝑍 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → (𝑁‘{𝑌}) = (𝑁‘{𝑍})) ⇒ ⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, (𝑌 + 𝑍)〉) = ((𝐼‘〈𝑋, 𝐹, 𝑌〉) ✚ (𝐼‘〈𝑋, 𝐹, 𝑍〉))) | ||
Theorem | hdmap1l6j 40355 | Lemmma for hdmap1l6 40357. Eliminate (𝑁 { Y } ) = ( N {𝑍}) hypothesis. (Contributed by NM, 1-May-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ + = (+g‘𝑈) & ⊢ − = (-g‘𝑈) & ⊢ 0 = (0g‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) & ⊢ 𝐷 = (Base‘𝐶) & ⊢ ✚ = (+g‘𝐶) & ⊢ 𝑅 = (-g‘𝐶) & ⊢ 𝑄 = (0g‘𝐶) & ⊢ 𝐿 = (LSpan‘𝐶) & ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) & ⊢ 𝐼 = ((HDMap1‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝐹 ∈ 𝐷) & ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐿‘{𝐹})) & ⊢ (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍})) & ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → 𝑍 ∈ (𝑉 ∖ { 0 })) ⇒ ⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, (𝑌 + 𝑍)〉) = ((𝐼‘〈𝑋, 𝐹, 𝑌〉) ✚ (𝐼‘〈𝑋, 𝐹, 𝑍〉))) | ||
Theorem | hdmap1l6k 40356 | Lemmma for hdmap1l6 40357. Eliminate nonzero vector requirement. (Contributed by NM, 1-May-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ + = (+g‘𝑈) & ⊢ − = (-g‘𝑈) & ⊢ 0 = (0g‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) & ⊢ 𝐷 = (Base‘𝐶) & ⊢ ✚ = (+g‘𝐶) & ⊢ 𝑅 = (-g‘𝐶) & ⊢ 𝑄 = (0g‘𝐶) & ⊢ 𝐿 = (LSpan‘𝐶) & ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) & ⊢ 𝐼 = ((HDMap1‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝐹 ∈ 𝐷) & ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐿‘{𝐹})) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) & ⊢ (𝜑 → 𝑍 ∈ 𝑉) & ⊢ (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍})) ⇒ ⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, (𝑌 + 𝑍)〉) = ((𝐼‘〈𝑋, 𝐹, 𝑌〉) ✚ (𝐼‘〈𝑋, 𝐹, 𝑍〉))) | ||
Theorem | hdmap1l6 40357 | Part (6) of [Baer] p. 47 line 6. Note that we use ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍}) which is equivalent to Baer's "Fx ∩ (Fy + Fz)" by lspdisjb 20646. (Convert mapdh6N 40283 to use the function HDMap1.) (Contributed by NM, 17-May-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ + = (+g‘𝑈) & ⊢ 0 = (0g‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) & ⊢ 𝐷 = (Base‘𝐶) & ⊢ ✚ = (+g‘𝐶) & ⊢ 𝐿 = (LSpan‘𝐶) & ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) & ⊢ 𝐼 = ((HDMap1‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝐹 ∈ 𝐷) & ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) & ⊢ (𝜑 → 𝑍 ∈ 𝑉) & ⊢ (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍})) & ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐿‘{𝐹})) ⇒ ⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, (𝑌 + 𝑍)〉) = ((𝐼‘〈𝑋, 𝐹, 𝑌〉) ✚ (𝐼‘〈𝑋, 𝐹, 𝑍〉))) | ||
Theorem | hdmap1eulem 40358* | Lemma for hdmap1eu 40360. TODO: combine with hdmap1eu 40360 or at least share some hypotheses. (Contributed by NM, 15-May-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ − = (-g‘𝑈) & ⊢ 0 = (0g‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) & ⊢ 𝐷 = (Base‘𝐶) & ⊢ 𝑅 = (-g‘𝐶) & ⊢ 𝑄 = (0g‘𝐶) & ⊢ 𝐽 = (LSpan‘𝐶) & ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) & ⊢ 𝐼 = ((HDMap1‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹})) & ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → 𝐹 ∈ 𝐷) & ⊢ (𝜑 → 𝑇 ∈ 𝑉) & ⊢ 𝐿 = (𝑥 ∈ V ↦ if((2nd ‘𝑥) = 0 , 𝑄, (℩ℎ ∈ 𝐷 ((𝑀‘(𝑁‘{(2nd ‘𝑥)})) = (𝐽‘{ℎ}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st ‘𝑥)) − (2nd ‘𝑥))})) = (𝐽‘{((2nd ‘(1st ‘𝑥))𝑅ℎ)}))))) ⇒ ⊢ (𝜑 → ∃!𝑦 ∈ 𝐷 ∀𝑧 ∈ 𝑉 (¬ 𝑧 ∈ ((𝑁‘{𝑋}) ∪ (𝑁‘{𝑇})) → 𝑦 = (𝐼‘〈𝑧, (𝐼‘〈𝑋, 𝐹, 𝑧〉), 𝑇〉))) | ||
Theorem | hdmap1eulemOLDN 40359* | Lemma for hdmap1euOLDN 40361. TODO: combine with hdmap1euOLDN 40361 or at least share some hypotheses. (Contributed by NM, 15-May-2015.) (New usage is discouraged.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ − = (-g‘𝑈) & ⊢ 0 = (0g‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) & ⊢ 𝐷 = (Base‘𝐶) & ⊢ 𝑅 = (-g‘𝐶) & ⊢ 𝑄 = (0g‘𝐶) & ⊢ 𝐽 = (LSpan‘𝐶) & ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) & ⊢ 𝐼 = ((HDMap1‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹})) & ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → 𝐹 ∈ 𝐷) & ⊢ (𝜑 → 𝑇 ∈ 𝑉) & ⊢ 𝐿 = (𝑥 ∈ V ↦ if((2nd ‘𝑥) = 0 , 𝑄, (℩ℎ ∈ 𝐷 ((𝑀‘(𝑁‘{(2nd ‘𝑥)})) = (𝐽‘{ℎ}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st ‘𝑥)) − (2nd ‘𝑥))})) = (𝐽‘{((2nd ‘(1st ‘𝑥))𝑅ℎ)}))))) ⇒ ⊢ (𝜑 → ∃!𝑦 ∈ 𝐷 ∀𝑧 ∈ 𝑉 (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇}) → 𝑦 = (𝐼‘〈𝑧, (𝐼‘〈𝑋, 𝐹, 𝑧〉), 𝑇〉))) | ||
Theorem | hdmap1eu 40360* | Convert mapdh9a 40325 to use the HDMap1 notation. (Contributed by NM, 15-May-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 0 = (0g‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) & ⊢ 𝐷 = (Base‘𝐶) & ⊢ 𝐿 = (LSpan‘𝐶) & ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) & ⊢ 𝐼 = ((HDMap1‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐿‘{𝐹})) & ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → 𝐹 ∈ 𝐷) & ⊢ (𝜑 → 𝑇 ∈ 𝑉) ⇒ ⊢ (𝜑 → ∃!𝑦 ∈ 𝐷 ∀𝑧 ∈ 𝑉 (¬ 𝑧 ∈ ((𝑁‘{𝑋}) ∪ (𝑁‘{𝑇})) → 𝑦 = (𝐼‘〈𝑧, (𝐼‘〈𝑋, 𝐹, 𝑧〉), 𝑇〉))) | ||
Theorem | hdmap1euOLDN 40361* | Convert mapdh9aOLDN 40326 to use the HDMap1 notation. (Contributed by NM, 15-May-2015.) (New usage is discouraged.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 0 = (0g‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) & ⊢ 𝐷 = (Base‘𝐶) & ⊢ 𝐿 = (LSpan‘𝐶) & ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) & ⊢ 𝐼 = ((HDMap1‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐿‘{𝐹})) & ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → 𝐹 ∈ 𝐷) & ⊢ (𝜑 → 𝑇 ∈ 𝑉) ⇒ ⊢ (𝜑 → ∃!𝑦 ∈ 𝐷 ∀𝑧 ∈ 𝑉 (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇}) → 𝑦 = (𝐼‘〈𝑧, (𝐼‘〈𝑋, 𝐹, 𝑧〉), 𝑇〉))) | ||
Theorem | hdmapffval 40362* | Map from vectors to functionals in the closed kernel dual space. (Contributed by NM, 15-May-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) ⇒ ⊢ (𝐾 ∈ 𝑋 → (HDMap‘𝐾) = (𝑤 ∈ 𝐻 ↦ {𝑎 ∣ [〈( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑤))〉 / 𝑒][((DVecH‘𝐾)‘𝑤) / 𝑢][(Base‘𝑢) / 𝑣][((HDMap1‘𝐾)‘𝑤) / 𝑖]𝑎 ∈ (𝑡 ∈ 𝑣 ↦ (℩𝑦 ∈ (Base‘((LCDual‘𝐾)‘𝑤))∀𝑧 ∈ 𝑣 (¬ 𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝑖‘〈𝑧, (𝑖‘〈𝑒, (((HVMap‘𝐾)‘𝑤)‘𝑒), 𝑧〉), 𝑡〉))))})) | ||
Theorem | hdmapfval 40363* | Map from vectors to functionals in the closed kernel dual space. (Contributed by NM, 15-May-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐸 = 〈( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))〉 & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) & ⊢ 𝐷 = (Base‘𝐶) & ⊢ 𝐽 = ((HVMap‘𝐾)‘𝑊) & ⊢ 𝐼 = ((HDMap1‘𝐾)‘𝑊) & ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ 𝐴 ∧ 𝑊 ∈ 𝐻)) ⇒ ⊢ (𝜑 → 𝑆 = (𝑡 ∈ 𝑉 ↦ (℩𝑦 ∈ 𝐷 ∀𝑧 ∈ 𝑉 (¬ 𝑧 ∈ ((𝑁‘{𝐸}) ∪ (𝑁‘{𝑡})) → 𝑦 = (𝐼‘〈𝑧, (𝐼‘〈𝐸, (𝐽‘𝐸), 𝑧〉), 𝑡〉))))) | ||
Theorem | hdmapval 40364* | Value of map from vectors to functionals in the closed kernel dual space. This is the function sigma on line 27 above part 9 in [Baer] p. 48. We select a convenient fixed reference vector 𝐸 to be 〈0, 1〉 (corresponding to vector u on p. 48 line 7) whose span is the lattice isomorphism map of the fiducial atom 𝑃 = ((oc‘𝐾)‘𝑊) (see dvheveccl 39648). (𝐽‘𝐸) is a fixed reference functional determined by this vector (corresponding to u' on line 8; mapdhvmap 40305 shows in Baer's notation (Fu)* = Gu'). Baer's independent vectors v and w on line 7 correspond to our 𝑧 that the ∀𝑧 ∈ 𝑉 ranges over. The middle term (𝐼‘〈𝐸, (𝐽‘𝐸), 𝑧〉) provides isolation to allow 𝐸 and 𝑇 to assume the same value without conflict. Closure is shown by hdmapcl 40366. If a separate auxiliary vector is known, hdmapval2 40368 provides a version without quantification. (Contributed by NM, 15-May-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐸 = 〈( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))〉 & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) & ⊢ 𝐷 = (Base‘𝐶) & ⊢ 𝐽 = ((HVMap‘𝐾)‘𝑊) & ⊢ 𝐼 = ((HDMap1‘𝐾)‘𝑊) & ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ 𝐴 ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑇 ∈ 𝑉) ⇒ ⊢ (𝜑 → (𝑆‘𝑇) = (℩𝑦 ∈ 𝐷 ∀𝑧 ∈ 𝑉 (¬ 𝑧 ∈ ((𝑁‘{𝐸}) ∪ (𝑁‘{𝑇})) → 𝑦 = (𝐼‘〈𝑧, (𝐼‘〈𝐸, (𝐽‘𝐸), 𝑧〉), 𝑇〉)))) | ||
Theorem | hdmapfnN 40365 | Functionality of map from vectors to functionals with closed kernels. (Contributed by NM, 30-May-2015.) (New usage is discouraged.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) ⇒ ⊢ (𝜑 → 𝑆 Fn 𝑉) | ||
Theorem | hdmapcl 40366 | Closure of map from vectors to functionals with closed kernels. (Contributed by NM, 15-May-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) & ⊢ 𝐷 = (Base‘𝐶) & ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑇 ∈ 𝑉) ⇒ ⊢ (𝜑 → (𝑆‘𝑇) ∈ 𝐷) | ||
Theorem | hdmapval2lem 40367* | Lemma for hdmapval2 40368. (Contributed by NM, 15-May-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐸 = 〈( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))〉 & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) & ⊢ 𝐷 = (Base‘𝐶) & ⊢ 𝐽 = ((HVMap‘𝐾)‘𝑊) & ⊢ 𝐼 = ((HDMap1‘𝐾)‘𝑊) & ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑇 ∈ 𝑉) & ⊢ (𝜑 → 𝐹 ∈ 𝐷) ⇒ ⊢ (𝜑 → ((𝑆‘𝑇) = 𝐹 ↔ ∀𝑧 ∈ 𝑉 (¬ 𝑧 ∈ ((𝑁‘{𝐸}) ∪ (𝑁‘{𝑇})) → 𝐹 = (𝐼‘〈𝑧, (𝐼‘〈𝐸, (𝐽‘𝐸), 𝑧〉), 𝑇〉)))) | ||
Theorem | hdmapval2 40368 | Value of map from vectors to functionals with a specific auxiliary vector. TODO: Would shorter proofs result if the .ne hypothesis were changed to two ≠ hypothesis? Consider hdmaplem1 40307 through hdmaplem4 40310, which would become obsolete. (Contributed by NM, 15-May-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐸 = 〈( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))〉 & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) & ⊢ 𝐷 = (Base‘𝐶) & ⊢ 𝐽 = ((HVMap‘𝐾)‘𝑊) & ⊢ 𝐼 = ((HDMap1‘𝐾)‘𝑊) & ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑇 ∈ 𝑉) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → ¬ 𝑋 ∈ ((𝑁‘{𝐸}) ∪ (𝑁‘{𝑇}))) ⇒ ⊢ (𝜑 → (𝑆‘𝑇) = (𝐼‘〈𝑋, (𝐼‘〈𝐸, (𝐽‘𝐸), 𝑋〉), 𝑇〉)) | ||
Theorem | hdmapval0 40369 | Value of map from vectors to functionals at zero. Note: we use dvh3dim 39982 for convenience, even though 3 dimensions aren't necessary at this point. TODO: I think either this or hdmapeq0 40380 could be derived from the other to shorten proof. (Contributed by NM, 17-May-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 0 = (0g‘𝑈) & ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) & ⊢ 𝑄 = (0g‘𝐶) & ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) ⇒ ⊢ (𝜑 → (𝑆‘ 0 ) = 𝑄) | ||
Theorem | hdmapeveclem 40370 | Lemma for hdmapevec 40371. TODO: combine with hdmapevec 40371 if it shortens overall. (Contributed by NM, 16-May-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐸 = 〈( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))〉 & ⊢ 𝐽 = ((HVMap‘𝐾)‘𝑊) & ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) & ⊢ 𝐷 = (Base‘𝐶) & ⊢ 𝐼 = ((HDMap1‘𝐾)‘𝑊) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → ¬ 𝑋 ∈ ((𝑁‘{𝐸}) ∪ (𝑁‘{𝐸}))) ⇒ ⊢ (𝜑 → (𝑆‘𝐸) = (𝐽‘𝐸)) | ||
Theorem | hdmapevec 40371 | Value of map from vectors to functionals at the reference vector 𝐸. (Contributed by NM, 16-May-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐸 = 〈( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))〉 & ⊢ 𝐽 = ((HVMap‘𝐾)‘𝑊) & ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) ⇒ ⊢ (𝜑 → (𝑆‘𝐸) = (𝐽‘𝐸)) | ||
Theorem | hdmapevec2 40372 | The inner product of the reference vector 𝐸 with itself is nonzero. This shows the inner product condition in the proof of Theorem 3.6 of [Holland95] p. 14 line 32, [ e , e ] ≠ 0 is satisfied. TODO: remove redundant hypothesis hdmapevec.j. (Contributed by NM, 1-Jun-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐸 = 〈( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))〉 & ⊢ 𝐽 = ((HVMap‘𝐾)‘𝑊) & ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑅 = (Scalar‘𝑈) & ⊢ 1 = (1r‘𝑅) ⇒ ⊢ (𝜑 → ((𝑆‘𝐸)‘𝐸) = 1 ) | ||
Theorem | hdmapval3lemN 40373 | Value of map from vectors to functionals at arguments not colinear with the reference vector 𝐸. (Contributed by NM, 17-May-2015.) (New usage is discouraged.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐸 = 〈( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))〉 & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) & ⊢ 𝐷 = (Base‘𝐶) & ⊢ 𝐽 = ((HVMap‘𝐾)‘𝑊) & ⊢ 𝐼 = ((HDMap1‘𝐾)‘𝑊) & ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → (𝑁‘{𝑇}) ≠ (𝑁‘{𝐸})) & ⊢ (𝜑 → 𝑇 ∈ (𝑉 ∖ {(0g‘𝑈)})) & ⊢ (𝜑 → 𝑥 ∈ 𝑉) & ⊢ (𝜑 → ¬ 𝑥 ∈ (𝑁‘{𝐸, 𝑇})) ⇒ ⊢ (𝜑 → (𝑆‘𝑇) = (𝐼‘〈𝐸, (𝐽‘𝐸), 𝑇〉)) | ||
Theorem | hdmapval3N 40374 | Value of map from vectors to functionals at arguments not colinear with the reference vector 𝐸. (Contributed by NM, 17-May-2015.) (New usage is discouraged.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐸 = 〈( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))〉 & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) & ⊢ 𝐷 = (Base‘𝐶) & ⊢ 𝐽 = ((HVMap‘𝐾)‘𝑊) & ⊢ 𝐼 = ((HDMap1‘𝐾)‘𝑊) & ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → (𝑁‘{𝑇}) ≠ (𝑁‘{𝐸})) & ⊢ (𝜑 → 𝑇 ∈ 𝑉) ⇒ ⊢ (𝜑 → (𝑆‘𝑇) = (𝐼‘〈𝐸, (𝐽‘𝐸), 𝑇〉)) | ||
Theorem | hdmap10lem 40375 | Lemma for hdmap10 40376. (Contributed by NM, 17-May-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) & ⊢ 𝐿 = (LSpan‘𝐶) & ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) & ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ 𝐸 = 〈( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))〉 & ⊢ 0 = (0g‘𝑈) & ⊢ 𝐷 = (Base‘𝐶) & ⊢ 𝐽 = ((HVMap‘𝐾)‘𝑊) & ⊢ 𝐼 = ((HDMap1‘𝐾)‘𝑊) & ⊢ (𝜑 → 𝑇 ∈ (𝑉 ∖ { 0 })) ⇒ ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑇})) = (𝐿‘{(𝑆‘𝑇)})) | ||
Theorem | hdmap10 40376 | Part 10 in [Baer] p. 48 line 33, (Ft)* = G(tS) in their notation (S = sigma). (Contributed by NM, 17-May-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) & ⊢ 𝐿 = (LSpan‘𝐶) & ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) & ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑇 ∈ 𝑉) ⇒ ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑇})) = (𝐿‘{(𝑆‘𝑇)})) | ||
Theorem | hdmap11lem1 40377 | Lemma for hdmapadd 40379. (Contributed by NM, 26-May-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ + = (+g‘𝑈) & ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) & ⊢ ✚ = (+g‘𝐶) & ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) & ⊢ 𝐸 = 〈( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))〉 & ⊢ 0 = (0g‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐷 = (Base‘𝐶) & ⊢ 𝐿 = (LSpan‘𝐶) & ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) & ⊢ 𝐽 = ((HVMap‘𝐾)‘𝑊) & ⊢ 𝐼 = ((HDMap1‘𝐾)‘𝑊) & ⊢ (𝜑 → 𝑧 ∈ 𝑉) & ⊢ (𝜑 → ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌})) & ⊢ (𝜑 → (𝑁‘{𝑧}) ≠ (𝑁‘{𝐸})) ⇒ ⊢ (𝜑 → (𝑆‘(𝑋 + 𝑌)) = ((𝑆‘𝑋) ✚ (𝑆‘𝑌))) | ||
Theorem | hdmap11lem2 40378 | Lemma for hdmapadd 40379. (Contributed by NM, 26-May-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ + = (+g‘𝑈) & ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) & ⊢ ✚ = (+g‘𝐶) & ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) & ⊢ 𝐸 = 〈( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))〉 & ⊢ 0 = (0g‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐷 = (Base‘𝐶) & ⊢ 𝐿 = (LSpan‘𝐶) & ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) & ⊢ 𝐽 = ((HVMap‘𝐾)‘𝑊) & ⊢ 𝐼 = ((HDMap1‘𝐾)‘𝑊) ⇒ ⊢ (𝜑 → (𝑆‘(𝑋 + 𝑌)) = ((𝑆‘𝑋) ✚ (𝑆‘𝑌))) | ||
Theorem | hdmapadd 40379 | Part 11 in [Baer] p. 48 line 35, (a+b)S = aS+bS in their notation (S = sigma). (Contributed by NM, 22-May-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ + = (+g‘𝑈) & ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) & ⊢ ✚ = (+g‘𝐶) & ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) ⇒ ⊢ (𝜑 → (𝑆‘(𝑋 + 𝑌)) = ((𝑆‘𝑋) ✚ (𝑆‘𝑌))) | ||
Theorem | hdmapeq0 40380 | Part of proof of part 12 in [Baer] p. 49 line 3. (Contributed by NM, 22-May-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 0 = (0g‘𝑈) & ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) & ⊢ 𝑄 = (0g‘𝐶) & ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑇 ∈ 𝑉) ⇒ ⊢ (𝜑 → ((𝑆‘𝑇) = 𝑄 ↔ 𝑇 = 0 )) | ||
Theorem | hdmapnzcl 40381 | Nonzero vector closure of map from vectors to functionals with closed kernels. (Contributed by NM, 27-May-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 0 = (0g‘𝑈) & ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) & ⊢ 𝑄 = (0g‘𝐶) & ⊢ 𝐷 = (Base‘𝐶) & ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑇 ∈ (𝑉 ∖ { 0 })) ⇒ ⊢ (𝜑 → (𝑆‘𝑇) ∈ (𝐷 ∖ {𝑄})) | ||
Theorem | hdmapneg 40382 | Part of proof of part 12 in [Baer] p. 49 line 4. The sigma map of a negative is the negative of the sigma map. (Contributed by NM, 24-May-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 𝑀 = (invg‘𝑈) & ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) & ⊢ 𝐼 = (invg‘𝐶) & ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑇 ∈ 𝑉) ⇒ ⊢ (𝜑 → (𝑆‘(𝑀‘𝑇)) = (𝐼‘(𝑆‘𝑇))) | ||
Theorem | hdmapsub 40383 | Part of proof of part 12 in [Baer] p. 49 line 5, (a-b)S = aS-bS in their notation (S = sigma). (Contributed by NM, 26-May-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ − = (-g‘𝑈) & ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) & ⊢ 𝑁 = (-g‘𝐶) & ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) ⇒ ⊢ (𝜑 → (𝑆‘(𝑋 − 𝑌)) = ((𝑆‘𝑋)𝑁(𝑆‘𝑌))) | ||
Theorem | hdmap11 40384 | Part of proof of part 12 in [Baer] p. 49 line 4, aS=bS iff a=b in their notation (S = sigma). The sigma map is one-to-one. (Contributed by NM, 26-May-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) ⇒ ⊢ (𝜑 → ((𝑆‘𝑋) = (𝑆‘𝑌) ↔ 𝑋 = 𝑌)) | ||
Theorem | hdmaprnlem1N 40385 | Part of proof of part 12 in [Baer] p. 49 line 10, Gu' ≠ Gs. Our (𝑁‘{𝑣}) is Baer's T. (Contributed by NM, 26-May-2015.) (New usage is discouraged.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) & ⊢ 𝐿 = (LSpan‘𝐶) & ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) & ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑠 ∈ (𝐷 ∖ {𝑄})) & ⊢ (𝜑 → 𝑣 ∈ 𝑉) & ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑣})) = (𝐿‘{𝑠})) & ⊢ (𝜑 → 𝑢 ∈ 𝑉) & ⊢ (𝜑 → ¬ 𝑢 ∈ (𝑁‘{𝑣})) ⇒ ⊢ (𝜑 → (𝐿‘{(𝑆‘𝑢)}) ≠ (𝐿‘{𝑠})) | ||
Theorem | hdmaprnlem3N 40386 | Part of proof of part 12 in [Baer] p. 49 line 15, T ≠ P. Our (◡𝑀‘(𝐿‘{((𝑆‘𝑢) ✚ 𝑠)})) is Baer's P, where P* = G(u'+s). (Contributed by NM, 27-May-2015.) (New usage is discouraged.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) & ⊢ 𝐿 = (LSpan‘𝐶) & ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) & ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑠 ∈ (𝐷 ∖ {𝑄})) & ⊢ (𝜑 → 𝑣 ∈ 𝑉) & ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑣})) = (𝐿‘{𝑠})) & ⊢ (𝜑 → 𝑢 ∈ 𝑉) & ⊢ (𝜑 → ¬ 𝑢 ∈ (𝑁‘{𝑣})) & ⊢ 𝐷 = (Base‘𝐶) & ⊢ 𝑄 = (0g‘𝐶) & ⊢ 0 = (0g‘𝑈) & ⊢ ✚ = (+g‘𝐶) ⇒ ⊢ (𝜑 → (𝑁‘{𝑣}) ≠ (◡𝑀‘(𝐿‘{((𝑆‘𝑢) ✚ 𝑠)}))) | ||
Theorem | hdmaprnlem3uN 40387 | Part of proof of part 12 in [Baer] p. 49. (Contributed by NM, 29-May-2015.) (New usage is discouraged.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) & ⊢ 𝐿 = (LSpan‘𝐶) & ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) & ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑠 ∈ (𝐷 ∖ {𝑄})) & ⊢ (𝜑 → 𝑣 ∈ 𝑉) & ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑣})) = (𝐿‘{𝑠})) & ⊢ (𝜑 → 𝑢 ∈ 𝑉) & ⊢ (𝜑 → ¬ 𝑢 ∈ (𝑁‘{𝑣})) & ⊢ 𝐷 = (Base‘𝐶) & ⊢ 𝑄 = (0g‘𝐶) & ⊢ 0 = (0g‘𝑈) & ⊢ ✚ = (+g‘𝐶) ⇒ ⊢ (𝜑 → (𝑁‘{𝑢}) ≠ (◡𝑀‘(𝐿‘{((𝑆‘𝑢) ✚ 𝑠)}))) | ||
Theorem | hdmaprnlem4tN 40388 | Lemma for hdmaprnN 40400. TODO: This lemma doesn't quite pay for itself even though used six times. Maybe prove this directly instead. (Contributed by NM, 27-May-2015.) (New usage is discouraged.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) & ⊢ 𝐿 = (LSpan‘𝐶) & ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) & ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑠 ∈ (𝐷 ∖ {𝑄})) & ⊢ (𝜑 → 𝑣 ∈ 𝑉) & ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑣})) = (𝐿‘{𝑠})) & ⊢ (𝜑 → 𝑢 ∈ 𝑉) & ⊢ (𝜑 → ¬ 𝑢 ∈ (𝑁‘{𝑣})) & ⊢ 𝐷 = (Base‘𝐶) & ⊢ 𝑄 = (0g‘𝐶) & ⊢ 0 = (0g‘𝑈) & ⊢ ✚ = (+g‘𝐶) & ⊢ (𝜑 → 𝑡 ∈ ((𝑁‘{𝑣}) ∖ { 0 })) ⇒ ⊢ (𝜑 → 𝑡 ∈ 𝑉) | ||
Theorem | hdmaprnlem4N 40389 | Part of proof of part 12 in [Baer] p. 49 line 19. (T* =) (Ft)* = Gs. (Contributed by NM, 27-May-2015.) (New usage is discouraged.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) & ⊢ 𝐿 = (LSpan‘𝐶) & ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) & ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑠 ∈ (𝐷 ∖ {𝑄})) & ⊢ (𝜑 → 𝑣 ∈ 𝑉) & ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑣})) = (𝐿‘{𝑠})) & ⊢ (𝜑 → 𝑢 ∈ 𝑉) & ⊢ (𝜑 → ¬ 𝑢 ∈ (𝑁‘{𝑣})) & ⊢ 𝐷 = (Base‘𝐶) & ⊢ 𝑄 = (0g‘𝐶) & ⊢ 0 = (0g‘𝑈) & ⊢ ✚ = (+g‘𝐶) & ⊢ (𝜑 → 𝑡 ∈ ((𝑁‘{𝑣}) ∖ { 0 })) ⇒ ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑡})) = (𝐿‘{𝑠})) | ||
Theorem | hdmaprnlem6N 40390 | Part of proof of part 12 in [Baer] p. 49 line 18, G(u'+s) = G(u'+t). (Contributed by NM, 27-May-2015.) (New usage is discouraged.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) & ⊢ 𝐿 = (LSpan‘𝐶) & ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) & ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑠 ∈ (𝐷 ∖ {𝑄})) & ⊢ (𝜑 → 𝑣 ∈ 𝑉) & ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑣})) = (𝐿‘{𝑠})) & ⊢ (𝜑 → 𝑢 ∈ 𝑉) & ⊢ (𝜑 → ¬ 𝑢 ∈ (𝑁‘{𝑣})) & ⊢ 𝐷 = (Base‘𝐶) & ⊢ 𝑄 = (0g‘𝐶) & ⊢ 0 = (0g‘𝑈) & ⊢ ✚ = (+g‘𝐶) & ⊢ (𝜑 → 𝑡 ∈ ((𝑁‘{𝑣}) ∖ { 0 })) & ⊢ + = (+g‘𝑈) & ⊢ (𝜑 → (𝐿‘{((𝑆‘𝑢) ✚ 𝑠)}) = (𝑀‘(𝑁‘{(𝑢 + 𝑡)}))) ⇒ ⊢ (𝜑 → (𝐿‘{((𝑆‘𝑢) ✚ 𝑠)}) = (𝐿‘{((𝑆‘𝑢) ✚ (𝑆‘𝑡))})) | ||
Theorem | hdmaprnlem7N 40391 | Part of proof of part 12 in [Baer] p. 49 line 19, s-St ∈ G(u'+s) = P*. (Contributed by NM, 27-May-2015.) (New usage is discouraged.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) & ⊢ 𝐿 = (LSpan‘𝐶) & ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) & ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑠 ∈ (𝐷 ∖ {𝑄})) & ⊢ (𝜑 → 𝑣 ∈ 𝑉) & ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑣})) = (𝐿‘{𝑠})) & ⊢ (𝜑 → 𝑢 ∈ 𝑉) & ⊢ (𝜑 → ¬ 𝑢 ∈ (𝑁‘{𝑣})) & ⊢ 𝐷 = (Base‘𝐶) & ⊢ 𝑄 = (0g‘𝐶) & ⊢ 0 = (0g‘𝑈) & ⊢ ✚ = (+g‘𝐶) & ⊢ (𝜑 → 𝑡 ∈ ((𝑁‘{𝑣}) ∖ { 0 })) & ⊢ + = (+g‘𝑈) & ⊢ (𝜑 → (𝐿‘{((𝑆‘𝑢) ✚ 𝑠)}) = (𝑀‘(𝑁‘{(𝑢 + 𝑡)}))) ⇒ ⊢ (𝜑 → (𝑠(-g‘𝐶)(𝑆‘𝑡)) ∈ (𝐿‘{((𝑆‘𝑢) ✚ 𝑠)})) | ||
Theorem | hdmaprnlem8N 40392 | Part of proof of part 12 in [Baer] p. 49 line 19, s-St ∈ (Ft)* = T*. (Contributed by NM, 27-May-2015.) (New usage is discouraged.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) & ⊢ 𝐿 = (LSpan‘𝐶) & ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) & ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑠 ∈ (𝐷 ∖ {𝑄})) & ⊢ (𝜑 → 𝑣 ∈ 𝑉) & ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑣})) = (𝐿‘{𝑠})) & ⊢ (𝜑 → 𝑢 ∈ 𝑉) & ⊢ (𝜑 → ¬ 𝑢 ∈ (𝑁‘{𝑣})) & ⊢ 𝐷 = (Base‘𝐶) & ⊢ 𝑄 = (0g‘𝐶) & ⊢ 0 = (0g‘𝑈) & ⊢ ✚ = (+g‘𝐶) & ⊢ (𝜑 → 𝑡 ∈ ((𝑁‘{𝑣}) ∖ { 0 })) & ⊢ + = (+g‘𝑈) & ⊢ (𝜑 → (𝐿‘{((𝑆‘𝑢) ✚ 𝑠)}) = (𝑀‘(𝑁‘{(𝑢 + 𝑡)}))) ⇒ ⊢ (𝜑 → (𝑠(-g‘𝐶)(𝑆‘𝑡)) ∈ (𝑀‘(𝑁‘{𝑡}))) | ||
Theorem | hdmaprnlem9N 40393 | Part of proof of part 12 in [Baer] p. 49 line 21, s=S(t). TODO: we seem to be going back and forth with mapd11 40175 and mapdcnv11N 40195. Use better hypotheses and/or theorems? (Contributed by NM, 27-May-2015.) (New usage is discouraged.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) & ⊢ 𝐿 = (LSpan‘𝐶) & ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) & ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑠 ∈ (𝐷 ∖ {𝑄})) & ⊢ (𝜑 → 𝑣 ∈ 𝑉) & ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑣})) = (𝐿‘{𝑠})) & ⊢ (𝜑 → 𝑢 ∈ 𝑉) & ⊢ (𝜑 → ¬ 𝑢 ∈ (𝑁‘{𝑣})) & ⊢ 𝐷 = (Base‘𝐶) & ⊢ 𝑄 = (0g‘𝐶) & ⊢ 0 = (0g‘𝑈) & ⊢ ✚ = (+g‘𝐶) & ⊢ (𝜑 → 𝑡 ∈ ((𝑁‘{𝑣}) ∖ { 0 })) & ⊢ + = (+g‘𝑈) & ⊢ (𝜑 → (𝐿‘{((𝑆‘𝑢) ✚ 𝑠)}) = (𝑀‘(𝑁‘{(𝑢 + 𝑡)}))) ⇒ ⊢ (𝜑 → 𝑠 = (𝑆‘𝑡)) | ||
Theorem | hdmaprnlem3eN 40394* | Lemma for hdmaprnN 40400. (Contributed by NM, 29-May-2015.) (New usage is discouraged.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) & ⊢ 𝐿 = (LSpan‘𝐶) & ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) & ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑠 ∈ (𝐷 ∖ {𝑄})) & ⊢ (𝜑 → 𝑣 ∈ 𝑉) & ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑣})) = (𝐿‘{𝑠})) & ⊢ (𝜑 → 𝑢 ∈ 𝑉) & ⊢ (𝜑 → ¬ 𝑢 ∈ (𝑁‘{𝑣})) & ⊢ 𝐷 = (Base‘𝐶) & ⊢ 𝑄 = (0g‘𝐶) & ⊢ 0 = (0g‘𝑈) & ⊢ ✚ = (+g‘𝐶) & ⊢ + = (+g‘𝑈) ⇒ ⊢ (𝜑 → ∃𝑡 ∈ ((𝑁‘{𝑣}) ∖ { 0 })(𝐿‘{((𝑆‘𝑢) ✚ 𝑠)}) = (𝑀‘(𝑁‘{(𝑢 + 𝑡)}))) | ||
Theorem | hdmaprnlem10N 40395* | Lemma for hdmaprnN 40400. Show 𝑠 is in the range of 𝑆. (Contributed by NM, 29-May-2015.) (New usage is discouraged.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) & ⊢ 𝐿 = (LSpan‘𝐶) & ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) & ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑠 ∈ (𝐷 ∖ {𝑄})) & ⊢ (𝜑 → 𝑣 ∈ 𝑉) & ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑣})) = (𝐿‘{𝑠})) & ⊢ (𝜑 → 𝑢 ∈ 𝑉) & ⊢ (𝜑 → ¬ 𝑢 ∈ (𝑁‘{𝑣})) & ⊢ 𝐷 = (Base‘𝐶) & ⊢ 𝑄 = (0g‘𝐶) & ⊢ 0 = (0g‘𝑈) & ⊢ ✚ = (+g‘𝐶) & ⊢ + = (+g‘𝑈) ⇒ ⊢ (𝜑 → ∃𝑡 ∈ 𝑉 (𝑆‘𝑡) = 𝑠) | ||
Theorem | hdmaprnlem11N 40396* | Lemma for hdmaprnN 40400. Show 𝑠 is in the range of 𝑆. (Contributed by NM, 29-May-2015.) (New usage is discouraged.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) & ⊢ 𝐿 = (LSpan‘𝐶) & ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) & ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑠 ∈ (𝐷 ∖ {𝑄})) & ⊢ (𝜑 → 𝑣 ∈ 𝑉) & ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑣})) = (𝐿‘{𝑠})) & ⊢ (𝜑 → 𝑢 ∈ 𝑉) & ⊢ (𝜑 → ¬ 𝑢 ∈ (𝑁‘{𝑣})) & ⊢ 𝐷 = (Base‘𝐶) & ⊢ 𝑄 = (0g‘𝐶) & ⊢ 0 = (0g‘𝑈) & ⊢ ✚ = (+g‘𝐶) & ⊢ + = (+g‘𝑈) ⇒ ⊢ (𝜑 → 𝑠 ∈ ran 𝑆) | ||
Theorem | hdmaprnlem15N 40397* | Lemma for hdmaprnN 40400. Eliminate 𝑢. (Contributed by NM, 30-May-2015.) (New usage is discouraged.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) & ⊢ 𝐷 = (Base‘𝐶) & ⊢ 0 = (0g‘𝐶) & ⊢ 𝐿 = (LSpan‘𝐶) & ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) & ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑠 ∈ (𝐷 ∖ { 0 })) & ⊢ (𝜑 → 𝑣 ∈ 𝑉) & ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑣})) = (𝐿‘{𝑠})) ⇒ ⊢ (𝜑 → 𝑠 ∈ ran 𝑆) | ||
Theorem | hdmaprnlem16N 40398 | Lemma for hdmaprnN 40400. Eliminate 𝑣. (Contributed by NM, 30-May-2015.) (New usage is discouraged.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) & ⊢ 𝐷 = (Base‘𝐶) & ⊢ 0 = (0g‘𝐶) & ⊢ 𝐿 = (LSpan‘𝐶) & ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) & ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑠 ∈ (𝐷 ∖ { 0 })) ⇒ ⊢ (𝜑 → 𝑠 ∈ ran 𝑆) | ||
Theorem | hdmaprnlem17N 40399 | Lemma for hdmaprnN 40400. Include zero. (Contributed by NM, 30-May-2015.) (New usage is discouraged.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) & ⊢ 𝐷 = (Base‘𝐶) & ⊢ 0 = (0g‘𝐶) & ⊢ 𝐿 = (LSpan‘𝐶) & ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) & ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑠 ∈ 𝐷) ⇒ ⊢ (𝜑 → 𝑠 ∈ ran 𝑆) | ||
Theorem | hdmaprnN 40400 | Part of proof of part 12 in [Baer] p. 49 line 21, As=B. (Contributed by NM, 30-May-2015.) (New usage is discouraged.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) & ⊢ 𝐷 = (Base‘𝐶) & ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) ⇒ ⊢ (𝜑 → ran 𝑆 = 𝐷) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |