Home | Metamath
Proof Explorer Theorem List (p. 404 of 466) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | Metamath Proof Explorer
(1-29289) |
Hilbert Space Explorer
(29290-30812) |
Users' Mathboxes
(30813-46532) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | readdid1addid2d 40301 | Given some real number 𝐵 where 𝐴 acts like a right additive identity, derive that 𝐴 is a left additive identity. Note that the hypothesis is weaker than proving that 𝐴 is a right additive identity (for all numbers). Although, if there is a right additive identity, then by readdcan 11158, 𝐴 is the right additive identity. (Contributed by Steven Nguyen, 14-Jan-2023.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → (𝐵 + 𝐴) = 𝐵) ⇒ ⊢ ((𝜑 ∧ 𝐶 ∈ ℝ) → (𝐴 + 𝐶) = 𝐶) | ||
Theorem | sn-1ne2 40302 | A proof of 1ne2 12190 without using ax-mulcom 10944, ax-mulass 10946, ax-pre-mulgt0 10957. Based on mul02lem2 11161. (Contributed by SN, 13-Dec-2023.) |
⊢ 1 ≠ 2 | ||
Theorem | nnn1suc 40303* | A positive integer that is not 1 is a successor of some other positive integer. (Contributed by Steven Nguyen, 19-Aug-2023.) |
⊢ ((𝐴 ∈ ℕ ∧ 𝐴 ≠ 1) → ∃𝑥 ∈ ℕ (𝑥 + 1) = 𝐴) | ||
Theorem | nnadd1com 40304 | Addition with 1 is commutative for natural numbers. (Contributed by Steven Nguyen, 9-Dec-2022.) |
⊢ (𝐴 ∈ ℕ → (𝐴 + 1) = (1 + 𝐴)) | ||
Theorem | nnaddcom 40305 | Addition is commutative for natural numbers. Uses fewer axioms than addcom 11170. (Contributed by Steven Nguyen, 9-Dec-2022.) |
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 + 𝐵) = (𝐵 + 𝐴)) | ||
Theorem | nnaddcomli 40306 | Version of addcomli 11176 for natural numbers. (Contributed by Steven Nguyen, 1-Aug-2023.) |
⊢ 𝐴 ∈ ℕ & ⊢ 𝐵 ∈ ℕ & ⊢ (𝐴 + 𝐵) = 𝐶 ⇒ ⊢ (𝐵 + 𝐴) = 𝐶 | ||
Theorem | nnadddir 40307 | Right-distributivity for natural numbers without ax-mulcom 10944. (Contributed by SN, 5-Feb-2024.) |
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → ((𝐴 + 𝐵) · 𝐶) = ((𝐴 · 𝐶) + (𝐵 · 𝐶))) | ||
Theorem | nnmul1com 40308 | Multiplication with 1 is commutative for natural numbers, without ax-mulcom 10944. Since (𝐴 · 1) is 𝐴 by ax-1rid 10950, this is equivalent to remulid2 40422 for natural numbers, but using fewer axioms (avoiding ax-resscn 10937, ax-addass 10945, ax-mulass 10946, ax-rnegex 10951, ax-pre-lttri 10954, ax-pre-lttrn 10955, ax-pre-ltadd 10956). (Contributed by SN, 5-Feb-2024.) |
⊢ (𝐴 ∈ ℕ → (1 · 𝐴) = (𝐴 · 1)) | ||
Theorem | nnmulcom 40309 | Multiplication is commutative for natural numbers. (Contributed by SN, 5-Feb-2024.) |
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 · 𝐵) = (𝐵 · 𝐴)) | ||
Theorem | mvrrsubd 40310 | Move a subtraction in the RHS to a right-addition in the LHS. Converse of mvlraddd 11394. (Contributed by SN, 21-Aug-2024.) |
⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐴 = (𝐵 − 𝐶)) ⇒ ⊢ (𝜑 → (𝐴 + 𝐶) = 𝐵) | ||
Theorem | laddrotrd 40311 | Rotate the variables right in an equation with addition on the left, converting it into a subtraction. Version of mvlladdd 11395 with a commuted consequent, and of mvrladdd 11397 with a commuted hypothesis. (Contributed by SN, 21-Aug-2024.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → (𝐴 + 𝐵) = 𝐶) ⇒ ⊢ (𝜑 → (𝐶 − 𝐴) = 𝐵) | ||
Theorem | raddcom12d 40312 | Swap the first two variables in an equation with addition on the right, converting it into a subtraction. Version of mvrraddd 11396 with a commuted consequent, and of mvlraddd 11394 with a commuted hypothesis. (Contributed by SN, 21-Aug-2024.) |
⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐴 = (𝐵 + 𝐶)) ⇒ ⊢ (𝜑 → 𝐵 = (𝐴 − 𝐶)) | ||
Theorem | lsubrotld 40313 | Rotate the variables left in an equation with subtraction on the left, converting it into an addition. (Contributed by SN, 21-Aug-2024.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → (𝐴 − 𝐵) = 𝐶) ⇒ ⊢ (𝜑 → (𝐵 + 𝐶) = 𝐴) | ||
Theorem | lsubcom23d 40314 | Swap the second and third variables in an equation with subtraction on the left, converting it into an addition. (Contributed by SN, 23-Aug-2024.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → (𝐴 − 𝐵) = 𝐶) ⇒ ⊢ (𝜑 → (𝐴 − 𝐶) = 𝐵) | ||
Theorem | addsubeq4com 40315 | Relation between sums and differences. (Contributed by Steven Nguyen, 5-Jan-2023.) |
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴 + 𝐵) = (𝐶 + 𝐷) ↔ (𝐴 − 𝐶) = (𝐷 − 𝐵))) | ||
Theorem | sqsumi 40316 | A sum squared. (Contributed by Steven Nguyen, 16-Sep-2022.) |
⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ ⇒ ⊢ ((𝐴 + 𝐵) · (𝐴 + 𝐵)) = (((𝐴 · 𝐴) + (𝐵 · 𝐵)) + (2 · (𝐴 · 𝐵))) | ||
Theorem | negn0nposznnd 40317 | Lemma for dffltz 40478. (Contributed by Steven Nguyen, 27-Feb-2023.) |
⊢ (𝜑 → 𝐴 ≠ 0) & ⊢ (𝜑 → ¬ 0 < 𝐴) & ⊢ (𝜑 → 𝐴 ∈ ℤ) ⇒ ⊢ (𝜑 → -𝐴 ∈ ℕ) | ||
Theorem | sqmid3api 40318 | Value of the square of the middle term of a 3-term arithmetic progression. (Contributed by Steven Nguyen, 20-Sep-2022.) |
⊢ 𝐴 ∈ ℂ & ⊢ 𝑁 ∈ ℂ & ⊢ (𝐴 + 𝑁) = 𝐵 & ⊢ (𝐵 + 𝑁) = 𝐶 ⇒ ⊢ (𝐵 · 𝐵) = ((𝐴 · 𝐶) + (𝑁 · 𝑁)) | ||
Theorem | decaddcom 40319 | Commute ones place in addition. (Contributed by Steven Nguyen, 29-Jan-2023.) |
⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈ ℕ0 & ⊢ 𝐶 ∈ ℕ0 ⇒ ⊢ (;𝐴𝐵 + 𝐶) = (;𝐴𝐶 + 𝐵) | ||
Theorem | sqn5i 40320 | The square of a number ending in 5. This shortcut only works because 5 is half of 10. (Contributed by Steven Nguyen, 16-Sep-2022.) |
⊢ 𝐴 ∈ ℕ0 ⇒ ⊢ (;𝐴5 · ;𝐴5) = ;;(𝐴 · (𝐴 + 1))25 | ||
Theorem | sqn5ii 40321 | The square of a number ending in 5. This shortcut only works because 5 is half of 10. (Contributed by Steven Nguyen, 16-Sep-2022.) |
⊢ 𝐴 ∈ ℕ0 & ⊢ (𝐴 + 1) = 𝐵 & ⊢ (𝐴 · 𝐵) = 𝐶 ⇒ ⊢ (;𝐴5 · ;𝐴5) = ;;𝐶25 | ||
Theorem | decpmulnc 40322 | Partial products algorithm for two digit multiplication, no carry. Compare muladdi 11435. (Contributed by Steven Nguyen, 9-Dec-2022.) |
⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈ ℕ0 & ⊢ 𝐶 ∈ ℕ0 & ⊢ 𝐷 ∈ ℕ0 & ⊢ (𝐴 · 𝐶) = 𝐸 & ⊢ ((𝐴 · 𝐷) + (𝐵 · 𝐶)) = 𝐹 & ⊢ (𝐵 · 𝐷) = 𝐺 ⇒ ⊢ (;𝐴𝐵 · ;𝐶𝐷) = ;;𝐸𝐹𝐺 | ||
Theorem | decpmul 40323 | Partial products algorithm for two digit multiplication. (Contributed by Steven Nguyen, 10-Dec-2022.) |
⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈ ℕ0 & ⊢ 𝐶 ∈ ℕ0 & ⊢ 𝐷 ∈ ℕ0 & ⊢ (𝐴 · 𝐶) = 𝐸 & ⊢ ((𝐴 · 𝐷) + (𝐵 · 𝐶)) = 𝐹 & ⊢ (𝐵 · 𝐷) = ;𝐺𝐻 & ⊢ (;𝐸𝐺 + 𝐹) = 𝐼 & ⊢ 𝐺 ∈ ℕ0 & ⊢ 𝐻 ∈ ℕ0 ⇒ ⊢ (;𝐴𝐵 · ;𝐶𝐷) = ;𝐼𝐻 | ||
Theorem | sqdeccom12 40324 | The square of a number in terms of its digits switched. (Contributed by Steven Nguyen, 3-Jan-2023.) |
⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈ ℕ0 ⇒ ⊢ ((;𝐴𝐵 · ;𝐴𝐵) − (;𝐵𝐴 · ;𝐵𝐴)) = (;99 · ((𝐴 · 𝐴) − (𝐵 · 𝐵))) | ||
Theorem | sq3deccom12 40325 | Variant of sqdeccom12 40324 with a three digit square. (Contributed by Steven Nguyen, 3-Jan-2023.) |
⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈ ℕ0 & ⊢ 𝐶 ∈ ℕ0 & ⊢ (𝐴 + 𝐶) = 𝐷 ⇒ ⊢ ((;;𝐴𝐵𝐶 · ;;𝐴𝐵𝐶) − (;𝐷𝐵 · ;𝐷𝐵)) = (;99 · ((;𝐴𝐵 · ;𝐴𝐵) − (𝐶 · 𝐶))) | ||
Theorem | 235t711 40326 |
Calculate a product by long multiplication as a base comparison with other
multiplication algorithms.
Conveniently, 711 has two ones which greatly simplifies calculations like 235 · 1. There isn't a higher level mulcomli 10993 saving the lower level uses of mulcomli 10993 within 235 · 7 since mulcom2 doesn't exist, but if commuted versions of theorems like 7t2e14 12555 are added then this proof would benefit more than ex-decpmul 40327. For practicality, this proof doesn't have "e167085" at the end of its name like 2p2e4 12117 or 8t7e56 12566. (Contributed by Steven Nguyen, 10-Dec-2022.) (New usage is discouraged.) |
⊢ (;;235 · ;;711) = ;;;;;167085 | ||
Theorem | ex-decpmul 40327 | Example usage of decpmul 40323. This proof is significantly longer than 235t711 40326. There is more unnecessary carrying compared to 235t711 40326. Although saving 5 visual steps, using mulcomli 10993 early on increases the compressed proof length. (Contributed by Steven Nguyen, 10-Dec-2022.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ (;;235 · ;;711) = ;;;;;167085 | ||
Theorem | oexpreposd 40328 | Lemma for dffltz 40478. TODO-SN?: This can be used to show exp11d 40332 holds for all integers when the exponent is odd. The more standard ¬ 2 ∥ 𝑀 should be used. (Contributed by SN, 4-Mar-2023.) |
⊢ (𝜑 → 𝑁 ∈ ℝ) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → ¬ (𝑀 / 2) ∈ ℕ) ⇒ ⊢ (𝜑 → (0 < 𝑁 ↔ 0 < (𝑁↑𝑀))) | ||
Theorem | ltexp1d 40329 | ltmul1d 12822 for exponentiation of positive reals. (Contributed by Steven Nguyen, 22-Aug-2023.) |
⊢ (𝜑 → 𝐴 ∈ ℝ+) & ⊢ (𝜑 → 𝐵 ∈ ℝ+) & ⊢ (𝜑 → 𝑁 ∈ ℕ) ⇒ ⊢ (𝜑 → (𝐴 < 𝐵 ↔ (𝐴↑𝑁) < (𝐵↑𝑁))) | ||
Theorem | ltexp1dd 40330 | Raising both sides of 'less than' to the same positive integer preserves ordering. (Contributed by Steven Nguyen, 24-Aug-2023.) |
⊢ (𝜑 → 𝐴 ∈ ℝ+) & ⊢ (𝜑 → 𝐵 ∈ ℝ+) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐴 < 𝐵) ⇒ ⊢ (𝜑 → (𝐴↑𝑁) < (𝐵↑𝑁)) | ||
Theorem | exp11nnd 40331 | sq11d 13984 for positive real bases and positive integer exponents. The base cannot be generalized much further, since if 𝑁 is even then we have 𝐴↑𝑁 = -𝐴↑𝑁. (Contributed by SN, 14-Sep-2023.) |
⊢ (𝜑 → 𝐴 ∈ ℝ+) & ⊢ (𝜑 → 𝐵 ∈ ℝ+) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → (𝐴↑𝑁) = (𝐵↑𝑁)) ⇒ ⊢ (𝜑 → 𝐴 = 𝐵) | ||
Theorem | exp11d 40332 | exp11nnd 40331 for nonzero integer exponents. (Contributed by SN, 14-Sep-2023.) |
⊢ (𝜑 → 𝐴 ∈ ℝ+) & ⊢ (𝜑 → 𝐵 ∈ ℝ+) & ⊢ (𝜑 → 𝑁 ∈ ℤ) & ⊢ (𝜑 → 𝑁 ≠ 0) & ⊢ (𝜑 → (𝐴↑𝑁) = (𝐵↑𝑁)) ⇒ ⊢ (𝜑 → 𝐴 = 𝐵) | ||
Theorem | 0dvds0 40333 | 0 divides 0. (Contributed by SN, 15-Sep-2024.) |
⊢ 0 ∥ 0 | ||
Theorem | absdvdsabsb 40334 | Divisibility is invariant under taking the absolute value on both sides. (Contributed by SN, 15-Sep-2024.) |
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ∥ 𝑁 ↔ (abs‘𝑀) ∥ (abs‘𝑁))) | ||
Theorem | dvdsexpim 40335 | dvdssqim 16273 generalized to nonnegative exponents. (Contributed by Steven Nguyen, 2-Apr-2023.) |
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (𝐴 ∥ 𝐵 → (𝐴↑𝑁) ∥ (𝐵↑𝑁))) | ||
Theorem | gcdnn0id 40336 | The gcd of a nonnegative integer and itself is the integer. (Contributed by SN, 25-Aug-2024.) |
⊢ (𝑁 ∈ ℕ0 → (𝑁 gcd 𝑁) = 𝑁) | ||
Theorem | gcdle1d 40337 | The greatest common divisor of a positive integer and another integer is less than or equal to the positive integer. (Contributed by SN, 25-Aug-2024.) |
⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑁 ∈ ℤ) ⇒ ⊢ (𝜑 → (𝑀 gcd 𝑁) ≤ 𝑀) | ||
Theorem | gcdle2d 40338 | The greatest common divisor of a positive integer and another integer is less than or equal to the positive integer. (Contributed by SN, 25-Aug-2024.) |
⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝑁 ∈ ℕ) ⇒ ⊢ (𝜑 → (𝑀 gcd 𝑁) ≤ 𝑁) | ||
Theorem | dvdsexpad 40339 | Deduction associated with dvdsexpim 40335. (Contributed by SN, 21-Aug-2024.) |
⊢ (𝜑 → 𝐴 ∈ ℤ) & ⊢ (𝜑 → 𝐵 ∈ ℤ) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝐴 ∥ 𝐵) ⇒ ⊢ (𝜑 → (𝐴↑𝑁) ∥ (𝐵↑𝑁)) | ||
Theorem | nn0rppwr 40340 | If 𝐴 and 𝐵 are relatively prime, then so are 𝐴↑𝑁 and 𝐵↑𝑁. rppwr 16278 extended to nonnegative integers. Less general than rpexp12i 16438. (Contributed by Steven Nguyen, 4-Apr-2023.) |
⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → ((𝐴 gcd 𝐵) = 1 → ((𝐴↑𝑁) gcd (𝐵↑𝑁)) = 1)) | ||
Theorem | expgcd 40341 | Exponentiation distributes over GCD. sqgcd 16279 extended to nonnegative exponents. (Contributed by Steven Nguyen, 4-Apr-2023.) |
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → ((𝐴 gcd 𝐵)↑𝑁) = ((𝐴↑𝑁) gcd (𝐵↑𝑁))) | ||
Theorem | nn0expgcd 40342 | Exponentiation distributes over GCD. nn0gcdsq 16465 extended to nonnegative exponents. expgcd 40341 extended to nonnegative bases. (Contributed by Steven Nguyen, 5-Apr-2023.) |
⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → ((𝐴 gcd 𝐵)↑𝑁) = ((𝐴↑𝑁) gcd (𝐵↑𝑁))) | ||
Theorem | zexpgcd 40343 | Exponentiation distributes over GCD. zgcdsq 16466 extended to nonnegative exponents. nn0expgcd 40342 extended to integer bases by symmetry. (Contributed by Steven Nguyen, 5-Apr-2023.) |
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → ((𝐴 gcd 𝐵)↑𝑁) = ((𝐴↑𝑁) gcd (𝐵↑𝑁))) | ||
Theorem | numdenexp 40344 | numdensq 16467 extended to nonnegative exponents. (Contributed by Steven Nguyen, 5-Apr-2023.) |
⊢ ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ0) → ((numer‘(𝐴↑𝑁)) = ((numer‘𝐴)↑𝑁) ∧ (denom‘(𝐴↑𝑁)) = ((denom‘𝐴)↑𝑁))) | ||
Theorem | numexp 40345 | numsq 16468 extended to nonnegative exponents. (Contributed by Steven Nguyen, 5-Apr-2023.) |
⊢ ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ0) → (numer‘(𝐴↑𝑁)) = ((numer‘𝐴)↑𝑁)) | ||
Theorem | denexp 40346 | densq 16469 extended to nonnegative exponents. (Contributed by Steven Nguyen, 5-Apr-2023.) |
⊢ ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ0) → (denom‘(𝐴↑𝑁)) = ((denom‘𝐴)↑𝑁)) | ||
Theorem | dvdsexpnn 40347 | dvdssqlem 16280 generalized to positive integer exponents. (Contributed by SN, 20-Aug-2024.) |
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝐴 ∥ 𝐵 ↔ (𝐴↑𝑁) ∥ (𝐵↑𝑁))) | ||
Theorem | dvdsexpnn0 40348 | dvdsexpnn 40347 generalized to include zero bases. (Contributed by SN, 15-Sep-2024.) |
⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ∧ 𝑁 ∈ ℕ) → (𝐴 ∥ 𝐵 ↔ (𝐴↑𝑁) ∥ (𝐵↑𝑁))) | ||
Theorem | dvdsexpb 40349 | dvdssq 16281 generalized to positive integer exponents. (Contributed by SN, 15-Sep-2024.) |
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝐴 ∥ 𝐵 ↔ (𝐴↑𝑁) ∥ (𝐵↑𝑁))) | ||
Theorem | posqsqznn 40350 | When a positive rational squared is an integer, the rational is a positive integer. zsqrtelqelz 16471 with all terms squared and positive. (Contributed by SN, 23-Aug-2024.) |
⊢ (𝜑 → (𝐴↑2) ∈ ℤ) & ⊢ (𝜑 → 𝐴 ∈ ℚ) & ⊢ (𝜑 → 0 < 𝐴) ⇒ ⊢ (𝜑 → 𝐴 ∈ ℕ) | ||
Theorem | cxpgt0d 40351 | A positive real raised to a real power is positive. (Contributed by SN, 6-Apr-2023.) |
⊢ (𝜑 → 𝐴 ∈ ℝ+) & ⊢ (𝜑 → 𝑁 ∈ ℝ) ⇒ ⊢ (𝜑 → 0 < (𝐴↑𝑐𝑁)) | ||
Theorem | zrtelqelz 40352 | zsqrtelqelz 16471 generalized to positive integer roots. (Contributed by Steven Nguyen, 6-Apr-2023.) |
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝐴↑𝑐(1 / 𝑁)) ∈ ℚ) → (𝐴↑𝑐(1 / 𝑁)) ∈ ℤ) | ||
Theorem | zrtdvds 40353 | A positive integer root divides its integer. (Contributed by Steven Nguyen, 6-Apr-2023.) |
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝐴↑𝑐(1 / 𝑁)) ∈ ℕ) → (𝐴↑𝑐(1 / 𝑁)) ∥ 𝐴) | ||
Theorem | rtprmirr 40354 | The root of a prime number is irrational. (Contributed by Steven Nguyen, 6-Apr-2023.) |
⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ≥‘2)) → (𝑃↑𝑐(1 / 𝑁)) ∈ (ℝ ∖ ℚ)) | ||
Syntax | cresub 40355 | Real number subtraction. |
class −ℝ | ||
Definition | df-resub 40356* | Define subtraction between real numbers. This operator saves a few axioms over df-sub 11216 in certain situations. Theorem resubval 40357 shows its value, resubadd 40369 relates it to addition, and rersubcl 40368 proves its closure. It is the restriction of df-sub 11216 to the reals: subresre 40419. (Contributed by Steven Nguyen, 7-Jan-2023.) |
⊢ −ℝ = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (℩𝑧 ∈ ℝ (𝑦 + 𝑧) = 𝑥)) | ||
Theorem | resubval 40357* | Value of real subtraction, which is the (unique) real 𝑥 such that 𝐵 + 𝑥 = 𝐴. (Contributed by Steven Nguyen, 7-Jan-2023.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 −ℝ 𝐵) = (℩𝑥 ∈ ℝ (𝐵 + 𝑥) = 𝐴)) | ||
Theorem | renegeulemv 40358* | Lemma for renegeu 40360 and similar. Derive existential uniqueness from existence. (Contributed by Steven Nguyen, 28-Jan-2023.) |
⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → ∃𝑦 ∈ ℝ (𝐵 + 𝑦) = 𝐴) ⇒ ⊢ (𝜑 → ∃!𝑥 ∈ ℝ (𝐵 + 𝑥) = 𝐴) | ||
Theorem | renegeulem 40359* | Lemma for renegeu 40360 and similar. Remove a change in bound variables from renegeulemv 40358. (Contributed by Steven Nguyen, 28-Jan-2023.) |
⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → ∃𝑦 ∈ ℝ (𝐵 + 𝑦) = 𝐴) ⇒ ⊢ (𝜑 → ∃!𝑦 ∈ ℝ (𝐵 + 𝑦) = 𝐴) | ||
Theorem | renegeu 40360* | Existential uniqueness of real negatives. (Contributed by Steven Nguyen, 7-Jan-2023.) |
⊢ (𝐴 ∈ ℝ → ∃!𝑥 ∈ ℝ (𝐴 + 𝑥) = 0) | ||
Theorem | rernegcl 40361 | Closure law for negative reals. (Contributed by Steven Nguyen, 7-Jan-2023.) |
⊢ (𝐴 ∈ ℝ → (0 −ℝ 𝐴) ∈ ℝ) | ||
Theorem | renegadd 40362 | Relationship between real negation and addition. (Contributed by Steven Nguyen, 7-Jan-2023.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((0 −ℝ 𝐴) = 𝐵 ↔ (𝐴 + 𝐵) = 0)) | ||
Theorem | renegid 40363 | Addition of a real number and its negative. (Contributed by Steven Nguyen, 7-Jan-2023.) |
⊢ (𝐴 ∈ ℝ → (𝐴 + (0 −ℝ 𝐴)) = 0) | ||
Theorem | reneg0addid2 40364 | Negative zero is a left additive identity. (Contributed by Steven Nguyen, 7-Jan-2023.) |
⊢ (𝐴 ∈ ℝ → ((0 −ℝ 0) + 𝐴) = 𝐴) | ||
Theorem | resubeulem1 40365 | Lemma for resubeu 40367. A value which when added to zero, results in negative zero. (Contributed by Steven Nguyen, 7-Jan-2023.) |
⊢ (𝐴 ∈ ℝ → (0 + (0 −ℝ (0 + 0))) = (0 −ℝ 0)) | ||
Theorem | resubeulem2 40366 | Lemma for resubeu 40367. A value which when added to 𝐴, results in 𝐵. (Contributed by Steven Nguyen, 7-Jan-2023.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 + ((0 −ℝ 𝐴) + ((0 −ℝ (0 + 0)) + 𝐵))) = 𝐵) | ||
Theorem | resubeu 40367* | Existential uniqueness of real differences. (Contributed by Steven Nguyen, 7-Jan-2023.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ∃!𝑥 ∈ ℝ (𝐴 + 𝑥) = 𝐵) | ||
Theorem | rersubcl 40368 | Closure for real subtraction. Based on subcl 11229. (Contributed by Steven Nguyen, 7-Jan-2023.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 −ℝ 𝐵) ∈ ℝ) | ||
Theorem | resubadd 40369 | Relation between real subtraction and addition. Based on subadd 11233. (Contributed by Steven Nguyen, 7-Jan-2023.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 −ℝ 𝐵) = 𝐶 ↔ (𝐵 + 𝐶) = 𝐴)) | ||
Theorem | resubaddd 40370 | Relationship between subtraction and addition. Based on subaddd 11359. (Contributed by Steven Nguyen, 8-Jan-2023.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) ⇒ ⊢ (𝜑 → ((𝐴 −ℝ 𝐵) = 𝐶 ↔ (𝐵 + 𝐶) = 𝐴)) | ||
Theorem | resubf 40371 | Real subtraction is an operation on the real numbers. Based on subf 11232. (Contributed by Steven Nguyen, 7-Jan-2023.) |
⊢ −ℝ :(ℝ × ℝ)⟶ℝ | ||
Theorem | repncan2 40372 | Addition and subtraction of equals. Compare pncan2 11237. (Contributed by Steven Nguyen, 8-Jan-2023.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 + 𝐵) −ℝ 𝐴) = 𝐵) | ||
Theorem | repncan3 40373 | Addition and subtraction of equals. Based on pncan3 11238. (Contributed by Steven Nguyen, 8-Jan-2023.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 + (𝐵 −ℝ 𝐴)) = 𝐵) | ||
Theorem | readdsub 40374 | Law for addition and subtraction. (Contributed by Steven Nguyen, 28-Jan-2023.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 + 𝐵) −ℝ 𝐶) = ((𝐴 −ℝ 𝐶) + 𝐵)) | ||
Theorem | reladdrsub 40375 | Move LHS of a sum into RHS of a (real) difference. Version of mvlladdd 11395 with real subtraction. (Contributed by Steven Nguyen, 8-Jan-2023.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → (𝐴 + 𝐵) = 𝐶) ⇒ ⊢ (𝜑 → 𝐵 = (𝐶 −ℝ 𝐴)) | ||
Theorem | reltsub1 40376 | Subtraction from both sides of 'less than'. Compare ltsub1 11480. (Contributed by SN, 13-Feb-2024.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 < 𝐵 ↔ (𝐴 −ℝ 𝐶) < (𝐵 −ℝ 𝐶))) | ||
Theorem | reltsubadd2 40377 | 'Less than' relationship between addition and subtraction. Compare ltsubadd2 11455. (Contributed by SN, 13-Feb-2024.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 −ℝ 𝐵) < 𝐶 ↔ 𝐴 < (𝐵 + 𝐶))) | ||
Theorem | resubcan2 40378 | Cancellation law for real subtraction. Compare subcan2 11255. (Contributed by Steven Nguyen, 8-Jan-2023.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 −ℝ 𝐶) = (𝐵 −ℝ 𝐶) ↔ 𝐴 = 𝐵)) | ||
Theorem | resubsub4 40379 | Law for double subtraction. Compare subsub4 11263. (Contributed by Steven Nguyen, 14-Jan-2023.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 −ℝ 𝐵) −ℝ 𝐶) = (𝐴 −ℝ (𝐵 + 𝐶))) | ||
Theorem | rennncan2 40380 | Cancellation law for real subtraction. Compare nnncan2 11267. (Contributed by Steven Nguyen, 14-Jan-2023.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 −ℝ 𝐶) −ℝ (𝐵 −ℝ 𝐶)) = (𝐴 −ℝ 𝐵)) | ||
Theorem | renpncan3 40381 | Cancellation law for real subtraction. Compare npncan3 11268. (Contributed by Steven Nguyen, 28-Jan-2023.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 −ℝ 𝐵) + (𝐶 −ℝ 𝐴)) = (𝐶 −ℝ 𝐵)) | ||
Theorem | repnpcan 40382 | Cancellation law for addition and real subtraction. Compare pnpcan 11269. (Contributed by Steven Nguyen, 19-May-2023.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 + 𝐵) −ℝ (𝐴 + 𝐶)) = (𝐵 −ℝ 𝐶)) | ||
Theorem | reppncan 40383 | Cancellation law for mixed addition and real subtraction. Compare ppncan 11272. (Contributed by SN, 3-Sep-2023.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 + 𝐶) + (𝐵 −ℝ 𝐶)) = (𝐴 + 𝐵)) | ||
Theorem | resubidaddid1lem 40384 | Lemma for resubidaddid1 40385. A special case of npncan 11251. (Contributed by Steven Nguyen, 8-Jan-2023.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → (𝐴 −ℝ 𝐵) = (𝐵 −ℝ 𝐶)) ⇒ ⊢ (𝜑 → ((𝐴 −ℝ 𝐵) + (𝐵 −ℝ 𝐶)) = (𝐴 −ℝ 𝐶)) | ||
Theorem | resubidaddid1 40385 | Any real number subtracted from itself forms a left additive identity. (Contributed by Steven Nguyen, 8-Jan-2023.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 −ℝ 𝐴) + 𝐵) = 𝐵) | ||
Theorem | resubdi 40386 | Distribution of multiplication over real subtraction. (Contributed by Steven Nguyen, 3-Jun-2023.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 · (𝐵 −ℝ 𝐶)) = ((𝐴 · 𝐵) −ℝ (𝐴 · 𝐶))) | ||
Theorem | re1m1e0m0 40387 | Equality of two left-additive identities. See resubidaddid1 40385. Uses ax-i2m1 10948. (Contributed by SN, 25-Dec-2023.) |
⊢ (1 −ℝ 1) = (0 −ℝ 0) | ||
Theorem | sn-00idlem1 40388 | Lemma for sn-00id 40391. (Contributed by SN, 25-Dec-2023.) |
⊢ (𝐴 ∈ ℝ → (𝐴 · (0 −ℝ 0)) = (𝐴 −ℝ 𝐴)) | ||
Theorem | sn-00idlem2 40389 | Lemma for sn-00id 40391. (Contributed by SN, 25-Dec-2023.) |
⊢ ((0 −ℝ 0) ≠ 0 → (0 −ℝ 0) = 1) | ||
Theorem | sn-00idlem3 40390 | Lemma for sn-00id 40391. (Contributed by SN, 25-Dec-2023.) |
⊢ ((0 −ℝ 0) = 1 → (0 + 0) = 0) | ||
Theorem | sn-00id 40391 | 00id 11159 proven without ax-mulcom 10944 but using ax-1ne0 10949. (Though note that the current version of 00id 11159 can be changed to avoid ax-icn 10939, ax-addcl 10940, ax-mulcl 10942, ax-i2m1 10948, ax-cnre 10953. Most of this is by using 0cnALT3 40297 instead of 0cn 10976). (Contributed by SN, 25-Dec-2023.) (Proof modification is discouraged.) |
⊢ (0 + 0) = 0 | ||
Theorem | re0m0e0 40392 | Real number version of 0m0e0 12102 proven without ax-mulcom 10944. (Contributed by SN, 23-Jan-2024.) |
⊢ (0 −ℝ 0) = 0 | ||
Theorem | readdid2 40393 | Real number version of addid2 11167. (Contributed by SN, 23-Jan-2024.) |
⊢ (𝐴 ∈ ℝ → (0 + 𝐴) = 𝐴) | ||
Theorem | sn-addid2 40394 | addid2 11167 without ax-mulcom 10944. (Contributed by SN, 23-Jan-2024.) |
⊢ (𝐴 ∈ ℂ → (0 + 𝐴) = 𝐴) | ||
Theorem | remul02 40395 | Real number version of mul02 11162 proven without ax-mulcom 10944. (Contributed by SN, 23-Jan-2024.) |
⊢ (𝐴 ∈ ℝ → (0 · 𝐴) = 0) | ||
Theorem | sn-0ne2 40396 | 0ne2 12189 without ax-mulcom 10944. (Contributed by SN, 23-Jan-2024.) |
⊢ 0 ≠ 2 | ||
Theorem | remul01 40397 | Real number version of mul01 11163 proven without ax-mulcom 10944. (Contributed by SN, 23-Jan-2024.) |
⊢ (𝐴 ∈ ℝ → (𝐴 · 0) = 0) | ||
Theorem | resubid 40398 | Subtraction of a real number from itself (compare subid 11249). (Contributed by SN, 23-Jan-2024.) |
⊢ (𝐴 ∈ ℝ → (𝐴 −ℝ 𝐴) = 0) | ||
Theorem | readdid1 40399 | Real number version of addid1 11164, without ax-mulcom 10944. (Contributed by SN, 23-Jan-2024.) |
⊢ (𝐴 ∈ ℝ → (𝐴 + 0) = 𝐴) | ||
Theorem | resubid1 40400 | Real number version of subid1 11250, without ax-mulcom 10944. (Contributed by SN, 23-Jan-2024.) |
⊢ (𝐴 ∈ ℝ → (𝐴 −ℝ 0) = 𝐴) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |