Step | Hyp | Ref
| Expression |
1 | | elex 3485 |
. 2
β’ (πΎ β π β πΎ β V) |
2 | | fveq2 6881 |
. . . . 5
β’ (π = πΎ β (LHypβπ) = (LHypβπΎ)) |
3 | | dicval.h |
. . . . 5
β’ π» = (LHypβπΎ) |
4 | 2, 3 | eqtr4di 2782 |
. . . 4
β’ (π = πΎ β (LHypβπ) = π») |
5 | | fveq2 6881 |
. . . . . . 7
β’ (π = πΎ β (Atomsβπ) = (AtomsβπΎ)) |
6 | | dicval.a |
. . . . . . 7
β’ π΄ = (AtomsβπΎ) |
7 | 5, 6 | eqtr4di 2782 |
. . . . . 6
β’ (π = πΎ β (Atomsβπ) = π΄) |
8 | | fveq2 6881 |
. . . . . . . . 9
β’ (π = πΎ β (leβπ) = (leβπΎ)) |
9 | | dicval.l |
. . . . . . . . 9
β’ β€ =
(leβπΎ) |
10 | 8, 9 | eqtr4di 2782 |
. . . . . . . 8
β’ (π = πΎ β (leβπ) = β€ ) |
11 | 10 | breqd 5149 |
. . . . . . 7
β’ (π = πΎ β (π(leβπ)π€ β π β€ π€)) |
12 | 11 | notbid 318 |
. . . . . 6
β’ (π = πΎ β (Β¬ π(leβπ)π€ β Β¬ π β€ π€)) |
13 | 7, 12 | rabeqbidv 3441 |
. . . . 5
β’ (π = πΎ β {π β (Atomsβπ) β£ Β¬ π(leβπ)π€} = {π β π΄ β£ Β¬ π β€ π€}) |
14 | | fveq2 6881 |
. . . . . . . . . . 11
β’ (π = πΎ β (LTrnβπ) = (LTrnβπΎ)) |
15 | 14 | fveq1d 6883 |
. . . . . . . . . 10
β’ (π = πΎ β ((LTrnβπ)βπ€) = ((LTrnβπΎ)βπ€)) |
16 | | fveq2 6881 |
. . . . . . . . . . . 12
β’ (π = πΎ β (ocβπ) = (ocβπΎ)) |
17 | 16 | fveq1d 6883 |
. . . . . . . . . . 11
β’ (π = πΎ β ((ocβπ)βπ€) = ((ocβπΎ)βπ€)) |
18 | 17 | fveqeq2d 6889 |
. . . . . . . . . 10
β’ (π = πΎ β ((πβ((ocβπ)βπ€)) = π β (πβ((ocβπΎ)βπ€)) = π)) |
19 | 15, 18 | riotaeqbidv 7360 |
. . . . . . . . 9
β’ (π = πΎ β (β©π β ((LTrnβπ)βπ€)(πβ((ocβπ)βπ€)) = π) = (β©π β ((LTrnβπΎ)βπ€)(πβ((ocβπΎ)βπ€)) = π)) |
20 | 19 | fveq2d 6885 |
. . . . . . . 8
β’ (π = πΎ β (π β(β©π β ((LTrnβπ)βπ€)(πβ((ocβπ)βπ€)) = π)) = (π β(β©π β ((LTrnβπΎ)βπ€)(πβ((ocβπΎ)βπ€)) = π))) |
21 | 20 | eqeq2d 2735 |
. . . . . . 7
β’ (π = πΎ β (π = (π β(β©π β ((LTrnβπ)βπ€)(πβ((ocβπ)βπ€)) = π)) β π = (π β(β©π β ((LTrnβπΎ)βπ€)(πβ((ocβπΎ)βπ€)) = π)))) |
22 | | fveq2 6881 |
. . . . . . . . 9
β’ (π = πΎ β (TEndoβπ) = (TEndoβπΎ)) |
23 | 22 | fveq1d 6883 |
. . . . . . . 8
β’ (π = πΎ β ((TEndoβπ)βπ€) = ((TEndoβπΎ)βπ€)) |
24 | 23 | eleq2d 2811 |
. . . . . . 7
β’ (π = πΎ β (π β ((TEndoβπ)βπ€) β π β ((TEndoβπΎ)βπ€))) |
25 | 21, 24 | anbi12d 630 |
. . . . . 6
β’ (π = πΎ β ((π = (π β(β©π β ((LTrnβπ)βπ€)(πβ((ocβπ)βπ€)) = π)) β§ π β ((TEndoβπ)βπ€)) β (π = (π β(β©π β ((LTrnβπΎ)βπ€)(πβ((ocβπΎ)βπ€)) = π)) β§ π β ((TEndoβπΎ)βπ€)))) |
26 | 25 | opabbidv 5204 |
. . . . 5
β’ (π = πΎ β {β¨π, π β© β£ (π = (π β(β©π β ((LTrnβπ)βπ€)(πβ((ocβπ)βπ€)) = π)) β§ π β ((TEndoβπ)βπ€))} = {β¨π, π β© β£ (π = (π β(β©π β ((LTrnβπΎ)βπ€)(πβ((ocβπΎ)βπ€)) = π)) β§ π β ((TEndoβπΎ)βπ€))}) |
27 | 13, 26 | mpteq12dv 5229 |
. . . 4
β’ (π = πΎ β (π β {π β (Atomsβπ) β£ Β¬ π(leβπ)π€} β¦ {β¨π, π β© β£ (π = (π β(β©π β ((LTrnβπ)βπ€)(πβ((ocβπ)βπ€)) = π)) β§ π β ((TEndoβπ)βπ€))}) = (π β {π β π΄ β£ Β¬ π β€ π€} β¦ {β¨π, π β© β£ (π = (π β(β©π β ((LTrnβπΎ)βπ€)(πβ((ocβπΎ)βπ€)) = π)) β§ π β ((TEndoβπΎ)βπ€))})) |
28 | 4, 27 | mpteq12dv 5229 |
. . 3
β’ (π = πΎ β (π€ β (LHypβπ) β¦ (π β {π β (Atomsβπ) β£ Β¬ π(leβπ)π€} β¦ {β¨π, π β© β£ (π = (π β(β©π β ((LTrnβπ)βπ€)(πβ((ocβπ)βπ€)) = π)) β§ π β ((TEndoβπ)βπ€))})) = (π€ β π» β¦ (π β {π β π΄ β£ Β¬ π β€ π€} β¦ {β¨π, π β© β£ (π = (π β(β©π β ((LTrnβπΎ)βπ€)(πβ((ocβπΎ)βπ€)) = π)) β§ π β ((TEndoβπΎ)βπ€))}))) |
29 | | df-dic 40500 |
. . 3
β’ DIsoC =
(π β V β¦ (π€ β (LHypβπ) β¦ (π β {π β (Atomsβπ) β£ Β¬ π(leβπ)π€} β¦ {β¨π, π β© β£ (π = (π β(β©π β ((LTrnβπ)βπ€)(πβ((ocβπ)βπ€)) = π)) β§ π β ((TEndoβπ)βπ€))}))) |
30 | 28, 29, 3 | mptfvmpt 7221 |
. 2
β’ (πΎ β V β
(DIsoCβπΎ) = (π€ β π» β¦ (π β {π β π΄ β£ Β¬ π β€ π€} β¦ {β¨π, π β© β£ (π = (π β(β©π β ((LTrnβπΎ)βπ€)(πβ((ocβπΎ)βπ€)) = π)) β§ π β ((TEndoβπΎ)βπ€))}))) |
31 | 1, 30 | syl 17 |
1
β’ (πΎ β π β (DIsoCβπΎ) = (π€ β π» β¦ (π β {π β π΄ β£ Β¬ π β€ π€} β¦ {β¨π, π β© β£ (π = (π β(β©π β ((LTrnβπΎ)βπ€)(πβ((ocβπΎ)βπ€)) = π)) β§ π β ((TEndoβπΎ)βπ€))}))) |