Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dicffval Structured version   Visualization version   GIF version

Theorem dicffval 41212
Description: The partial isomorphism C for a lattice 𝐾. (Contributed by NM, 15-Dec-2013.)
Hypotheses
Ref Expression
dicval.l = (le‘𝐾)
dicval.a 𝐴 = (Atoms‘𝐾)
dicval.h 𝐻 = (LHyp‘𝐾)
Assertion
Ref Expression
dicffval (𝐾𝑉 → (DIsoC‘𝐾) = (𝑤𝐻 ↦ (𝑞 ∈ {𝑟𝐴 ∣ ¬ 𝑟 𝑤} ↦ {⟨𝑓, 𝑠⟩ ∣ (𝑓 = (𝑠‘(𝑔 ∈ ((LTrn‘𝐾)‘𝑤)(𝑔‘((oc‘𝐾)‘𝑤)) = 𝑞)) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑤))})))
Distinct variable groups:   𝐴,𝑟   𝑤,𝐻   𝑓,𝑔,𝑞,𝑟,𝑠,𝑤,𝐾
Allowed substitution hints:   𝐴(𝑤,𝑓,𝑔,𝑠,𝑞)   𝐻(𝑓,𝑔,𝑠,𝑟,𝑞)   (𝑤,𝑓,𝑔,𝑠,𝑟,𝑞)   𝑉(𝑤,𝑓,𝑔,𝑠,𝑟,𝑞)

Proof of Theorem dicffval
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 elex 3457 . 2 (𝐾𝑉𝐾 ∈ V)
2 fveq2 6822 . . . . 5 (𝑘 = 𝐾 → (LHyp‘𝑘) = (LHyp‘𝐾))
3 dicval.h . . . . 5 𝐻 = (LHyp‘𝐾)
42, 3eqtr4di 2784 . . . 4 (𝑘 = 𝐾 → (LHyp‘𝑘) = 𝐻)
5 fveq2 6822 . . . . . . 7 (𝑘 = 𝐾 → (Atoms‘𝑘) = (Atoms‘𝐾))
6 dicval.a . . . . . . 7 𝐴 = (Atoms‘𝐾)
75, 6eqtr4di 2784 . . . . . 6 (𝑘 = 𝐾 → (Atoms‘𝑘) = 𝐴)
8 fveq2 6822 . . . . . . . . 9 (𝑘 = 𝐾 → (le‘𝑘) = (le‘𝐾))
9 dicval.l . . . . . . . . 9 = (le‘𝐾)
108, 9eqtr4di 2784 . . . . . . . 8 (𝑘 = 𝐾 → (le‘𝑘) = )
1110breqd 5102 . . . . . . 7 (𝑘 = 𝐾 → (𝑟(le‘𝑘)𝑤𝑟 𝑤))
1211notbid 318 . . . . . 6 (𝑘 = 𝐾 → (¬ 𝑟(le‘𝑘)𝑤 ↔ ¬ 𝑟 𝑤))
137, 12rabeqbidv 3413 . . . . 5 (𝑘 = 𝐾 → {𝑟 ∈ (Atoms‘𝑘) ∣ ¬ 𝑟(le‘𝑘)𝑤} = {𝑟𝐴 ∣ ¬ 𝑟 𝑤})
14 fveq2 6822 . . . . . . . . . . 11 (𝑘 = 𝐾 → (LTrn‘𝑘) = (LTrn‘𝐾))
1514fveq1d 6824 . . . . . . . . . 10 (𝑘 = 𝐾 → ((LTrn‘𝑘)‘𝑤) = ((LTrn‘𝐾)‘𝑤))
16 fveq2 6822 . . . . . . . . . . . 12 (𝑘 = 𝐾 → (oc‘𝑘) = (oc‘𝐾))
1716fveq1d 6824 . . . . . . . . . . 11 (𝑘 = 𝐾 → ((oc‘𝑘)‘𝑤) = ((oc‘𝐾)‘𝑤))
1817fveqeq2d 6830 . . . . . . . . . 10 (𝑘 = 𝐾 → ((𝑔‘((oc‘𝑘)‘𝑤)) = 𝑞 ↔ (𝑔‘((oc‘𝐾)‘𝑤)) = 𝑞))
1915, 18riotaeqbidv 7306 . . . . . . . . 9 (𝑘 = 𝐾 → (𝑔 ∈ ((LTrn‘𝑘)‘𝑤)(𝑔‘((oc‘𝑘)‘𝑤)) = 𝑞) = (𝑔 ∈ ((LTrn‘𝐾)‘𝑤)(𝑔‘((oc‘𝐾)‘𝑤)) = 𝑞))
2019fveq2d 6826 . . . . . . . 8 (𝑘 = 𝐾 → (𝑠‘(𝑔 ∈ ((LTrn‘𝑘)‘𝑤)(𝑔‘((oc‘𝑘)‘𝑤)) = 𝑞)) = (𝑠‘(𝑔 ∈ ((LTrn‘𝐾)‘𝑤)(𝑔‘((oc‘𝐾)‘𝑤)) = 𝑞)))
2120eqeq2d 2742 . . . . . . 7 (𝑘 = 𝐾 → (𝑓 = (𝑠‘(𝑔 ∈ ((LTrn‘𝑘)‘𝑤)(𝑔‘((oc‘𝑘)‘𝑤)) = 𝑞)) ↔ 𝑓 = (𝑠‘(𝑔 ∈ ((LTrn‘𝐾)‘𝑤)(𝑔‘((oc‘𝐾)‘𝑤)) = 𝑞))))
22 fveq2 6822 . . . . . . . . 9 (𝑘 = 𝐾 → (TEndo‘𝑘) = (TEndo‘𝐾))
2322fveq1d 6824 . . . . . . . 8 (𝑘 = 𝐾 → ((TEndo‘𝑘)‘𝑤) = ((TEndo‘𝐾)‘𝑤))
2423eleq2d 2817 . . . . . . 7 (𝑘 = 𝐾 → (𝑠 ∈ ((TEndo‘𝑘)‘𝑤) ↔ 𝑠 ∈ ((TEndo‘𝐾)‘𝑤)))
2521, 24anbi12d 632 . . . . . 6 (𝑘 = 𝐾 → ((𝑓 = (𝑠‘(𝑔 ∈ ((LTrn‘𝑘)‘𝑤)(𝑔‘((oc‘𝑘)‘𝑤)) = 𝑞)) ∧ 𝑠 ∈ ((TEndo‘𝑘)‘𝑤)) ↔ (𝑓 = (𝑠‘(𝑔 ∈ ((LTrn‘𝐾)‘𝑤)(𝑔‘((oc‘𝐾)‘𝑤)) = 𝑞)) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑤))))
2625opabbidv 5157 . . . . 5 (𝑘 = 𝐾 → {⟨𝑓, 𝑠⟩ ∣ (𝑓 = (𝑠‘(𝑔 ∈ ((LTrn‘𝑘)‘𝑤)(𝑔‘((oc‘𝑘)‘𝑤)) = 𝑞)) ∧ 𝑠 ∈ ((TEndo‘𝑘)‘𝑤))} = {⟨𝑓, 𝑠⟩ ∣ (𝑓 = (𝑠‘(𝑔 ∈ ((LTrn‘𝐾)‘𝑤)(𝑔‘((oc‘𝐾)‘𝑤)) = 𝑞)) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑤))})
2713, 26mpteq12dv 5178 . . . 4 (𝑘 = 𝐾 → (𝑞 ∈ {𝑟 ∈ (Atoms‘𝑘) ∣ ¬ 𝑟(le‘𝑘)𝑤} ↦ {⟨𝑓, 𝑠⟩ ∣ (𝑓 = (𝑠‘(𝑔 ∈ ((LTrn‘𝑘)‘𝑤)(𝑔‘((oc‘𝑘)‘𝑤)) = 𝑞)) ∧ 𝑠 ∈ ((TEndo‘𝑘)‘𝑤))}) = (𝑞 ∈ {𝑟𝐴 ∣ ¬ 𝑟 𝑤} ↦ {⟨𝑓, 𝑠⟩ ∣ (𝑓 = (𝑠‘(𝑔 ∈ ((LTrn‘𝐾)‘𝑤)(𝑔‘((oc‘𝐾)‘𝑤)) = 𝑞)) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑤))}))
284, 27mpteq12dv 5178 . . 3 (𝑘 = 𝐾 → (𝑤 ∈ (LHyp‘𝑘) ↦ (𝑞 ∈ {𝑟 ∈ (Atoms‘𝑘) ∣ ¬ 𝑟(le‘𝑘)𝑤} ↦ {⟨𝑓, 𝑠⟩ ∣ (𝑓 = (𝑠‘(𝑔 ∈ ((LTrn‘𝑘)‘𝑤)(𝑔‘((oc‘𝑘)‘𝑤)) = 𝑞)) ∧ 𝑠 ∈ ((TEndo‘𝑘)‘𝑤))})) = (𝑤𝐻 ↦ (𝑞 ∈ {𝑟𝐴 ∣ ¬ 𝑟 𝑤} ↦ {⟨𝑓, 𝑠⟩ ∣ (𝑓 = (𝑠‘(𝑔 ∈ ((LTrn‘𝐾)‘𝑤)(𝑔‘((oc‘𝐾)‘𝑤)) = 𝑞)) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑤))})))
29 df-dic 41211 . . 3 DIsoC = (𝑘 ∈ V ↦ (𝑤 ∈ (LHyp‘𝑘) ↦ (𝑞 ∈ {𝑟 ∈ (Atoms‘𝑘) ∣ ¬ 𝑟(le‘𝑘)𝑤} ↦ {⟨𝑓, 𝑠⟩ ∣ (𝑓 = (𝑠‘(𝑔 ∈ ((LTrn‘𝑘)‘𝑤)(𝑔‘((oc‘𝑘)‘𝑤)) = 𝑞)) ∧ 𝑠 ∈ ((TEndo‘𝑘)‘𝑤))})))
3028, 29, 3mptfvmpt 7162 . 2 (𝐾 ∈ V → (DIsoC‘𝐾) = (𝑤𝐻 ↦ (𝑞 ∈ {𝑟𝐴 ∣ ¬ 𝑟 𝑤} ↦ {⟨𝑓, 𝑠⟩ ∣ (𝑓 = (𝑠‘(𝑔 ∈ ((LTrn‘𝐾)‘𝑤)(𝑔‘((oc‘𝐾)‘𝑤)) = 𝑞)) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑤))})))
311, 30syl 17 1 (𝐾𝑉 → (DIsoC‘𝐾) = (𝑤𝐻 ↦ (𝑞 ∈ {𝑟𝐴 ∣ ¬ 𝑟 𝑤} ↦ {⟨𝑓, 𝑠⟩ ∣ (𝑓 = (𝑠‘(𝑔 ∈ ((LTrn‘𝐾)‘𝑤)(𝑔‘((oc‘𝐾)‘𝑤)) = 𝑞)) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑤))})))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1541  wcel 2111  {crab 3395  Vcvv 3436   class class class wbr 5091  {copab 5153  cmpt 5172  cfv 6481  crio 7302  lecple 17165  occoc 17166  Atomscatm 39301  LHypclh 40022  LTrncltrn 40139  TEndoctendo 40790  DIsoCcdic 41210
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pr 5370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-dic 41211
This theorem is referenced by:  dicfval  41213
  Copyright terms: Public domain W3C validator