Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dicffval Structured version   Visualization version   GIF version

Theorem dicffval 40501
Description: The partial isomorphism C for a lattice 𝐾. (Contributed by NM, 15-Dec-2013.)
Hypotheses
Ref Expression
dicval.l ≀ = (leβ€˜πΎ)
dicval.a 𝐴 = (Atomsβ€˜πΎ)
dicval.h 𝐻 = (LHypβ€˜πΎ)
Assertion
Ref Expression
dicffval (𝐾 ∈ 𝑉 β†’ (DIsoCβ€˜πΎ) = (𝑀 ∈ 𝐻 ↦ (π‘ž ∈ {π‘Ÿ ∈ 𝐴 ∣ Β¬ π‘Ÿ ≀ 𝑀} ↦ {βŸ¨π‘“, π‘ βŸ© ∣ (𝑓 = (π‘ β€˜(℩𝑔 ∈ ((LTrnβ€˜πΎ)β€˜π‘€)(π‘”β€˜((ocβ€˜πΎ)β€˜π‘€)) = π‘ž)) ∧ 𝑠 ∈ ((TEndoβ€˜πΎ)β€˜π‘€))})))
Distinct variable groups:   𝐴,π‘Ÿ   𝑀,𝐻   𝑓,𝑔,π‘ž,π‘Ÿ,𝑠,𝑀,𝐾
Allowed substitution hints:   𝐴(𝑀,𝑓,𝑔,𝑠,π‘ž)   𝐻(𝑓,𝑔,𝑠,π‘Ÿ,π‘ž)   ≀ (𝑀,𝑓,𝑔,𝑠,π‘Ÿ,π‘ž)   𝑉(𝑀,𝑓,𝑔,𝑠,π‘Ÿ,π‘ž)

Proof of Theorem dicffval
Dummy variable π‘˜ is distinct from all other variables.
StepHypRef Expression
1 elex 3485 . 2 (𝐾 ∈ 𝑉 β†’ 𝐾 ∈ V)
2 fveq2 6881 . . . . 5 (π‘˜ = 𝐾 β†’ (LHypβ€˜π‘˜) = (LHypβ€˜πΎ))
3 dicval.h . . . . 5 𝐻 = (LHypβ€˜πΎ)
42, 3eqtr4di 2782 . . . 4 (π‘˜ = 𝐾 β†’ (LHypβ€˜π‘˜) = 𝐻)
5 fveq2 6881 . . . . . . 7 (π‘˜ = 𝐾 β†’ (Atomsβ€˜π‘˜) = (Atomsβ€˜πΎ))
6 dicval.a . . . . . . 7 𝐴 = (Atomsβ€˜πΎ)
75, 6eqtr4di 2782 . . . . . 6 (π‘˜ = 𝐾 β†’ (Atomsβ€˜π‘˜) = 𝐴)
8 fveq2 6881 . . . . . . . . 9 (π‘˜ = 𝐾 β†’ (leβ€˜π‘˜) = (leβ€˜πΎ))
9 dicval.l . . . . . . . . 9 ≀ = (leβ€˜πΎ)
108, 9eqtr4di 2782 . . . . . . . 8 (π‘˜ = 𝐾 β†’ (leβ€˜π‘˜) = ≀ )
1110breqd 5149 . . . . . . 7 (π‘˜ = 𝐾 β†’ (π‘Ÿ(leβ€˜π‘˜)𝑀 ↔ π‘Ÿ ≀ 𝑀))
1211notbid 318 . . . . . 6 (π‘˜ = 𝐾 β†’ (Β¬ π‘Ÿ(leβ€˜π‘˜)𝑀 ↔ Β¬ π‘Ÿ ≀ 𝑀))
137, 12rabeqbidv 3441 . . . . 5 (π‘˜ = 𝐾 β†’ {π‘Ÿ ∈ (Atomsβ€˜π‘˜) ∣ Β¬ π‘Ÿ(leβ€˜π‘˜)𝑀} = {π‘Ÿ ∈ 𝐴 ∣ Β¬ π‘Ÿ ≀ 𝑀})
14 fveq2 6881 . . . . . . . . . . 11 (π‘˜ = 𝐾 β†’ (LTrnβ€˜π‘˜) = (LTrnβ€˜πΎ))
1514fveq1d 6883 . . . . . . . . . 10 (π‘˜ = 𝐾 β†’ ((LTrnβ€˜π‘˜)β€˜π‘€) = ((LTrnβ€˜πΎ)β€˜π‘€))
16 fveq2 6881 . . . . . . . . . . . 12 (π‘˜ = 𝐾 β†’ (ocβ€˜π‘˜) = (ocβ€˜πΎ))
1716fveq1d 6883 . . . . . . . . . . 11 (π‘˜ = 𝐾 β†’ ((ocβ€˜π‘˜)β€˜π‘€) = ((ocβ€˜πΎ)β€˜π‘€))
1817fveqeq2d 6889 . . . . . . . . . 10 (π‘˜ = 𝐾 β†’ ((π‘”β€˜((ocβ€˜π‘˜)β€˜π‘€)) = π‘ž ↔ (π‘”β€˜((ocβ€˜πΎ)β€˜π‘€)) = π‘ž))
1915, 18riotaeqbidv 7360 . . . . . . . . 9 (π‘˜ = 𝐾 β†’ (℩𝑔 ∈ ((LTrnβ€˜π‘˜)β€˜π‘€)(π‘”β€˜((ocβ€˜π‘˜)β€˜π‘€)) = π‘ž) = (℩𝑔 ∈ ((LTrnβ€˜πΎ)β€˜π‘€)(π‘”β€˜((ocβ€˜πΎ)β€˜π‘€)) = π‘ž))
2019fveq2d 6885 . . . . . . . 8 (π‘˜ = 𝐾 β†’ (π‘ β€˜(℩𝑔 ∈ ((LTrnβ€˜π‘˜)β€˜π‘€)(π‘”β€˜((ocβ€˜π‘˜)β€˜π‘€)) = π‘ž)) = (π‘ β€˜(℩𝑔 ∈ ((LTrnβ€˜πΎ)β€˜π‘€)(π‘”β€˜((ocβ€˜πΎ)β€˜π‘€)) = π‘ž)))
2120eqeq2d 2735 . . . . . . 7 (π‘˜ = 𝐾 β†’ (𝑓 = (π‘ β€˜(℩𝑔 ∈ ((LTrnβ€˜π‘˜)β€˜π‘€)(π‘”β€˜((ocβ€˜π‘˜)β€˜π‘€)) = π‘ž)) ↔ 𝑓 = (π‘ β€˜(℩𝑔 ∈ ((LTrnβ€˜πΎ)β€˜π‘€)(π‘”β€˜((ocβ€˜πΎ)β€˜π‘€)) = π‘ž))))
22 fveq2 6881 . . . . . . . . 9 (π‘˜ = 𝐾 β†’ (TEndoβ€˜π‘˜) = (TEndoβ€˜πΎ))
2322fveq1d 6883 . . . . . . . 8 (π‘˜ = 𝐾 β†’ ((TEndoβ€˜π‘˜)β€˜π‘€) = ((TEndoβ€˜πΎ)β€˜π‘€))
2423eleq2d 2811 . . . . . . 7 (π‘˜ = 𝐾 β†’ (𝑠 ∈ ((TEndoβ€˜π‘˜)β€˜π‘€) ↔ 𝑠 ∈ ((TEndoβ€˜πΎ)β€˜π‘€)))
2521, 24anbi12d 630 . . . . . 6 (π‘˜ = 𝐾 β†’ ((𝑓 = (π‘ β€˜(℩𝑔 ∈ ((LTrnβ€˜π‘˜)β€˜π‘€)(π‘”β€˜((ocβ€˜π‘˜)β€˜π‘€)) = π‘ž)) ∧ 𝑠 ∈ ((TEndoβ€˜π‘˜)β€˜π‘€)) ↔ (𝑓 = (π‘ β€˜(℩𝑔 ∈ ((LTrnβ€˜πΎ)β€˜π‘€)(π‘”β€˜((ocβ€˜πΎ)β€˜π‘€)) = π‘ž)) ∧ 𝑠 ∈ ((TEndoβ€˜πΎ)β€˜π‘€))))
2625opabbidv 5204 . . . . 5 (π‘˜ = 𝐾 β†’ {βŸ¨π‘“, π‘ βŸ© ∣ (𝑓 = (π‘ β€˜(℩𝑔 ∈ ((LTrnβ€˜π‘˜)β€˜π‘€)(π‘”β€˜((ocβ€˜π‘˜)β€˜π‘€)) = π‘ž)) ∧ 𝑠 ∈ ((TEndoβ€˜π‘˜)β€˜π‘€))} = {βŸ¨π‘“, π‘ βŸ© ∣ (𝑓 = (π‘ β€˜(℩𝑔 ∈ ((LTrnβ€˜πΎ)β€˜π‘€)(π‘”β€˜((ocβ€˜πΎ)β€˜π‘€)) = π‘ž)) ∧ 𝑠 ∈ ((TEndoβ€˜πΎ)β€˜π‘€))})
2713, 26mpteq12dv 5229 . . . 4 (π‘˜ = 𝐾 β†’ (π‘ž ∈ {π‘Ÿ ∈ (Atomsβ€˜π‘˜) ∣ Β¬ π‘Ÿ(leβ€˜π‘˜)𝑀} ↦ {βŸ¨π‘“, π‘ βŸ© ∣ (𝑓 = (π‘ β€˜(℩𝑔 ∈ ((LTrnβ€˜π‘˜)β€˜π‘€)(π‘”β€˜((ocβ€˜π‘˜)β€˜π‘€)) = π‘ž)) ∧ 𝑠 ∈ ((TEndoβ€˜π‘˜)β€˜π‘€))}) = (π‘ž ∈ {π‘Ÿ ∈ 𝐴 ∣ Β¬ π‘Ÿ ≀ 𝑀} ↦ {βŸ¨π‘“, π‘ βŸ© ∣ (𝑓 = (π‘ β€˜(℩𝑔 ∈ ((LTrnβ€˜πΎ)β€˜π‘€)(π‘”β€˜((ocβ€˜πΎ)β€˜π‘€)) = π‘ž)) ∧ 𝑠 ∈ ((TEndoβ€˜πΎ)β€˜π‘€))}))
284, 27mpteq12dv 5229 . . 3 (π‘˜ = 𝐾 β†’ (𝑀 ∈ (LHypβ€˜π‘˜) ↦ (π‘ž ∈ {π‘Ÿ ∈ (Atomsβ€˜π‘˜) ∣ Β¬ π‘Ÿ(leβ€˜π‘˜)𝑀} ↦ {βŸ¨π‘“, π‘ βŸ© ∣ (𝑓 = (π‘ β€˜(℩𝑔 ∈ ((LTrnβ€˜π‘˜)β€˜π‘€)(π‘”β€˜((ocβ€˜π‘˜)β€˜π‘€)) = π‘ž)) ∧ 𝑠 ∈ ((TEndoβ€˜π‘˜)β€˜π‘€))})) = (𝑀 ∈ 𝐻 ↦ (π‘ž ∈ {π‘Ÿ ∈ 𝐴 ∣ Β¬ π‘Ÿ ≀ 𝑀} ↦ {βŸ¨π‘“, π‘ βŸ© ∣ (𝑓 = (π‘ β€˜(℩𝑔 ∈ ((LTrnβ€˜πΎ)β€˜π‘€)(π‘”β€˜((ocβ€˜πΎ)β€˜π‘€)) = π‘ž)) ∧ 𝑠 ∈ ((TEndoβ€˜πΎ)β€˜π‘€))})))
29 df-dic 40500 . . 3 DIsoC = (π‘˜ ∈ V ↦ (𝑀 ∈ (LHypβ€˜π‘˜) ↦ (π‘ž ∈ {π‘Ÿ ∈ (Atomsβ€˜π‘˜) ∣ Β¬ π‘Ÿ(leβ€˜π‘˜)𝑀} ↦ {βŸ¨π‘“, π‘ βŸ© ∣ (𝑓 = (π‘ β€˜(℩𝑔 ∈ ((LTrnβ€˜π‘˜)β€˜π‘€)(π‘”β€˜((ocβ€˜π‘˜)β€˜π‘€)) = π‘ž)) ∧ 𝑠 ∈ ((TEndoβ€˜π‘˜)β€˜π‘€))})))
3028, 29, 3mptfvmpt 7221 . 2 (𝐾 ∈ V β†’ (DIsoCβ€˜πΎ) = (𝑀 ∈ 𝐻 ↦ (π‘ž ∈ {π‘Ÿ ∈ 𝐴 ∣ Β¬ π‘Ÿ ≀ 𝑀} ↦ {βŸ¨π‘“, π‘ βŸ© ∣ (𝑓 = (π‘ β€˜(℩𝑔 ∈ ((LTrnβ€˜πΎ)β€˜π‘€)(π‘”β€˜((ocβ€˜πΎ)β€˜π‘€)) = π‘ž)) ∧ 𝑠 ∈ ((TEndoβ€˜πΎ)β€˜π‘€))})))
311, 30syl 17 1 (𝐾 ∈ 𝑉 β†’ (DIsoCβ€˜πΎ) = (𝑀 ∈ 𝐻 ↦ (π‘ž ∈ {π‘Ÿ ∈ 𝐴 ∣ Β¬ π‘Ÿ ≀ 𝑀} ↦ {βŸ¨π‘“, π‘ βŸ© ∣ (𝑓 = (π‘ β€˜(℩𝑔 ∈ ((LTrnβ€˜πΎ)β€˜π‘€)(π‘”β€˜((ocβ€˜πΎ)β€˜π‘€)) = π‘ž)) ∧ 𝑠 ∈ ((TEndoβ€˜πΎ)β€˜π‘€))})))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ∧ wa 395   = wceq 1533   ∈ wcel 2098  {crab 3424  Vcvv 3466   class class class wbr 5138  {copab 5200   ↦ cmpt 5221  β€˜cfv 6533  β„©crio 7356  lecple 17200  occoc 17201  Atomscatm 38589  LHypclh 39311  LTrncltrn 39428  TEndoctendo 40079  DIsoCcdic 40499
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5275  ax-sep 5289  ax-nul 5296  ax-pr 5417
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-ral 3054  df-rex 3063  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-nul 4315  df-if 4521  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-iun 4989  df-br 5139  df-opab 5201  df-mpt 5222  df-id 5564  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-riota 7357  df-dic 40500
This theorem is referenced by:  dicfval  40502
  Copyright terms: Public domain W3C validator