Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dicffval Structured version   Visualization version   GIF version

Theorem dicffval 38469
Description: The partial isomorphism C for a lattice 𝐾. (Contributed by NM, 15-Dec-2013.)
Hypotheses
Ref Expression
dicval.l = (le‘𝐾)
dicval.a 𝐴 = (Atoms‘𝐾)
dicval.h 𝐻 = (LHyp‘𝐾)
Assertion
Ref Expression
dicffval (𝐾𝑉 → (DIsoC‘𝐾) = (𝑤𝐻 ↦ (𝑞 ∈ {𝑟𝐴 ∣ ¬ 𝑟 𝑤} ↦ {⟨𝑓, 𝑠⟩ ∣ (𝑓 = (𝑠‘(𝑔 ∈ ((LTrn‘𝐾)‘𝑤)(𝑔‘((oc‘𝐾)‘𝑤)) = 𝑞)) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑤))})))
Distinct variable groups:   𝐴,𝑟   𝑤,𝐻   𝑓,𝑔,𝑞,𝑟,𝑠,𝑤,𝐾
Allowed substitution hints:   𝐴(𝑤,𝑓,𝑔,𝑠,𝑞)   𝐻(𝑓,𝑔,𝑠,𝑟,𝑞)   (𝑤,𝑓,𝑔,𝑠,𝑟,𝑞)   𝑉(𝑤,𝑓,𝑔,𝑠,𝑟,𝑞)

Proof of Theorem dicffval
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 elex 3462 . 2 (𝐾𝑉𝐾 ∈ V)
2 fveq2 6649 . . . . 5 (𝑘 = 𝐾 → (LHyp‘𝑘) = (LHyp‘𝐾))
3 dicval.h . . . . 5 𝐻 = (LHyp‘𝐾)
42, 3eqtr4di 2854 . . . 4 (𝑘 = 𝐾 → (LHyp‘𝑘) = 𝐻)
5 fveq2 6649 . . . . . . 7 (𝑘 = 𝐾 → (Atoms‘𝑘) = (Atoms‘𝐾))
6 dicval.a . . . . . . 7 𝐴 = (Atoms‘𝐾)
75, 6eqtr4di 2854 . . . . . 6 (𝑘 = 𝐾 → (Atoms‘𝑘) = 𝐴)
8 fveq2 6649 . . . . . . . . 9 (𝑘 = 𝐾 → (le‘𝑘) = (le‘𝐾))
9 dicval.l . . . . . . . . 9 = (le‘𝐾)
108, 9eqtr4di 2854 . . . . . . . 8 (𝑘 = 𝐾 → (le‘𝑘) = )
1110breqd 5044 . . . . . . 7 (𝑘 = 𝐾 → (𝑟(le‘𝑘)𝑤𝑟 𝑤))
1211notbid 321 . . . . . 6 (𝑘 = 𝐾 → (¬ 𝑟(le‘𝑘)𝑤 ↔ ¬ 𝑟 𝑤))
137, 12rabeqbidv 3436 . . . . 5 (𝑘 = 𝐾 → {𝑟 ∈ (Atoms‘𝑘) ∣ ¬ 𝑟(le‘𝑘)𝑤} = {𝑟𝐴 ∣ ¬ 𝑟 𝑤})
14 fveq2 6649 . . . . . . . . . . 11 (𝑘 = 𝐾 → (LTrn‘𝑘) = (LTrn‘𝐾))
1514fveq1d 6651 . . . . . . . . . 10 (𝑘 = 𝐾 → ((LTrn‘𝑘)‘𝑤) = ((LTrn‘𝐾)‘𝑤))
16 fveq2 6649 . . . . . . . . . . . 12 (𝑘 = 𝐾 → (oc‘𝑘) = (oc‘𝐾))
1716fveq1d 6651 . . . . . . . . . . 11 (𝑘 = 𝐾 → ((oc‘𝑘)‘𝑤) = ((oc‘𝐾)‘𝑤))
1817fveqeq2d 6657 . . . . . . . . . 10 (𝑘 = 𝐾 → ((𝑔‘((oc‘𝑘)‘𝑤)) = 𝑞 ↔ (𝑔‘((oc‘𝐾)‘𝑤)) = 𝑞))
1915, 18riotaeqbidv 7100 . . . . . . . . 9 (𝑘 = 𝐾 → (𝑔 ∈ ((LTrn‘𝑘)‘𝑤)(𝑔‘((oc‘𝑘)‘𝑤)) = 𝑞) = (𝑔 ∈ ((LTrn‘𝐾)‘𝑤)(𝑔‘((oc‘𝐾)‘𝑤)) = 𝑞))
2019fveq2d 6653 . . . . . . . 8 (𝑘 = 𝐾 → (𝑠‘(𝑔 ∈ ((LTrn‘𝑘)‘𝑤)(𝑔‘((oc‘𝑘)‘𝑤)) = 𝑞)) = (𝑠‘(𝑔 ∈ ((LTrn‘𝐾)‘𝑤)(𝑔‘((oc‘𝐾)‘𝑤)) = 𝑞)))
2120eqeq2d 2812 . . . . . . 7 (𝑘 = 𝐾 → (𝑓 = (𝑠‘(𝑔 ∈ ((LTrn‘𝑘)‘𝑤)(𝑔‘((oc‘𝑘)‘𝑤)) = 𝑞)) ↔ 𝑓 = (𝑠‘(𝑔 ∈ ((LTrn‘𝐾)‘𝑤)(𝑔‘((oc‘𝐾)‘𝑤)) = 𝑞))))
22 fveq2 6649 . . . . . . . . 9 (𝑘 = 𝐾 → (TEndo‘𝑘) = (TEndo‘𝐾))
2322fveq1d 6651 . . . . . . . 8 (𝑘 = 𝐾 → ((TEndo‘𝑘)‘𝑤) = ((TEndo‘𝐾)‘𝑤))
2423eleq2d 2878 . . . . . . 7 (𝑘 = 𝐾 → (𝑠 ∈ ((TEndo‘𝑘)‘𝑤) ↔ 𝑠 ∈ ((TEndo‘𝐾)‘𝑤)))
2521, 24anbi12d 633 . . . . . 6 (𝑘 = 𝐾 → ((𝑓 = (𝑠‘(𝑔 ∈ ((LTrn‘𝑘)‘𝑤)(𝑔‘((oc‘𝑘)‘𝑤)) = 𝑞)) ∧ 𝑠 ∈ ((TEndo‘𝑘)‘𝑤)) ↔ (𝑓 = (𝑠‘(𝑔 ∈ ((LTrn‘𝐾)‘𝑤)(𝑔‘((oc‘𝐾)‘𝑤)) = 𝑞)) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑤))))
2625opabbidv 5099 . . . . 5 (𝑘 = 𝐾 → {⟨𝑓, 𝑠⟩ ∣ (𝑓 = (𝑠‘(𝑔 ∈ ((LTrn‘𝑘)‘𝑤)(𝑔‘((oc‘𝑘)‘𝑤)) = 𝑞)) ∧ 𝑠 ∈ ((TEndo‘𝑘)‘𝑤))} = {⟨𝑓, 𝑠⟩ ∣ (𝑓 = (𝑠‘(𝑔 ∈ ((LTrn‘𝐾)‘𝑤)(𝑔‘((oc‘𝐾)‘𝑤)) = 𝑞)) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑤))})
2713, 26mpteq12dv 5118 . . . 4 (𝑘 = 𝐾 → (𝑞 ∈ {𝑟 ∈ (Atoms‘𝑘) ∣ ¬ 𝑟(le‘𝑘)𝑤} ↦ {⟨𝑓, 𝑠⟩ ∣ (𝑓 = (𝑠‘(𝑔 ∈ ((LTrn‘𝑘)‘𝑤)(𝑔‘((oc‘𝑘)‘𝑤)) = 𝑞)) ∧ 𝑠 ∈ ((TEndo‘𝑘)‘𝑤))}) = (𝑞 ∈ {𝑟𝐴 ∣ ¬ 𝑟 𝑤} ↦ {⟨𝑓, 𝑠⟩ ∣ (𝑓 = (𝑠‘(𝑔 ∈ ((LTrn‘𝐾)‘𝑤)(𝑔‘((oc‘𝐾)‘𝑤)) = 𝑞)) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑤))}))
284, 27mpteq12dv 5118 . . 3 (𝑘 = 𝐾 → (𝑤 ∈ (LHyp‘𝑘) ↦ (𝑞 ∈ {𝑟 ∈ (Atoms‘𝑘) ∣ ¬ 𝑟(le‘𝑘)𝑤} ↦ {⟨𝑓, 𝑠⟩ ∣ (𝑓 = (𝑠‘(𝑔 ∈ ((LTrn‘𝑘)‘𝑤)(𝑔‘((oc‘𝑘)‘𝑤)) = 𝑞)) ∧ 𝑠 ∈ ((TEndo‘𝑘)‘𝑤))})) = (𝑤𝐻 ↦ (𝑞 ∈ {𝑟𝐴 ∣ ¬ 𝑟 𝑤} ↦ {⟨𝑓, 𝑠⟩ ∣ (𝑓 = (𝑠‘(𝑔 ∈ ((LTrn‘𝐾)‘𝑤)(𝑔‘((oc‘𝐾)‘𝑤)) = 𝑞)) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑤))})))
29 df-dic 38468 . . 3 DIsoC = (𝑘 ∈ V ↦ (𝑤 ∈ (LHyp‘𝑘) ↦ (𝑞 ∈ {𝑟 ∈ (Atoms‘𝑘) ∣ ¬ 𝑟(le‘𝑘)𝑤} ↦ {⟨𝑓, 𝑠⟩ ∣ (𝑓 = (𝑠‘(𝑔 ∈ ((LTrn‘𝑘)‘𝑤)(𝑔‘((oc‘𝑘)‘𝑤)) = 𝑞)) ∧ 𝑠 ∈ ((TEndo‘𝑘)‘𝑤))})))
3028, 29, 3mptfvmpt 6972 . 2 (𝐾 ∈ V → (DIsoC‘𝐾) = (𝑤𝐻 ↦ (𝑞 ∈ {𝑟𝐴 ∣ ¬ 𝑟 𝑤} ↦ {⟨𝑓, 𝑠⟩ ∣ (𝑓 = (𝑠‘(𝑔 ∈ ((LTrn‘𝐾)‘𝑤)(𝑔‘((oc‘𝐾)‘𝑤)) = 𝑞)) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑤))})))
311, 30syl 17 1 (𝐾𝑉 → (DIsoC‘𝐾) = (𝑤𝐻 ↦ (𝑞 ∈ {𝑟𝐴 ∣ ¬ 𝑟 𝑤} ↦ {⟨𝑓, 𝑠⟩ ∣ (𝑓 = (𝑠‘(𝑔 ∈ ((LTrn‘𝐾)‘𝑤)(𝑔‘((oc‘𝐾)‘𝑤)) = 𝑞)) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑤))})))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399   = wceq 1538  wcel 2112  {crab 3113  Vcvv 3444   class class class wbr 5033  {copab 5095  cmpt 5113  cfv 6328  crio 7096  lecple 16568  occoc 16569  Atomscatm 36558  LHypclh 37279  LTrncltrn 37396  TEndoctendo 38047  DIsoCcdic 38467
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pr 5298
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-ral 3114  df-rex 3115  df-reu 3116  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-nul 4247  df-if 4429  df-sn 4529  df-pr 4531  df-op 4535  df-uni 4804  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-id 5428  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7097  df-dic 38468
This theorem is referenced by:  dicfval  38470
  Copyright terms: Public domain W3C validator