Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dicffval Structured version   Visualization version   GIF version

Theorem dicffval 41153
Description: The partial isomorphism C for a lattice 𝐾. (Contributed by NM, 15-Dec-2013.)
Hypotheses
Ref Expression
dicval.l = (le‘𝐾)
dicval.a 𝐴 = (Atoms‘𝐾)
dicval.h 𝐻 = (LHyp‘𝐾)
Assertion
Ref Expression
dicffval (𝐾𝑉 → (DIsoC‘𝐾) = (𝑤𝐻 ↦ (𝑞 ∈ {𝑟𝐴 ∣ ¬ 𝑟 𝑤} ↦ {⟨𝑓, 𝑠⟩ ∣ (𝑓 = (𝑠‘(𝑔 ∈ ((LTrn‘𝐾)‘𝑤)(𝑔‘((oc‘𝐾)‘𝑤)) = 𝑞)) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑤))})))
Distinct variable groups:   𝐴,𝑟   𝑤,𝐻   𝑓,𝑔,𝑞,𝑟,𝑠,𝑤,𝐾
Allowed substitution hints:   𝐴(𝑤,𝑓,𝑔,𝑠,𝑞)   𝐻(𝑓,𝑔,𝑠,𝑟,𝑞)   (𝑤,𝑓,𝑔,𝑠,𝑟,𝑞)   𝑉(𝑤,𝑓,𝑔,𝑠,𝑟,𝑞)

Proof of Theorem dicffval
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 elex 3459 . 2 (𝐾𝑉𝐾 ∈ V)
2 fveq2 6826 . . . . 5 (𝑘 = 𝐾 → (LHyp‘𝑘) = (LHyp‘𝐾))
3 dicval.h . . . . 5 𝐻 = (LHyp‘𝐾)
42, 3eqtr4di 2782 . . . 4 (𝑘 = 𝐾 → (LHyp‘𝑘) = 𝐻)
5 fveq2 6826 . . . . . . 7 (𝑘 = 𝐾 → (Atoms‘𝑘) = (Atoms‘𝐾))
6 dicval.a . . . . . . 7 𝐴 = (Atoms‘𝐾)
75, 6eqtr4di 2782 . . . . . 6 (𝑘 = 𝐾 → (Atoms‘𝑘) = 𝐴)
8 fveq2 6826 . . . . . . . . 9 (𝑘 = 𝐾 → (le‘𝑘) = (le‘𝐾))
9 dicval.l . . . . . . . . 9 = (le‘𝐾)
108, 9eqtr4di 2782 . . . . . . . 8 (𝑘 = 𝐾 → (le‘𝑘) = )
1110breqd 5106 . . . . . . 7 (𝑘 = 𝐾 → (𝑟(le‘𝑘)𝑤𝑟 𝑤))
1211notbid 318 . . . . . 6 (𝑘 = 𝐾 → (¬ 𝑟(le‘𝑘)𝑤 ↔ ¬ 𝑟 𝑤))
137, 12rabeqbidv 3415 . . . . 5 (𝑘 = 𝐾 → {𝑟 ∈ (Atoms‘𝑘) ∣ ¬ 𝑟(le‘𝑘)𝑤} = {𝑟𝐴 ∣ ¬ 𝑟 𝑤})
14 fveq2 6826 . . . . . . . . . . 11 (𝑘 = 𝐾 → (LTrn‘𝑘) = (LTrn‘𝐾))
1514fveq1d 6828 . . . . . . . . . 10 (𝑘 = 𝐾 → ((LTrn‘𝑘)‘𝑤) = ((LTrn‘𝐾)‘𝑤))
16 fveq2 6826 . . . . . . . . . . . 12 (𝑘 = 𝐾 → (oc‘𝑘) = (oc‘𝐾))
1716fveq1d 6828 . . . . . . . . . . 11 (𝑘 = 𝐾 → ((oc‘𝑘)‘𝑤) = ((oc‘𝐾)‘𝑤))
1817fveqeq2d 6834 . . . . . . . . . 10 (𝑘 = 𝐾 → ((𝑔‘((oc‘𝑘)‘𝑤)) = 𝑞 ↔ (𝑔‘((oc‘𝐾)‘𝑤)) = 𝑞))
1915, 18riotaeqbidv 7313 . . . . . . . . 9 (𝑘 = 𝐾 → (𝑔 ∈ ((LTrn‘𝑘)‘𝑤)(𝑔‘((oc‘𝑘)‘𝑤)) = 𝑞) = (𝑔 ∈ ((LTrn‘𝐾)‘𝑤)(𝑔‘((oc‘𝐾)‘𝑤)) = 𝑞))
2019fveq2d 6830 . . . . . . . 8 (𝑘 = 𝐾 → (𝑠‘(𝑔 ∈ ((LTrn‘𝑘)‘𝑤)(𝑔‘((oc‘𝑘)‘𝑤)) = 𝑞)) = (𝑠‘(𝑔 ∈ ((LTrn‘𝐾)‘𝑤)(𝑔‘((oc‘𝐾)‘𝑤)) = 𝑞)))
2120eqeq2d 2740 . . . . . . 7 (𝑘 = 𝐾 → (𝑓 = (𝑠‘(𝑔 ∈ ((LTrn‘𝑘)‘𝑤)(𝑔‘((oc‘𝑘)‘𝑤)) = 𝑞)) ↔ 𝑓 = (𝑠‘(𝑔 ∈ ((LTrn‘𝐾)‘𝑤)(𝑔‘((oc‘𝐾)‘𝑤)) = 𝑞))))
22 fveq2 6826 . . . . . . . . 9 (𝑘 = 𝐾 → (TEndo‘𝑘) = (TEndo‘𝐾))
2322fveq1d 6828 . . . . . . . 8 (𝑘 = 𝐾 → ((TEndo‘𝑘)‘𝑤) = ((TEndo‘𝐾)‘𝑤))
2423eleq2d 2814 . . . . . . 7 (𝑘 = 𝐾 → (𝑠 ∈ ((TEndo‘𝑘)‘𝑤) ↔ 𝑠 ∈ ((TEndo‘𝐾)‘𝑤)))
2521, 24anbi12d 632 . . . . . 6 (𝑘 = 𝐾 → ((𝑓 = (𝑠‘(𝑔 ∈ ((LTrn‘𝑘)‘𝑤)(𝑔‘((oc‘𝑘)‘𝑤)) = 𝑞)) ∧ 𝑠 ∈ ((TEndo‘𝑘)‘𝑤)) ↔ (𝑓 = (𝑠‘(𝑔 ∈ ((LTrn‘𝐾)‘𝑤)(𝑔‘((oc‘𝐾)‘𝑤)) = 𝑞)) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑤))))
2625opabbidv 5161 . . . . 5 (𝑘 = 𝐾 → {⟨𝑓, 𝑠⟩ ∣ (𝑓 = (𝑠‘(𝑔 ∈ ((LTrn‘𝑘)‘𝑤)(𝑔‘((oc‘𝑘)‘𝑤)) = 𝑞)) ∧ 𝑠 ∈ ((TEndo‘𝑘)‘𝑤))} = {⟨𝑓, 𝑠⟩ ∣ (𝑓 = (𝑠‘(𝑔 ∈ ((LTrn‘𝐾)‘𝑤)(𝑔‘((oc‘𝐾)‘𝑤)) = 𝑞)) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑤))})
2713, 26mpteq12dv 5182 . . . 4 (𝑘 = 𝐾 → (𝑞 ∈ {𝑟 ∈ (Atoms‘𝑘) ∣ ¬ 𝑟(le‘𝑘)𝑤} ↦ {⟨𝑓, 𝑠⟩ ∣ (𝑓 = (𝑠‘(𝑔 ∈ ((LTrn‘𝑘)‘𝑤)(𝑔‘((oc‘𝑘)‘𝑤)) = 𝑞)) ∧ 𝑠 ∈ ((TEndo‘𝑘)‘𝑤))}) = (𝑞 ∈ {𝑟𝐴 ∣ ¬ 𝑟 𝑤} ↦ {⟨𝑓, 𝑠⟩ ∣ (𝑓 = (𝑠‘(𝑔 ∈ ((LTrn‘𝐾)‘𝑤)(𝑔‘((oc‘𝐾)‘𝑤)) = 𝑞)) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑤))}))
284, 27mpteq12dv 5182 . . 3 (𝑘 = 𝐾 → (𝑤 ∈ (LHyp‘𝑘) ↦ (𝑞 ∈ {𝑟 ∈ (Atoms‘𝑘) ∣ ¬ 𝑟(le‘𝑘)𝑤} ↦ {⟨𝑓, 𝑠⟩ ∣ (𝑓 = (𝑠‘(𝑔 ∈ ((LTrn‘𝑘)‘𝑤)(𝑔‘((oc‘𝑘)‘𝑤)) = 𝑞)) ∧ 𝑠 ∈ ((TEndo‘𝑘)‘𝑤))})) = (𝑤𝐻 ↦ (𝑞 ∈ {𝑟𝐴 ∣ ¬ 𝑟 𝑤} ↦ {⟨𝑓, 𝑠⟩ ∣ (𝑓 = (𝑠‘(𝑔 ∈ ((LTrn‘𝐾)‘𝑤)(𝑔‘((oc‘𝐾)‘𝑤)) = 𝑞)) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑤))})))
29 df-dic 41152 . . 3 DIsoC = (𝑘 ∈ V ↦ (𝑤 ∈ (LHyp‘𝑘) ↦ (𝑞 ∈ {𝑟 ∈ (Atoms‘𝑘) ∣ ¬ 𝑟(le‘𝑘)𝑤} ↦ {⟨𝑓, 𝑠⟩ ∣ (𝑓 = (𝑠‘(𝑔 ∈ ((LTrn‘𝑘)‘𝑤)(𝑔‘((oc‘𝑘)‘𝑤)) = 𝑞)) ∧ 𝑠 ∈ ((TEndo‘𝑘)‘𝑤))})))
3028, 29, 3mptfvmpt 7168 . 2 (𝐾 ∈ V → (DIsoC‘𝐾) = (𝑤𝐻 ↦ (𝑞 ∈ {𝑟𝐴 ∣ ¬ 𝑟 𝑤} ↦ {⟨𝑓, 𝑠⟩ ∣ (𝑓 = (𝑠‘(𝑔 ∈ ((LTrn‘𝐾)‘𝑤)(𝑔‘((oc‘𝐾)‘𝑤)) = 𝑞)) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑤))})))
311, 30syl 17 1 (𝐾𝑉 → (DIsoC‘𝐾) = (𝑤𝐻 ↦ (𝑞 ∈ {𝑟𝐴 ∣ ¬ 𝑟 𝑤} ↦ {⟨𝑓, 𝑠⟩ ∣ (𝑓 = (𝑠‘(𝑔 ∈ ((LTrn‘𝐾)‘𝑤)(𝑔‘((oc‘𝐾)‘𝑤)) = 𝑞)) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑤))})))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  {crab 3396  Vcvv 3438   class class class wbr 5095  {copab 5157  cmpt 5176  cfv 6486  crio 7309  lecple 17186  occoc 17187  Atomscatm 39241  LHypclh 39963  LTrncltrn 40080  TEndoctendo 40731  DIsoCcdic 41151
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-dic 41152
This theorem is referenced by:  dicfval  41154
  Copyright terms: Public domain W3C validator