Detailed syntax breakdown of Definition df-dih
Step | Hyp | Ref
| Expression |
1 | | cdih 39249 |
. 2
class
DIsoH |
2 | | vk |
. . 3
setvar 𝑘 |
3 | | cvv 3433 |
. . 3
class
V |
4 | | vw |
. . . 4
setvar 𝑤 |
5 | 2 | cv 1538 |
. . . . 5
class 𝑘 |
6 | | clh 38005 |
. . . . 5
class
LHyp |
7 | 5, 6 | cfv 6437 |
. . . 4
class
(LHyp‘𝑘) |
8 | | vx |
. . . . 5
setvar 𝑥 |
9 | | cbs 16921 |
. . . . . 6
class
Base |
10 | 5, 9 | cfv 6437 |
. . . . 5
class
(Base‘𝑘) |
11 | 8 | cv 1538 |
. . . . . . 7
class 𝑥 |
12 | 4 | cv 1538 |
. . . . . . 7
class 𝑤 |
13 | | cple 16978 |
. . . . . . . 8
class
le |
14 | 5, 13 | cfv 6437 |
. . . . . . 7
class
(le‘𝑘) |
15 | 11, 12, 14 | wbr 5075 |
. . . . . 6
wff 𝑥(le‘𝑘)𝑤 |
16 | | cdib 39159 |
. . . . . . . . 9
class
DIsoB |
17 | 5, 16 | cfv 6437 |
. . . . . . . 8
class
(DIsoB‘𝑘) |
18 | 12, 17 | cfv 6437 |
. . . . . . 7
class
((DIsoB‘𝑘)‘𝑤) |
19 | 11, 18 | cfv 6437 |
. . . . . 6
class
(((DIsoB‘𝑘)‘𝑤)‘𝑥) |
20 | | vq |
. . . . . . . . . . . . 13
setvar 𝑞 |
21 | 20 | cv 1538 |
. . . . . . . . . . . 12
class 𝑞 |
22 | 21, 12, 14 | wbr 5075 |
. . . . . . . . . . 11
wff 𝑞(le‘𝑘)𝑤 |
23 | 22 | wn 3 |
. . . . . . . . . 10
wff ¬
𝑞(le‘𝑘)𝑤 |
24 | | cmee 18039 |
. . . . . . . . . . . . . 14
class
meet |
25 | 5, 24 | cfv 6437 |
. . . . . . . . . . . . 13
class
(meet‘𝑘) |
26 | 11, 12, 25 | co 7284 |
. . . . . . . . . . . 12
class (𝑥(meet‘𝑘)𝑤) |
27 | | cjn 18038 |
. . . . . . . . . . . . 13
class
join |
28 | 5, 27 | cfv 6437 |
. . . . . . . . . . . 12
class
(join‘𝑘) |
29 | 21, 26, 28 | co 7284 |
. . . . . . . . . . 11
class (𝑞(join‘𝑘)(𝑥(meet‘𝑘)𝑤)) |
30 | 29, 11 | wceq 1539 |
. . . . . . . . . 10
wff (𝑞(join‘𝑘)(𝑥(meet‘𝑘)𝑤)) = 𝑥 |
31 | 23, 30 | wa 396 |
. . . . . . . . 9
wff (¬
𝑞(le‘𝑘)𝑤 ∧ (𝑞(join‘𝑘)(𝑥(meet‘𝑘)𝑤)) = 𝑥) |
32 | | vu |
. . . . . . . . . . 11
setvar 𝑢 |
33 | 32 | cv 1538 |
. . . . . . . . . 10
class 𝑢 |
34 | | cdic 39193 |
. . . . . . . . . . . . . 14
class
DIsoC |
35 | 5, 34 | cfv 6437 |
. . . . . . . . . . . . 13
class
(DIsoC‘𝑘) |
36 | 12, 35 | cfv 6437 |
. . . . . . . . . . . 12
class
((DIsoC‘𝑘)‘𝑤) |
37 | 21, 36 | cfv 6437 |
. . . . . . . . . . 11
class
(((DIsoC‘𝑘)‘𝑤)‘𝑞) |
38 | 26, 18 | cfv 6437 |
. . . . . . . . . . 11
class
(((DIsoB‘𝑘)‘𝑤)‘(𝑥(meet‘𝑘)𝑤)) |
39 | | cdvh 39099 |
. . . . . . . . . . . . . 14
class
DVecH |
40 | 5, 39 | cfv 6437 |
. . . . . . . . . . . . 13
class
(DVecH‘𝑘) |
41 | 12, 40 | cfv 6437 |
. . . . . . . . . . . 12
class
((DVecH‘𝑘)‘𝑤) |
42 | | clsm 19248 |
. . . . . . . . . . . 12
class
LSSum |
43 | 41, 42 | cfv 6437 |
. . . . . . . . . . 11
class
(LSSum‘((DVecH‘𝑘)‘𝑤)) |
44 | 37, 38, 43 | co 7284 |
. . . . . . . . . 10
class
((((DIsoC‘𝑘)‘𝑤)‘𝑞)(LSSum‘((DVecH‘𝑘)‘𝑤))(((DIsoB‘𝑘)‘𝑤)‘(𝑥(meet‘𝑘)𝑤))) |
45 | 33, 44 | wceq 1539 |
. . . . . . . . 9
wff 𝑢 = ((((DIsoC‘𝑘)‘𝑤)‘𝑞)(LSSum‘((DVecH‘𝑘)‘𝑤))(((DIsoB‘𝑘)‘𝑤)‘(𝑥(meet‘𝑘)𝑤))) |
46 | 31, 45 | wi 4 |
. . . . . . . 8
wff ((¬
𝑞(le‘𝑘)𝑤 ∧ (𝑞(join‘𝑘)(𝑥(meet‘𝑘)𝑤)) = 𝑥) → 𝑢 = ((((DIsoC‘𝑘)‘𝑤)‘𝑞)(LSSum‘((DVecH‘𝑘)‘𝑤))(((DIsoB‘𝑘)‘𝑤)‘(𝑥(meet‘𝑘)𝑤)))) |
47 | | catm 37284 |
. . . . . . . . 9
class
Atoms |
48 | 5, 47 | cfv 6437 |
. . . . . . . 8
class
(Atoms‘𝑘) |
49 | 46, 20, 48 | wral 3065 |
. . . . . . 7
wff
∀𝑞 ∈
(Atoms‘𝑘)((¬
𝑞(le‘𝑘)𝑤 ∧ (𝑞(join‘𝑘)(𝑥(meet‘𝑘)𝑤)) = 𝑥) → 𝑢 = ((((DIsoC‘𝑘)‘𝑤)‘𝑞)(LSSum‘((DVecH‘𝑘)‘𝑤))(((DIsoB‘𝑘)‘𝑤)‘(𝑥(meet‘𝑘)𝑤)))) |
50 | | clss 20202 |
. . . . . . . 8
class
LSubSp |
51 | 41, 50 | cfv 6437 |
. . . . . . 7
class
(LSubSp‘((DVecH‘𝑘)‘𝑤)) |
52 | 49, 32, 51 | crio 7240 |
. . . . . 6
class
(℩𝑢
∈ (LSubSp‘((DVecH‘𝑘)‘𝑤))∀𝑞 ∈ (Atoms‘𝑘)((¬ 𝑞(le‘𝑘)𝑤 ∧ (𝑞(join‘𝑘)(𝑥(meet‘𝑘)𝑤)) = 𝑥) → 𝑢 = ((((DIsoC‘𝑘)‘𝑤)‘𝑞)(LSSum‘((DVecH‘𝑘)‘𝑤))(((DIsoB‘𝑘)‘𝑤)‘(𝑥(meet‘𝑘)𝑤))))) |
53 | 15, 19, 52 | cif 4460 |
. . . . 5
class if(𝑥(le‘𝑘)𝑤, (((DIsoB‘𝑘)‘𝑤)‘𝑥), (℩𝑢 ∈ (LSubSp‘((DVecH‘𝑘)‘𝑤))∀𝑞 ∈ (Atoms‘𝑘)((¬ 𝑞(le‘𝑘)𝑤 ∧ (𝑞(join‘𝑘)(𝑥(meet‘𝑘)𝑤)) = 𝑥) → 𝑢 = ((((DIsoC‘𝑘)‘𝑤)‘𝑞)(LSSum‘((DVecH‘𝑘)‘𝑤))(((DIsoB‘𝑘)‘𝑤)‘(𝑥(meet‘𝑘)𝑤)))))) |
54 | 8, 10, 53 | cmpt 5158 |
. . . 4
class (𝑥 ∈ (Base‘𝑘) ↦ if(𝑥(le‘𝑘)𝑤, (((DIsoB‘𝑘)‘𝑤)‘𝑥), (℩𝑢 ∈ (LSubSp‘((DVecH‘𝑘)‘𝑤))∀𝑞 ∈ (Atoms‘𝑘)((¬ 𝑞(le‘𝑘)𝑤 ∧ (𝑞(join‘𝑘)(𝑥(meet‘𝑘)𝑤)) = 𝑥) → 𝑢 = ((((DIsoC‘𝑘)‘𝑤)‘𝑞)(LSSum‘((DVecH‘𝑘)‘𝑤))(((DIsoB‘𝑘)‘𝑤)‘(𝑥(meet‘𝑘)𝑤))))))) |
55 | 4, 7, 54 | cmpt 5158 |
. . 3
class (𝑤 ∈ (LHyp‘𝑘) ↦ (𝑥 ∈ (Base‘𝑘) ↦ if(𝑥(le‘𝑘)𝑤, (((DIsoB‘𝑘)‘𝑤)‘𝑥), (℩𝑢 ∈ (LSubSp‘((DVecH‘𝑘)‘𝑤))∀𝑞 ∈ (Atoms‘𝑘)((¬ 𝑞(le‘𝑘)𝑤 ∧ (𝑞(join‘𝑘)(𝑥(meet‘𝑘)𝑤)) = 𝑥) → 𝑢 = ((((DIsoC‘𝑘)‘𝑤)‘𝑞)(LSSum‘((DVecH‘𝑘)‘𝑤))(((DIsoB‘𝑘)‘𝑤)‘(𝑥(meet‘𝑘)𝑤)))))))) |
56 | 2, 3, 55 | cmpt 5158 |
. 2
class (𝑘 ∈ V ↦ (𝑤 ∈ (LHyp‘𝑘) ↦ (𝑥 ∈ (Base‘𝑘) ↦ if(𝑥(le‘𝑘)𝑤, (((DIsoB‘𝑘)‘𝑤)‘𝑥), (℩𝑢 ∈ (LSubSp‘((DVecH‘𝑘)‘𝑤))∀𝑞 ∈ (Atoms‘𝑘)((¬ 𝑞(le‘𝑘)𝑤 ∧ (𝑞(join‘𝑘)(𝑥(meet‘𝑘)𝑤)) = 𝑥) → 𝑢 = ((((DIsoC‘𝑘)‘𝑤)‘𝑞)(LSSum‘((DVecH‘𝑘)‘𝑤))(((DIsoB‘𝑘)‘𝑤)‘(𝑥(meet‘𝑘)𝑤))))))))) |
57 | 1, 56 | wceq 1539 |
1
wff DIsoH =
(𝑘 ∈ V ↦ (𝑤 ∈ (LHyp‘𝑘) ↦ (𝑥 ∈ (Base‘𝑘) ↦ if(𝑥(le‘𝑘)𝑤, (((DIsoB‘𝑘)‘𝑤)‘𝑥), (℩𝑢 ∈ (LSubSp‘((DVecH‘𝑘)‘𝑤))∀𝑞 ∈ (Atoms‘𝑘)((¬ 𝑞(le‘𝑘)𝑤 ∧ (𝑞(join‘𝑘)(𝑥(meet‘𝑘)𝑤)) = 𝑥) → 𝑢 = ((((DIsoC‘𝑘)‘𝑤)‘𝑞)(LSSum‘((DVecH‘𝑘)‘𝑤))(((DIsoB‘𝑘)‘𝑤)‘(𝑥(meet‘𝑘)𝑤))))))))) |