Step | Hyp | Ref
| Expression |
1 | | cdih 40404 |
. 2
class
DIsoH |
2 | | vk |
. . 3
setvar π |
3 | | cvv 3472 |
. . 3
class
V |
4 | | vw |
. . . 4
setvar π€ |
5 | 2 | cv 1538 |
. . . . 5
class π |
6 | | clh 39160 |
. . . . 5
class
LHyp |
7 | 5, 6 | cfv 6544 |
. . . 4
class
(LHypβπ) |
8 | | vx |
. . . . 5
setvar π₯ |
9 | | cbs 17150 |
. . . . . 6
class
Base |
10 | 5, 9 | cfv 6544 |
. . . . 5
class
(Baseβπ) |
11 | 8 | cv 1538 |
. . . . . . 7
class π₯ |
12 | 4 | cv 1538 |
. . . . . . 7
class π€ |
13 | | cple 17210 |
. . . . . . . 8
class
le |
14 | 5, 13 | cfv 6544 |
. . . . . . 7
class
(leβπ) |
15 | 11, 12, 14 | wbr 5149 |
. . . . . 6
wff π₯(leβπ)π€ |
16 | | cdib 40314 |
. . . . . . . . 9
class
DIsoB |
17 | 5, 16 | cfv 6544 |
. . . . . . . 8
class
(DIsoBβπ) |
18 | 12, 17 | cfv 6544 |
. . . . . . 7
class
((DIsoBβπ)βπ€) |
19 | 11, 18 | cfv 6544 |
. . . . . 6
class
(((DIsoBβπ)βπ€)βπ₯) |
20 | | vq |
. . . . . . . . . . . . 13
setvar π |
21 | 20 | cv 1538 |
. . . . . . . . . . . 12
class π |
22 | 21, 12, 14 | wbr 5149 |
. . . . . . . . . . 11
wff π(leβπ)π€ |
23 | 22 | wn 3 |
. . . . . . . . . 10
wff Β¬
π(leβπ)π€ |
24 | | cmee 18271 |
. . . . . . . . . . . . . 14
class
meet |
25 | 5, 24 | cfv 6544 |
. . . . . . . . . . . . 13
class
(meetβπ) |
26 | 11, 12, 25 | co 7413 |
. . . . . . . . . . . 12
class (π₯(meetβπ)π€) |
27 | | cjn 18270 |
. . . . . . . . . . . . 13
class
join |
28 | 5, 27 | cfv 6544 |
. . . . . . . . . . . 12
class
(joinβπ) |
29 | 21, 26, 28 | co 7413 |
. . . . . . . . . . 11
class (π(joinβπ)(π₯(meetβπ)π€)) |
30 | 29, 11 | wceq 1539 |
. . . . . . . . . 10
wff (π(joinβπ)(π₯(meetβπ)π€)) = π₯ |
31 | 23, 30 | wa 394 |
. . . . . . . . 9
wff (Β¬
π(leβπ)π€ β§ (π(joinβπ)(π₯(meetβπ)π€)) = π₯) |
32 | | vu |
. . . . . . . . . . 11
setvar π’ |
33 | 32 | cv 1538 |
. . . . . . . . . 10
class π’ |
34 | | cdic 40348 |
. . . . . . . . . . . . . 14
class
DIsoC |
35 | 5, 34 | cfv 6544 |
. . . . . . . . . . . . 13
class
(DIsoCβπ) |
36 | 12, 35 | cfv 6544 |
. . . . . . . . . . . 12
class
((DIsoCβπ)βπ€) |
37 | 21, 36 | cfv 6544 |
. . . . . . . . . . 11
class
(((DIsoCβπ)βπ€)βπ) |
38 | 26, 18 | cfv 6544 |
. . . . . . . . . . 11
class
(((DIsoBβπ)βπ€)β(π₯(meetβπ)π€)) |
39 | | cdvh 40254 |
. . . . . . . . . . . . . 14
class
DVecH |
40 | 5, 39 | cfv 6544 |
. . . . . . . . . . . . 13
class
(DVecHβπ) |
41 | 12, 40 | cfv 6544 |
. . . . . . . . . . . 12
class
((DVecHβπ)βπ€) |
42 | | clsm 19545 |
. . . . . . . . . . . 12
class
LSSum |
43 | 41, 42 | cfv 6544 |
. . . . . . . . . . 11
class
(LSSumβ((DVecHβπ)βπ€)) |
44 | 37, 38, 43 | co 7413 |
. . . . . . . . . 10
class
((((DIsoCβπ)βπ€)βπ)(LSSumβ((DVecHβπ)βπ€))(((DIsoBβπ)βπ€)β(π₯(meetβπ)π€))) |
45 | 33, 44 | wceq 1539 |
. . . . . . . . 9
wff π’ = ((((DIsoCβπ)βπ€)βπ)(LSSumβ((DVecHβπ)βπ€))(((DIsoBβπ)βπ€)β(π₯(meetβπ)π€))) |
46 | 31, 45 | wi 4 |
. . . . . . . 8
wff ((Β¬
π(leβπ)π€ β§ (π(joinβπ)(π₯(meetβπ)π€)) = π₯) β π’ = ((((DIsoCβπ)βπ€)βπ)(LSSumβ((DVecHβπ)βπ€))(((DIsoBβπ)βπ€)β(π₯(meetβπ)π€)))) |
47 | | catm 38438 |
. . . . . . . . 9
class
Atoms |
48 | 5, 47 | cfv 6544 |
. . . . . . . 8
class
(Atomsβπ) |
49 | 46, 20, 48 | wral 3059 |
. . . . . . 7
wff
βπ β
(Atomsβπ)((Β¬
π(leβπ)π€ β§ (π(joinβπ)(π₯(meetβπ)π€)) = π₯) β π’ = ((((DIsoCβπ)βπ€)βπ)(LSSumβ((DVecHβπ)βπ€))(((DIsoBβπ)βπ€)β(π₯(meetβπ)π€)))) |
50 | | clss 20688 |
. . . . . . . 8
class
LSubSp |
51 | 41, 50 | cfv 6544 |
. . . . . . 7
class
(LSubSpβ((DVecHβπ)βπ€)) |
52 | 49, 32, 51 | crio 7368 |
. . . . . 6
class
(β©π’
β (LSubSpβ((DVecHβπ)βπ€))βπ β (Atomsβπ)((Β¬ π(leβπ)π€ β§ (π(joinβπ)(π₯(meetβπ)π€)) = π₯) β π’ = ((((DIsoCβπ)βπ€)βπ)(LSSumβ((DVecHβπ)βπ€))(((DIsoBβπ)βπ€)β(π₯(meetβπ)π€))))) |
53 | 15, 19, 52 | cif 4529 |
. . . . 5
class if(π₯(leβπ)π€, (((DIsoBβπ)βπ€)βπ₯), (β©π’ β (LSubSpβ((DVecHβπ)βπ€))βπ β (Atomsβπ)((Β¬ π(leβπ)π€ β§ (π(joinβπ)(π₯(meetβπ)π€)) = π₯) β π’ = ((((DIsoCβπ)βπ€)βπ)(LSSumβ((DVecHβπ)βπ€))(((DIsoBβπ)βπ€)β(π₯(meetβπ)π€)))))) |
54 | 8, 10, 53 | cmpt 5232 |
. . . 4
class (π₯ β (Baseβπ) β¦ if(π₯(leβπ)π€, (((DIsoBβπ)βπ€)βπ₯), (β©π’ β (LSubSpβ((DVecHβπ)βπ€))βπ β (Atomsβπ)((Β¬ π(leβπ)π€ β§ (π(joinβπ)(π₯(meetβπ)π€)) = π₯) β π’ = ((((DIsoCβπ)βπ€)βπ)(LSSumβ((DVecHβπ)βπ€))(((DIsoBβπ)βπ€)β(π₯(meetβπ)π€))))))) |
55 | 4, 7, 54 | cmpt 5232 |
. . 3
class (π€ β (LHypβπ) β¦ (π₯ β (Baseβπ) β¦ if(π₯(leβπ)π€, (((DIsoBβπ)βπ€)βπ₯), (β©π’ β (LSubSpβ((DVecHβπ)βπ€))βπ β (Atomsβπ)((Β¬ π(leβπ)π€ β§ (π(joinβπ)(π₯(meetβπ)π€)) = π₯) β π’ = ((((DIsoCβπ)βπ€)βπ)(LSSumβ((DVecHβπ)βπ€))(((DIsoBβπ)βπ€)β(π₯(meetβπ)π€)))))))) |
56 | 2, 3, 55 | cmpt 5232 |
. 2
class (π β V β¦ (π€ β (LHypβπ) β¦ (π₯ β (Baseβπ) β¦ if(π₯(leβπ)π€, (((DIsoBβπ)βπ€)βπ₯), (β©π’ β (LSubSpβ((DVecHβπ)βπ€))βπ β (Atomsβπ)((Β¬ π(leβπ)π€ β§ (π(joinβπ)(π₯(meetβπ)π€)) = π₯) β π’ = ((((DIsoCβπ)βπ€)βπ)(LSSumβ((DVecHβπ)βπ€))(((DIsoBβπ)βπ€)β(π₯(meetβπ)π€))))))))) |
57 | 1, 56 | wceq 1539 |
1
wff DIsoH =
(π β V β¦ (π€ β (LHypβπ) β¦ (π₯ β (Baseβπ) β¦ if(π₯(leβπ)π€, (((DIsoBβπ)βπ€)βπ₯), (β©π’ β (LSubSpβ((DVecHβπ)βπ€))βπ β (Atomsβπ)((Β¬ π(leβπ)π€ β§ (π(joinβπ)(π₯(meetβπ)π€)) = π₯) β π’ = ((((DIsoCβπ)βπ€)βπ)(LSSumβ((DVecHβπ)βπ€))(((DIsoBβπ)βπ€)β(π₯(meetβπ)π€))))))))) |