Home | Metamath
Proof Explorer Theorem List (p. 405 of 464) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | Metamath Proof Explorer
(1-29181) |
Hilbert Space Explorer
(29182-30704) |
Users' Mathboxes
(30705-46395) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | flt4lem3 40401 | Equivalent to pythagtriplem4 16448. Show that 𝐶 + 𝐴 and 𝐶 − 𝐴 are coprime. (Contributed by SN, 22-Aug-2024.) |
⊢ (𝜑 → 𝐴 ∈ ℕ) & ⊢ (𝜑 → 𝐵 ∈ ℕ) & ⊢ (𝜑 → 𝐶 ∈ ℕ) & ⊢ (𝜑 → 2 ∥ 𝐴) & ⊢ (𝜑 → (𝐴 gcd 𝐶) = 1) & ⊢ (𝜑 → ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2)) ⇒ ⊢ (𝜑 → ((𝐶 + 𝐴) gcd (𝐶 − 𝐴)) = 1) | ||
Theorem | flt4lem4 40402 | If the product of two coprime factors is a perfect square, the factors are perfect squares. (Contributed by SN, 22-Aug-2024.) |
⊢ (𝜑 → 𝐴 ∈ ℕ) & ⊢ (𝜑 → 𝐵 ∈ ℕ) & ⊢ (𝜑 → 𝐶 ∈ ℕ) & ⊢ (𝜑 → (𝐴 gcd 𝐵) = 1) & ⊢ (𝜑 → (𝐴 · 𝐵) = (𝐶↑2)) ⇒ ⊢ (𝜑 → (𝐴 = ((𝐴 gcd 𝐶)↑2) ∧ 𝐵 = ((𝐵 gcd 𝐶)↑2))) | ||
Theorem | flt4lem5 40403 | In the context of the lemmas of pythagtrip 16463, 𝑀 and 𝑁 are coprime. (Contributed by SN, 23-Aug-2024.) |
⊢ 𝑀 = (((√‘(𝐶 + 𝐵)) + (√‘(𝐶 − 𝐵))) / 2) & ⊢ 𝑁 = (((√‘(𝐶 + 𝐵)) − (√‘(𝐶 − 𝐵))) / 2) ⇒ ⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (𝑀 gcd 𝑁) = 1) | ||
Theorem | flt4lem5elem 40404 | Version of fltaccoprm 40393 and fltbccoprm 40394 where 𝑀 is not squared. This can be proved in general for any polynomial in three variables: using prmdvdsncoprmbd 16359, dvds2addd 15929, and prmdvdsexp 16348, we can show that if two variables are coprime, the third is also coprime to the two. (Contributed by SN, 24-Aug-2024.) |
⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑅 ∈ ℕ) & ⊢ (𝜑 → 𝑆 ∈ ℕ) & ⊢ (𝜑 → 𝑀 = ((𝑅↑2) + (𝑆↑2))) & ⊢ (𝜑 → (𝑅 gcd 𝑆) = 1) ⇒ ⊢ (𝜑 → ((𝑅 gcd 𝑀) = 1 ∧ (𝑆 gcd 𝑀) = 1)) | ||
Theorem | flt4lem5a 40405 | Part 1 of Equation 1 of https://crypto.stanford.edu/pbc/notes/numberfield/fermatn4.html. (Contributed by SN, 22-Aug-2024.) |
⊢ 𝑀 = (((√‘(𝐶 + (𝐵↑2))) + (√‘(𝐶 − (𝐵↑2)))) / 2) & ⊢ 𝑁 = (((√‘(𝐶 + (𝐵↑2))) − (√‘(𝐶 − (𝐵↑2)))) / 2) & ⊢ 𝑅 = (((√‘(𝑀 + 𝑁)) + (√‘(𝑀 − 𝑁))) / 2) & ⊢ 𝑆 = (((√‘(𝑀 + 𝑁)) − (√‘(𝑀 − 𝑁))) / 2) & ⊢ (𝜑 → 𝐴 ∈ ℕ) & ⊢ (𝜑 → 𝐵 ∈ ℕ) & ⊢ (𝜑 → 𝐶 ∈ ℕ) & ⊢ (𝜑 → ¬ 2 ∥ 𝐴) & ⊢ (𝜑 → (𝐴 gcd 𝐶) = 1) & ⊢ (𝜑 → ((𝐴↑4) + (𝐵↑4)) = (𝐶↑2)) ⇒ ⊢ (𝜑 → ((𝐴↑2) + (𝑁↑2)) = (𝑀↑2)) | ||
Theorem | flt4lem5b 40406 | Part 2 of Equation 1 of https://crypto.stanford.edu/pbc/notes/numberfield/fermatn4.html. (Contributed by SN, 22-Aug-2024.) |
⊢ 𝑀 = (((√‘(𝐶 + (𝐵↑2))) + (√‘(𝐶 − (𝐵↑2)))) / 2) & ⊢ 𝑁 = (((√‘(𝐶 + (𝐵↑2))) − (√‘(𝐶 − (𝐵↑2)))) / 2) & ⊢ 𝑅 = (((√‘(𝑀 + 𝑁)) + (√‘(𝑀 − 𝑁))) / 2) & ⊢ 𝑆 = (((√‘(𝑀 + 𝑁)) − (√‘(𝑀 − 𝑁))) / 2) & ⊢ (𝜑 → 𝐴 ∈ ℕ) & ⊢ (𝜑 → 𝐵 ∈ ℕ) & ⊢ (𝜑 → 𝐶 ∈ ℕ) & ⊢ (𝜑 → ¬ 2 ∥ 𝐴) & ⊢ (𝜑 → (𝐴 gcd 𝐶) = 1) & ⊢ (𝜑 → ((𝐴↑4) + (𝐵↑4)) = (𝐶↑2)) ⇒ ⊢ (𝜑 → (2 · (𝑀 · 𝑁)) = (𝐵↑2)) | ||
Theorem | flt4lem5c 40407 | Part 2 of Equation 2 of https://crypto.stanford.edu/pbc/notes/numberfield/fermatn4.html. (Contributed by SN, 22-Aug-2024.) |
⊢ 𝑀 = (((√‘(𝐶 + (𝐵↑2))) + (√‘(𝐶 − (𝐵↑2)))) / 2) & ⊢ 𝑁 = (((√‘(𝐶 + (𝐵↑2))) − (√‘(𝐶 − (𝐵↑2)))) / 2) & ⊢ 𝑅 = (((√‘(𝑀 + 𝑁)) + (√‘(𝑀 − 𝑁))) / 2) & ⊢ 𝑆 = (((√‘(𝑀 + 𝑁)) − (√‘(𝑀 − 𝑁))) / 2) & ⊢ (𝜑 → 𝐴 ∈ ℕ) & ⊢ (𝜑 → 𝐵 ∈ ℕ) & ⊢ (𝜑 → 𝐶 ∈ ℕ) & ⊢ (𝜑 → ¬ 2 ∥ 𝐴) & ⊢ (𝜑 → (𝐴 gcd 𝐶) = 1) & ⊢ (𝜑 → ((𝐴↑4) + (𝐵↑4)) = (𝐶↑2)) ⇒ ⊢ (𝜑 → 𝑁 = (2 · (𝑅 · 𝑆))) | ||
Theorem | flt4lem5d 40408 | Part 3 of Equation 2 of https://crypto.stanford.edu/pbc/notes/numberfield/fermatn4.html. (Contributed by SN, 23-Aug-2024.) |
⊢ 𝑀 = (((√‘(𝐶 + (𝐵↑2))) + (√‘(𝐶 − (𝐵↑2)))) / 2) & ⊢ 𝑁 = (((√‘(𝐶 + (𝐵↑2))) − (√‘(𝐶 − (𝐵↑2)))) / 2) & ⊢ 𝑅 = (((√‘(𝑀 + 𝑁)) + (√‘(𝑀 − 𝑁))) / 2) & ⊢ 𝑆 = (((√‘(𝑀 + 𝑁)) − (√‘(𝑀 − 𝑁))) / 2) & ⊢ (𝜑 → 𝐴 ∈ ℕ) & ⊢ (𝜑 → 𝐵 ∈ ℕ) & ⊢ (𝜑 → 𝐶 ∈ ℕ) & ⊢ (𝜑 → ¬ 2 ∥ 𝐴) & ⊢ (𝜑 → (𝐴 gcd 𝐶) = 1) & ⊢ (𝜑 → ((𝐴↑4) + (𝐵↑4)) = (𝐶↑2)) ⇒ ⊢ (𝜑 → 𝑀 = ((𝑅↑2) + (𝑆↑2))) | ||
Theorem | flt4lem5e 40409 | Satisfy the hypotheses of flt4lem4 40402. (Contributed by SN, 23-Aug-2024.) |
⊢ 𝑀 = (((√‘(𝐶 + (𝐵↑2))) + (√‘(𝐶 − (𝐵↑2)))) / 2) & ⊢ 𝑁 = (((√‘(𝐶 + (𝐵↑2))) − (√‘(𝐶 − (𝐵↑2)))) / 2) & ⊢ 𝑅 = (((√‘(𝑀 + 𝑁)) + (√‘(𝑀 − 𝑁))) / 2) & ⊢ 𝑆 = (((√‘(𝑀 + 𝑁)) − (√‘(𝑀 − 𝑁))) / 2) & ⊢ (𝜑 → 𝐴 ∈ ℕ) & ⊢ (𝜑 → 𝐵 ∈ ℕ) & ⊢ (𝜑 → 𝐶 ∈ ℕ) & ⊢ (𝜑 → ¬ 2 ∥ 𝐴) & ⊢ (𝜑 → (𝐴 gcd 𝐶) = 1) & ⊢ (𝜑 → ((𝐴↑4) + (𝐵↑4)) = (𝐶↑2)) ⇒ ⊢ (𝜑 → (((𝑅 gcd 𝑆) = 1 ∧ (𝑅 gcd 𝑀) = 1 ∧ (𝑆 gcd 𝑀) = 1) ∧ (𝑅 ∈ ℕ ∧ 𝑆 ∈ ℕ ∧ 𝑀 ∈ ℕ) ∧ ((𝑀 · (𝑅 · 𝑆)) = ((𝐵 / 2)↑2) ∧ (𝐵 / 2) ∈ ℕ))) | ||
Theorem | flt4lem5f 40410 | Final equation of https://crypto.stanford.edu/pbc/notes/numberfield/fermatn4.html. Given 𝐴↑4 + 𝐵↑4 = 𝐶↑2, provide a smaller solution. This satisfies the infinite descent condition. (Contributed by SN, 24-Aug-2024.) |
⊢ 𝑀 = (((√‘(𝐶 + (𝐵↑2))) + (√‘(𝐶 − (𝐵↑2)))) / 2) & ⊢ 𝑁 = (((√‘(𝐶 + (𝐵↑2))) − (√‘(𝐶 − (𝐵↑2)))) / 2) & ⊢ 𝑅 = (((√‘(𝑀 + 𝑁)) + (√‘(𝑀 − 𝑁))) / 2) & ⊢ 𝑆 = (((√‘(𝑀 + 𝑁)) − (√‘(𝑀 − 𝑁))) / 2) & ⊢ (𝜑 → 𝐴 ∈ ℕ) & ⊢ (𝜑 → 𝐵 ∈ ℕ) & ⊢ (𝜑 → 𝐶 ∈ ℕ) & ⊢ (𝜑 → ¬ 2 ∥ 𝐴) & ⊢ (𝜑 → (𝐴 gcd 𝐶) = 1) & ⊢ (𝜑 → ((𝐴↑4) + (𝐵↑4)) = (𝐶↑2)) ⇒ ⊢ (𝜑 → ((𝑀 gcd (𝐵 / 2))↑2) = (((𝑅 gcd (𝐵 / 2))↑4) + ((𝑆 gcd (𝐵 / 2))↑4))) | ||
Theorem | flt4lem6 40411 | Remove shared factors in a solution to 𝐴↑4 + 𝐵↑4 = 𝐶↑2. (Contributed by SN, 24-Jul-2024.) |
⊢ (𝜑 → 𝐴 ∈ ℕ) & ⊢ (𝜑 → 𝐵 ∈ ℕ) & ⊢ (𝜑 → 𝐶 ∈ ℕ) & ⊢ (𝜑 → ((𝐴↑4) + (𝐵↑4)) = (𝐶↑2)) ⇒ ⊢ (𝜑 → (((𝐴 / (𝐴 gcd 𝐵)) ∈ ℕ ∧ (𝐵 / (𝐴 gcd 𝐵)) ∈ ℕ ∧ (𝐶 / ((𝐴 gcd 𝐵)↑2)) ∈ ℕ) ∧ (((𝐴 / (𝐴 gcd 𝐵))↑4) + ((𝐵 / (𝐴 gcd 𝐵))↑4)) = ((𝐶 / ((𝐴 gcd 𝐵)↑2))↑2))) | ||
Theorem | flt4lem7 40412* | Convert flt4lem5f 40410 into a convenient form for nna4b4nsq 40413. TODO-SN: The change to (𝐴 gcd 𝐵) = 1 points at some inefficiency in the lemmas. (Contributed by SN, 25-Aug-2024.) |
⊢ (𝜑 → 𝐴 ∈ ℕ) & ⊢ (𝜑 → 𝐵 ∈ ℕ) & ⊢ (𝜑 → 𝐶 ∈ ℕ) & ⊢ (𝜑 → ¬ 2 ∥ 𝐴) & ⊢ (𝜑 → (𝐴 gcd 𝐵) = 1) & ⊢ (𝜑 → ((𝐴↑4) + (𝐵↑4)) = (𝐶↑2)) ⇒ ⊢ (𝜑 → ∃𝑙 ∈ ℕ (∃𝑔 ∈ ℕ ∃ℎ ∈ ℕ (¬ 2 ∥ 𝑔 ∧ ((𝑔 gcd ℎ) = 1 ∧ ((𝑔↑4) + (ℎ↑4)) = (𝑙↑2))) ∧ 𝑙 < 𝐶)) | ||
Theorem | nna4b4nsq 40413 | Strengthening of Fermat's last theorem for exponent 4, where the sum is only assumed to be a square. (Contributed by SN, 23-Aug-2024.) |
⊢ (𝜑 → 𝐴 ∈ ℕ) & ⊢ (𝜑 → 𝐵 ∈ ℕ) & ⊢ (𝜑 → 𝐶 ∈ ℕ) ⇒ ⊢ (𝜑 → ((𝐴↑4) + (𝐵↑4)) ≠ (𝐶↑2)) | ||
Theorem | fltltc 40414 | (𝐶↑𝑁) is the largest term and therefore 𝐵 < 𝐶. (Contributed by Steven Nguyen, 22-Aug-2023.) |
⊢ (𝜑 → 𝐴 ∈ ℕ) & ⊢ (𝜑 → 𝐵 ∈ ℕ) & ⊢ (𝜑 → 𝐶 ∈ ℕ) & ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘3)) & ⊢ (𝜑 → ((𝐴↑𝑁) + (𝐵↑𝑁)) = (𝐶↑𝑁)) ⇒ ⊢ (𝜑 → 𝐵 < 𝐶) | ||
Theorem | fltnltalem 40415 | Lemma for fltnlta 40416. A lower bound for 𝐴 based on pwdif 15508. (Contributed by Steven Nguyen, 22-Aug-2023.) |
⊢ (𝜑 → 𝐴 ∈ ℕ) & ⊢ (𝜑 → 𝐵 ∈ ℕ) & ⊢ (𝜑 → 𝐶 ∈ ℕ) & ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘3)) & ⊢ (𝜑 → ((𝐴↑𝑁) + (𝐵↑𝑁)) = (𝐶↑𝑁)) ⇒ ⊢ (𝜑 → ((𝐶 − 𝐵) · ((𝐶↑(𝑁 − 1)) + ((𝑁 − 1) · (𝐵↑(𝑁 − 1))))) < (𝐴↑𝑁)) | ||
Theorem | fltnlta 40416 | In a Fermat counterexample, the exponent 𝑁 is less than all three numbers (𝐴, 𝐵, and 𝐶). Note that 𝐴 < 𝐵 (hypothesis) and 𝐵 < 𝐶 (fltltc 40414). See https://youtu.be/EymVXkPWxyc 40414 for an outline. (Contributed by SN, 24-Aug-2023.) |
⊢ (𝜑 → 𝐴 ∈ ℕ) & ⊢ (𝜑 → 𝐵 ∈ ℕ) & ⊢ (𝜑 → 𝐶 ∈ ℕ) & ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘3)) & ⊢ (𝜑 → ((𝐴↑𝑁) + (𝐵↑𝑁)) = (𝐶↑𝑁)) & ⊢ (𝜑 → 𝐴 < 𝐵) ⇒ ⊢ (𝜑 → 𝑁 < 𝐴) | ||
Theorem | binom2d 40417 | Deduction form of binom2. (Contributed by Igor Ieskov, 14-Dec-2023.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → ((𝐴 + 𝐵)↑2) = (((𝐴↑2) + (2 · (𝐴 · 𝐵))) + (𝐵↑2))) | ||
Theorem | cu3addd 40418 | Cube of sum of three numbers. (Contributed by Igor Ieskov, 14-Dec-2023.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) ⇒ ⊢ (𝜑 → (((𝐴 + 𝐵) + 𝐶)↑3) = (((((𝐴↑3) + (3 · ((𝐴↑2) · 𝐵))) + ((3 · (𝐴 · (𝐵↑2))) + (𝐵↑3))) + (((3 · ((𝐴↑2) · 𝐶)) + (((3 · 2) · (𝐴 · 𝐵)) · 𝐶)) + (3 · ((𝐵↑2) · 𝐶)))) + (((3 · (𝐴 · (𝐶↑2))) + (3 · (𝐵 · (𝐶↑2)))) + (𝐶↑3)))) | ||
Theorem | sqnegd 40419 | The square of the negative of a number. (Contributed by Igor Ieskov, 21-Jan-2024.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) ⇒ ⊢ (𝜑 → (-𝐴↑2) = (𝐴↑2)) | ||
Theorem | negexpidd 40420 | The sum of a real number to the power of N and the negative of the number to the power of N equals zero if N is a nonnegative odd integer. (Contributed by Igor Ieskov, 21-Jan-2024.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → ¬ 2 ∥ 𝑁) ⇒ ⊢ (𝜑 → ((𝐴↑𝑁) + (-𝐴↑𝑁)) = 0) | ||
Theorem | rexlimdv3d 40421* | An extended version of rexlimdvv 3221 to include three set variables. (Contributed by Igor Ieskov, 21-Jan-2024.) |
⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐶) → (𝜓 → 𝜒))) ⇒ ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐶 𝜓 → 𝜒)) | ||
Theorem | 3cubeslem1 40422 | Lemma for 3cubes 40428. (Contributed by Igor Ieskov, 22-Jan-2024.) |
⊢ (𝜑 → 𝐴 ∈ ℚ) ⇒ ⊢ (𝜑 → 0 < (((𝐴 + 1)↑2) − 𝐴)) | ||
Theorem | 3cubeslem2 40423 | Lemma for 3cubes 40428. Used to show that the denominators in 3cubeslem4 40427 are nonzero. (Contributed by Igor Ieskov, 22-Jan-2024.) |
⊢ (𝜑 → 𝐴 ∈ ℚ) ⇒ ⊢ (𝜑 → ¬ ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3) = 0) | ||
Theorem | 3cubeslem3l 40424 | Lemma for 3cubes 40428. (Contributed by Igor Ieskov, 22-Jan-2024.) |
⊢ (𝜑 → 𝐴 ∈ ℚ) ⇒ ⊢ (𝜑 → (𝐴 · (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3)↑3)) = (((𝐴↑7) · (3↑9)) + (((𝐴↑6) · (3↑9)) + (((𝐴↑5) · ((3↑8) + (3↑8))) + (((𝐴↑4) · (((3↑7) · 2) + (3↑6))) + (((𝐴↑3) · ((3↑6) + (3↑6))) + (((𝐴↑2) · (3↑5)) + (𝐴 · (3↑3))))))))) | ||
Theorem | 3cubeslem3r 40425 | Lemma for 3cubes 40428. (Contributed by Igor Ieskov, 22-Jan-2024.) |
⊢ (𝜑 → 𝐴 ∈ ℚ) ⇒ ⊢ (𝜑 → ((((((3↑3) · (𝐴↑3)) − 1)↑3) + (((-((3↑3) · (𝐴↑3)) + ((3↑2) · 𝐴)) + 1)↑3)) + ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴))↑3)) = (((𝐴↑7) · (3↑9)) + (((𝐴↑6) · (3↑9)) + (((𝐴↑5) · ((3↑8) + (3↑8))) + (((𝐴↑4) · (((3↑7) · 2) + (3↑6))) + (((𝐴↑3) · ((3↑6) + (3↑6))) + (((𝐴↑2) · (3↑5)) + (𝐴 · (3↑3))))))))) | ||
Theorem | 3cubeslem3 40426 | Lemma for 3cubes 40428. (Contributed by Igor Ieskov, 22-Jan-2024.) |
⊢ (𝜑 → 𝐴 ∈ ℚ) ⇒ ⊢ (𝜑 → (𝐴 · (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3)↑3)) = ((((((3↑3) · (𝐴↑3)) − 1)↑3) + (((-((3↑3) · (𝐴↑3)) + ((3↑2) · 𝐴)) + 1)↑3)) + ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴))↑3))) | ||
Theorem | 3cubeslem4 40427 | Lemma for 3cubes 40428. This is Ryley's explicit formula for decomposing a rational 𝐴 into a sum of three rational cubes. (Contributed by Igor Ieskov, 22-Jan-2024.) |
⊢ (𝜑 → 𝐴 ∈ ℚ) ⇒ ⊢ (𝜑 → 𝐴 = (((((((3↑3) · (𝐴↑3)) − 1) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3))↑3) + ((((-((3↑3) · (𝐴↑3)) + ((3↑2) · 𝐴)) + 1) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3))↑3)) + (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3))↑3))) | ||
Theorem | 3cubes 40428* | Every rational number is a sum of three rational cubes. See S. Ryley, The Ladies' Diary 122 (1825), 35. (Contributed by Igor Ieskov, 22-Jan-2024.) |
⊢ (𝐴 ∈ ℚ ↔ ∃𝑎 ∈ ℚ ∃𝑏 ∈ ℚ ∃𝑐 ∈ ℚ 𝐴 = (((𝑎↑3) + (𝑏↑3)) + (𝑐↑3))) | ||
Theorem | rntrclfvOAI 40429 | The range of the transitive closure is equal to the range of the relation. (Contributed by OpenAI, 7-Jul-2020.) |
⊢ (𝑅 ∈ 𝑉 → ran (t+‘𝑅) = ran 𝑅) | ||
Theorem | moxfr 40430* | Transfer at-most-one between related expressions. (Contributed by Stefan O'Rear, 12-Feb-2015.) |
⊢ 𝐴 ∈ V & ⊢ ∃!𝑦 𝑥 = 𝐴 & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∃*𝑥𝜑 ↔ ∃*𝑦𝜓) | ||
Theorem | imaiinfv 40431* | Indexed intersection of an image. (Contributed by Stefan O'Rear, 22-Feb-2015.) |
⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) → ∩ 𝑥 ∈ 𝐵 (𝐹‘𝑥) = ∩ (𝐹 “ 𝐵)) | ||
Theorem | elrfi 40432* | Elementhood in a set of relative finite intersections. (Contributed by Stefan O'Rear, 22-Feb-2015.) |
⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ⊆ 𝒫 𝐵) → (𝐴 ∈ (fi‘({𝐵} ∪ 𝐶)) ↔ ∃𝑣 ∈ (𝒫 𝐶 ∩ Fin)𝐴 = (𝐵 ∩ ∩ 𝑣))) | ||
Theorem | elrfirn 40433* | Elementhood in a set of relative finite intersections of an indexed family of sets. (Contributed by Stefan O'Rear, 22-Feb-2015.) |
⊢ ((𝐵 ∈ 𝑉 ∧ 𝐹:𝐼⟶𝒫 𝐵) → (𝐴 ∈ (fi‘({𝐵} ∪ ran 𝐹)) ↔ ∃𝑣 ∈ (𝒫 𝐼 ∩ Fin)𝐴 = (𝐵 ∩ ∩ 𝑦 ∈ 𝑣 (𝐹‘𝑦)))) | ||
Theorem | elrfirn2 40434* | Elementhood in a set of relative finite intersections of an indexed family of sets (implicit). (Contributed by Stefan O'Rear, 22-Feb-2015.) |
⊢ ((𝐵 ∈ 𝑉 ∧ ∀𝑦 ∈ 𝐼 𝐶 ⊆ 𝐵) → (𝐴 ∈ (fi‘({𝐵} ∪ ran (𝑦 ∈ 𝐼 ↦ 𝐶))) ↔ ∃𝑣 ∈ (𝒫 𝐼 ∩ Fin)𝐴 = (𝐵 ∩ ∩ 𝑦 ∈ 𝑣 𝐶))) | ||
Theorem | cmpfiiin 40435* | In a compact topology, a system of closed sets with nonempty finite intersections has a nonempty intersection. (Contributed by Stefan O'Rear, 22-Feb-2015.) |
⊢ 𝑋 = ∪ 𝐽 & ⊢ (𝜑 → 𝐽 ∈ Comp) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐼) → 𝑆 ∈ (Clsd‘𝐽)) & ⊢ ((𝜑 ∧ (𝑙 ⊆ 𝐼 ∧ 𝑙 ∈ Fin)) → (𝑋 ∩ ∩ 𝑘 ∈ 𝑙 𝑆) ≠ ∅) ⇒ ⊢ (𝜑 → (𝑋 ∩ ∩ 𝑘 ∈ 𝐼 𝑆) ≠ ∅) | ||
Theorem | ismrcd1 40436* | Any function from the subsets of a set to itself, which is extensive (satisfies mrcssid 17243), isotone (satisfies mrcss 17242), and idempotent (satisfies mrcidm 17245) has a collection of fixed points which is a Moore collection, and itself is the closure operator for that collection. This can be taken as an alternate definition for the closure operators. This is the first half, ismrcd2 40437 is the second. (Contributed by Stefan O'Rear, 1-Feb-2015.) |
⊢ (𝜑 → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝒫 𝐵⟶𝒫 𝐵) & ⊢ ((𝜑 ∧ 𝑥 ⊆ 𝐵) → 𝑥 ⊆ (𝐹‘𝑥)) & ⊢ ((𝜑 ∧ 𝑥 ⊆ 𝐵 ∧ 𝑦 ⊆ 𝑥) → (𝐹‘𝑦) ⊆ (𝐹‘𝑥)) & ⊢ ((𝜑 ∧ 𝑥 ⊆ 𝐵) → (𝐹‘(𝐹‘𝑥)) = (𝐹‘𝑥)) ⇒ ⊢ (𝜑 → dom (𝐹 ∩ I ) ∈ (Moore‘𝐵)) | ||
Theorem | ismrcd2 40437* | Second half of ismrcd1 40436. (Contributed by Stefan O'Rear, 1-Feb-2015.) |
⊢ (𝜑 → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝒫 𝐵⟶𝒫 𝐵) & ⊢ ((𝜑 ∧ 𝑥 ⊆ 𝐵) → 𝑥 ⊆ (𝐹‘𝑥)) & ⊢ ((𝜑 ∧ 𝑥 ⊆ 𝐵 ∧ 𝑦 ⊆ 𝑥) → (𝐹‘𝑦) ⊆ (𝐹‘𝑥)) & ⊢ ((𝜑 ∧ 𝑥 ⊆ 𝐵) → (𝐹‘(𝐹‘𝑥)) = (𝐹‘𝑥)) ⇒ ⊢ (𝜑 → 𝐹 = (mrCls‘dom (𝐹 ∩ I ))) | ||
Theorem | istopclsd 40438* | A closure function which satisfies sscls 22115, clsidm 22126, cls0 22139, and clsun 34444 defines a (unique) topology which it is the closure function on. (Contributed by Stefan O'Rear, 1-Feb-2015.) |
⊢ (𝜑 → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝒫 𝐵⟶𝒫 𝐵) & ⊢ ((𝜑 ∧ 𝑥 ⊆ 𝐵) → 𝑥 ⊆ (𝐹‘𝑥)) & ⊢ ((𝜑 ∧ 𝑥 ⊆ 𝐵) → (𝐹‘(𝐹‘𝑥)) = (𝐹‘𝑥)) & ⊢ (𝜑 → (𝐹‘∅) = ∅) & ⊢ ((𝜑 ∧ 𝑥 ⊆ 𝐵 ∧ 𝑦 ⊆ 𝐵) → (𝐹‘(𝑥 ∪ 𝑦)) = ((𝐹‘𝑥) ∪ (𝐹‘𝑦))) & ⊢ 𝐽 = {𝑧 ∈ 𝒫 𝐵 ∣ (𝐹‘(𝐵 ∖ 𝑧)) = (𝐵 ∖ 𝑧)} ⇒ ⊢ (𝜑 → (𝐽 ∈ (TopOn‘𝐵) ∧ (cls‘𝐽) = 𝐹)) | ||
Theorem | ismrc 40439* | A function is a Moore closure operator iff it satisfies mrcssid 17243, mrcss 17242, and mrcidm 17245. (Contributed by Stefan O'Rear, 1-Feb-2015.) |
⊢ (𝐹 ∈ (mrCls “ (Moore‘𝐵)) ↔ (𝐵 ∈ V ∧ 𝐹:𝒫 𝐵⟶𝒫 𝐵 ∧ ∀𝑥∀𝑦((𝑥 ⊆ 𝐵 ∧ 𝑦 ⊆ 𝑥) → (𝑥 ⊆ (𝐹‘𝑥) ∧ (𝐹‘𝑦) ⊆ (𝐹‘𝑥) ∧ (𝐹‘(𝐹‘𝑥)) = (𝐹‘𝑥))))) | ||
Syntax | cnacs 40440 | Class of Noetherian closure systems. |
class NoeACS | ||
Definition | df-nacs 40441* | Define a closure system of Noetherian type (not standard terminology) as an algebraic system where all closed sets are finitely generated. (Contributed by Stefan O'Rear, 4-Apr-2015.) |
⊢ NoeACS = (𝑥 ∈ V ↦ {𝑐 ∈ (ACS‘𝑥) ∣ ∀𝑠 ∈ 𝑐 ∃𝑔 ∈ (𝒫 𝑥 ∩ Fin)𝑠 = ((mrCls‘𝑐)‘𝑔)}) | ||
Theorem | isnacs 40442* | Expand definition of Noetherian-type closure system. (Contributed by Stefan O'Rear, 4-Apr-2015.) |
⊢ 𝐹 = (mrCls‘𝐶) ⇒ ⊢ (𝐶 ∈ (NoeACS‘𝑋) ↔ (𝐶 ∈ (ACS‘𝑋) ∧ ∀𝑠 ∈ 𝐶 ∃𝑔 ∈ (𝒫 𝑋 ∩ Fin)𝑠 = (𝐹‘𝑔))) | ||
Theorem | nacsfg 40443* | In a Noetherian-type closure system, all closed sets are finitely generated. (Contributed by Stefan O'Rear, 4-Apr-2015.) |
⊢ 𝐹 = (mrCls‘𝐶) ⇒ ⊢ ((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝑆 ∈ 𝐶) → ∃𝑔 ∈ (𝒫 𝑋 ∩ Fin)𝑆 = (𝐹‘𝑔)) | ||
Theorem | isnacs2 40444 | Express Noetherian-type closure system with fewer quantifiers. (Contributed by Stefan O'Rear, 4-Apr-2015.) |
⊢ 𝐹 = (mrCls‘𝐶) ⇒ ⊢ (𝐶 ∈ (NoeACS‘𝑋) ↔ (𝐶 ∈ (ACS‘𝑋) ∧ (𝐹 “ (𝒫 𝑋 ∩ Fin)) = 𝐶)) | ||
Theorem | mrefg2 40445* | Slight variation on finite generation for closure systems. (Contributed by Stefan O'Rear, 4-Apr-2015.) |
⊢ 𝐹 = (mrCls‘𝐶) ⇒ ⊢ (𝐶 ∈ (Moore‘𝑋) → (∃𝑔 ∈ (𝒫 𝑋 ∩ Fin)𝑆 = (𝐹‘𝑔) ↔ ∃𝑔 ∈ (𝒫 𝑆 ∩ Fin)𝑆 = (𝐹‘𝑔))) | ||
Theorem | mrefg3 40446* | Slight variation on finite generation for closure systems. (Contributed by Stefan O'Rear, 4-Apr-2015.) |
⊢ 𝐹 = (mrCls‘𝐶) ⇒ ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑆 ∈ 𝐶) → (∃𝑔 ∈ (𝒫 𝑋 ∩ Fin)𝑆 = (𝐹‘𝑔) ↔ ∃𝑔 ∈ (𝒫 𝑆 ∩ Fin)𝑆 ⊆ (𝐹‘𝑔))) | ||
Theorem | nacsacs 40447 | A closure system of Noetherian type is algebraic. (Contributed by Stefan O'Rear, 4-Apr-2015.) |
⊢ (𝐶 ∈ (NoeACS‘𝑋) → 𝐶 ∈ (ACS‘𝑋)) | ||
Theorem | isnacs3 40448* | A choice-free order equivalent to the Noetherian condition on a closure system. (Contributed by Stefan O'Rear, 4-Apr-2015.) |
⊢ (𝐶 ∈ (NoeACS‘𝑋) ↔ (𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → ∪ 𝑠 ∈ 𝑠))) | ||
Theorem | incssnn0 40449* | Transitivity induction of subsets, lemma for nacsfix 40450. (Contributed by Stefan O'Rear, 4-Apr-2015.) |
⊢ ((∀𝑥 ∈ ℕ0 (𝐹‘𝑥) ⊆ (𝐹‘(𝑥 + 1)) ∧ 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ (ℤ≥‘𝐴)) → (𝐹‘𝐴) ⊆ (𝐹‘𝐵)) | ||
Theorem | nacsfix 40450* | An increasing sequence of closed sets in a Noetherian-type closure system eventually fixates. (Contributed by Stefan O'Rear, 4-Apr-2015.) |
⊢ ((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝐹:ℕ0⟶𝐶 ∧ ∀𝑥 ∈ ℕ0 (𝐹‘𝑥) ⊆ (𝐹‘(𝑥 + 1))) → ∃𝑦 ∈ ℕ0 ∀𝑧 ∈ (ℤ≥‘𝑦)(𝐹‘𝑧) = (𝐹‘𝑦)) | ||
Theorem | constmap 40451 |
A constant (represented without dummy variables) is an element of a
function set.
Note: In the following development, we will be quite often quantifying over functions and points in N-dimensional space (which are equivalent to functions from an "index set"). Many of the following theorems exist to transfer standard facts about functions to elements of function sets. (Contributed by Stefan O'Rear, 30-Aug-2014.) (Revised by Stefan O'Rear, 5-May-2015.) |
⊢ 𝐴 ∈ V & ⊢ 𝐶 ∈ V ⇒ ⊢ (𝐵 ∈ 𝐶 → (𝐴 × {𝐵}) ∈ (𝐶 ↑m 𝐴)) | ||
Theorem | mapco2g 40452 | Renaming indices in a tuple, with sethood as antecedents. (Contributed by Stefan O'Rear, 9-Oct-2014.) (Revised by Mario Carneiro, 5-May-2015.) |
⊢ ((𝐸 ∈ V ∧ 𝐴 ∈ (𝐵 ↑m 𝐶) ∧ 𝐷:𝐸⟶𝐶) → (𝐴 ∘ 𝐷) ∈ (𝐵 ↑m 𝐸)) | ||
Theorem | mapco2 40453 | Post-composition (renaming indices) of a mapping viewed as a point. (Contributed by Stefan O'Rear, 5-Oct-2014.) (Revised by Stefan O'Rear, 5-May-2015.) |
⊢ 𝐸 ∈ V ⇒ ⊢ ((𝐴 ∈ (𝐵 ↑m 𝐶) ∧ 𝐷:𝐸⟶𝐶) → (𝐴 ∘ 𝐷) ∈ (𝐵 ↑m 𝐸)) | ||
Theorem | mapfzcons 40454 | Extending a one-based mapping by adding a tuple at the end results in another mapping. (Contributed by Stefan O'Rear, 10-Oct-2014.) (Revised by Stefan O'Rear, 5-May-2015.) |
⊢ 𝑀 = (𝑁 + 1) ⇒ ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐴 ∈ (𝐵 ↑m (1...𝑁)) ∧ 𝐶 ∈ 𝐵) → (𝐴 ∪ {〈𝑀, 𝐶〉}) ∈ (𝐵 ↑m (1...𝑀))) | ||
Theorem | mapfzcons1 40455 | Recover prefix mapping from an extended mapping. (Contributed by Stefan O'Rear, 10-Oct-2014.) (Revised by Stefan O'Rear, 5-May-2015.) |
⊢ 𝑀 = (𝑁 + 1) ⇒ ⊢ (𝐴 ∈ (𝐵 ↑m (1...𝑁)) → ((𝐴 ∪ {〈𝑀, 𝐶〉}) ↾ (1...𝑁)) = 𝐴) | ||
Theorem | mapfzcons1cl 40456 | A nonempty mapping has a prefix. (Contributed by Stefan O'Rear, 10-Oct-2014.) (Revised by Stefan O'Rear, 5-May-2015.) |
⊢ 𝑀 = (𝑁 + 1) ⇒ ⊢ (𝐴 ∈ (𝐵 ↑m (1...𝑀)) → (𝐴 ↾ (1...𝑁)) ∈ (𝐵 ↑m (1...𝑁))) | ||
Theorem | mapfzcons2 40457 | Recover added element from an extended mapping. (Contributed by Stefan O'Rear, 10-Oct-2014.) (Revised by Stefan O'Rear, 5-May-2015.) |
⊢ 𝑀 = (𝑁 + 1) ⇒ ⊢ ((𝐴 ∈ (𝐵 ↑m (1...𝑁)) ∧ 𝐶 ∈ 𝐵) → ((𝐴 ∪ {〈𝑀, 𝐶〉})‘𝑀) = 𝐶) | ||
Theorem | mptfcl 40458* | Interpret range of a maps-to notation as a constraint on the definition. (Contributed by Stefan O'Rear, 10-Oct-2014.) |
⊢ ((𝑡 ∈ 𝐴 ↦ 𝐵):𝐴⟶𝐶 → (𝑡 ∈ 𝐴 → 𝐵 ∈ 𝐶)) | ||
Syntax | cmzpcl 40459 | Extend class notation to include pre-polynomial rings. |
class mzPolyCld | ||
Syntax | cmzp 40460 | Extend class notation to include polynomial rings. |
class mzPoly | ||
Definition | df-mzpcl 40461* | Define the polynomially closed function rings over an arbitrary index set 𝑣. The set (mzPolyCld‘𝑣) contains all sets of functions from (ℤ ↑m 𝑣) to ℤ which include all constants and projections and are closed under addition and multiplication. This is a "temporary" set used to define the polynomial function ring itself (mzPoly‘𝑣); see df-mzp 40462. (Contributed by Stefan O'Rear, 4-Oct-2014.) |
⊢ mzPolyCld = (𝑣 ∈ V ↦ {𝑝 ∈ 𝒫 (ℤ ↑m (ℤ ↑m 𝑣)) ∣ ((∀𝑖 ∈ ℤ ((ℤ ↑m 𝑣) × {𝑖}) ∈ 𝑝 ∧ ∀𝑗 ∈ 𝑣 (𝑥 ∈ (ℤ ↑m 𝑣) ↦ (𝑥‘𝑗)) ∈ 𝑝) ∧ ∀𝑓 ∈ 𝑝 ∀𝑔 ∈ 𝑝 ((𝑓 ∘f + 𝑔) ∈ 𝑝 ∧ (𝑓 ∘f · 𝑔) ∈ 𝑝))}) | ||
Definition | df-mzp 40462 | Polynomials over ℤ with an arbitrary index set, that is, the smallest ring of functions containing all constant functions and all projections. This is almost the most general reasonable definition; to reach full generality, we would need to be able to replace ZZ with an arbitrary (semi)ring (and a coordinate subring), but rings have not been defined yet. (Contributed by Stefan O'Rear, 4-Oct-2014.) |
⊢ mzPoly = (𝑣 ∈ V ↦ ∩ (mzPolyCld‘𝑣)) | ||
Theorem | mzpclval 40463* | Substitution lemma for mzPolyCld. (Contributed by Stefan O'Rear, 4-Oct-2014.) |
⊢ (𝑉 ∈ V → (mzPolyCld‘𝑉) = {𝑝 ∈ 𝒫 (ℤ ↑m (ℤ ↑m 𝑉)) ∣ ((∀𝑖 ∈ ℤ ((ℤ ↑m 𝑉) × {𝑖}) ∈ 𝑝 ∧ ∀𝑗 ∈ 𝑉 (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝑥‘𝑗)) ∈ 𝑝) ∧ ∀𝑓 ∈ 𝑝 ∀𝑔 ∈ 𝑝 ((𝑓 ∘f + 𝑔) ∈ 𝑝 ∧ (𝑓 ∘f · 𝑔) ∈ 𝑝))}) | ||
Theorem | elmzpcl 40464* | Double substitution lemma for mzPolyCld. (Contributed by Stefan O'Rear, 4-Oct-2014.) |
⊢ (𝑉 ∈ V → (𝑃 ∈ (mzPolyCld‘𝑉) ↔ (𝑃 ⊆ (ℤ ↑m (ℤ ↑m 𝑉)) ∧ ((∀𝑖 ∈ ℤ ((ℤ ↑m 𝑉) × {𝑖}) ∈ 𝑃 ∧ ∀𝑗 ∈ 𝑉 (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝑥‘𝑗)) ∈ 𝑃) ∧ ∀𝑓 ∈ 𝑃 ∀𝑔 ∈ 𝑃 ((𝑓 ∘f + 𝑔) ∈ 𝑃 ∧ (𝑓 ∘f · 𝑔) ∈ 𝑃))))) | ||
Theorem | mzpclall 40465 | The set of all functions with the signature of a polynomial is a polynomially closed set. This is a lemma to show that the intersection in df-mzp 40462 is well-defined. (Contributed by Stefan O'Rear, 4-Oct-2014.) |
⊢ (𝑉 ∈ V → (ℤ ↑m (ℤ ↑m 𝑉)) ∈ (mzPolyCld‘𝑉)) | ||
Theorem | mzpcln0 40466 | Corollary of mzpclall 40465: polynomially closed function sets are not empty. (Contributed by Stefan O'Rear, 4-Oct-2014.) |
⊢ (𝑉 ∈ V → (mzPolyCld‘𝑉) ≠ ∅) | ||
Theorem | mzpcl1 40467 | Defining property 1 of a polynomially closed function set 𝑃: it contains all constant functions. (Contributed by Stefan O'Rear, 4-Oct-2014.) |
⊢ ((𝑃 ∈ (mzPolyCld‘𝑉) ∧ 𝐹 ∈ ℤ) → ((ℤ ↑m 𝑉) × {𝐹}) ∈ 𝑃) | ||
Theorem | mzpcl2 40468* | Defining property 2 of a polynomially closed function set 𝑃: it contains all projections. (Contributed by Stefan O'Rear, 4-Oct-2014.) |
⊢ ((𝑃 ∈ (mzPolyCld‘𝑉) ∧ 𝐹 ∈ 𝑉) → (𝑔 ∈ (ℤ ↑m 𝑉) ↦ (𝑔‘𝐹)) ∈ 𝑃) | ||
Theorem | mzpcl34 40469 | Defining properties 3 and 4 of a polynomially closed function set 𝑃: it is closed under pointwise addition and multiplication. (Contributed by Stefan O'Rear, 4-Oct-2014.) |
⊢ ((𝑃 ∈ (mzPolyCld‘𝑉) ∧ 𝐹 ∈ 𝑃 ∧ 𝐺 ∈ 𝑃) → ((𝐹 ∘f + 𝐺) ∈ 𝑃 ∧ (𝐹 ∘f · 𝐺) ∈ 𝑃)) | ||
Theorem | mzpval 40470 | Value of the mzPoly function. (Contributed by Stefan O'Rear, 4-Oct-2014.) |
⊢ (𝑉 ∈ V → (mzPoly‘𝑉) = ∩ (mzPolyCld‘𝑉)) | ||
Theorem | dmmzp 40471 | mzPoly is defined for all index sets which are sets. This is used with elfvdm 6788 to eliminate sethood antecedents. (Contributed by Stefan O'Rear, 4-Oct-2014.) |
⊢ dom mzPoly = V | ||
Theorem | mzpincl 40472 | Polynomial closedness is a universal first-order property and passes to intersections. This is where the closure properties of the polynomial ring itself are proved. (Contributed by Stefan O'Rear, 4-Oct-2014.) |
⊢ (𝑉 ∈ V → (mzPoly‘𝑉) ∈ (mzPolyCld‘𝑉)) | ||
Theorem | mzpconst 40473 | Constant functions are polynomial. See also mzpconstmpt 40478. (Contributed by Stefan O'Rear, 4-Oct-2014.) |
⊢ ((𝑉 ∈ V ∧ 𝐶 ∈ ℤ) → ((ℤ ↑m 𝑉) × {𝐶}) ∈ (mzPoly‘𝑉)) | ||
Theorem | mzpf 40474 | A polynomial function is a function from the coordinate space to the integers. (Contributed by Stefan O'Rear, 5-Oct-2014.) |
⊢ (𝐹 ∈ (mzPoly‘𝑉) → 𝐹:(ℤ ↑m 𝑉)⟶ℤ) | ||
Theorem | mzpproj 40475* | A projection function is polynomial. (Contributed by Stefan O'Rear, 4-Oct-2014.) |
⊢ ((𝑉 ∈ V ∧ 𝑋 ∈ 𝑉) → (𝑔 ∈ (ℤ ↑m 𝑉) ↦ (𝑔‘𝑋)) ∈ (mzPoly‘𝑉)) | ||
Theorem | mzpadd 40476 | The pointwise sum of two polynomial functions is a polynomial function. See also mzpaddmpt 40479. (Contributed by Stefan O'Rear, 4-Oct-2014.) |
⊢ ((𝐴 ∈ (mzPoly‘𝑉) ∧ 𝐵 ∈ (mzPoly‘𝑉)) → (𝐴 ∘f + 𝐵) ∈ (mzPoly‘𝑉)) | ||
Theorem | mzpmul 40477 | The pointwise product of two polynomial functions is a polynomial function. See also mzpmulmpt 40480. (Contributed by Stefan O'Rear, 4-Oct-2014.) |
⊢ ((𝐴 ∈ (mzPoly‘𝑉) ∧ 𝐵 ∈ (mzPoly‘𝑉)) → (𝐴 ∘f · 𝐵) ∈ (mzPoly‘𝑉)) | ||
Theorem | mzpconstmpt 40478* | A constant function expressed in maps-to notation is polynomial. This theorem and the several that follow (mzpaddmpt 40479, mzpmulmpt 40480, mzpnegmpt 40482, mzpsubmpt 40481, mzpexpmpt 40483) can be used to build proofs that functions which are "manifestly polynomial", in the sense of being a maps-to containing constants, projections, and simple arithmetic operations, are actually polynomial functions. There is no mzpprojmpt because mzpproj 40475 is already expressed using maps-to notation. (Contributed by Stefan O'Rear, 5-Oct-2014.) |
⊢ ((𝑉 ∈ V ∧ 𝐶 ∈ ℤ) → (𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐶) ∈ (mzPoly‘𝑉)) | ||
Theorem | mzpaddmpt 40479* | Sum of polynomial functions is polynomial. Maps-to version of mzpadd 40476. (Contributed by Stefan O'Rear, 5-Oct-2014.) |
⊢ (((𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐴) ∈ (mzPoly‘𝑉) ∧ (𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐵) ∈ (mzPoly‘𝑉)) → (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝐴 + 𝐵)) ∈ (mzPoly‘𝑉)) | ||
Theorem | mzpmulmpt 40480* | Product of polynomial functions is polynomial. Maps-to version of mzpmulmpt 40480. (Contributed by Stefan O'Rear, 5-Oct-2014.) |
⊢ (((𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐴) ∈ (mzPoly‘𝑉) ∧ (𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐵) ∈ (mzPoly‘𝑉)) → (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝐴 · 𝐵)) ∈ (mzPoly‘𝑉)) | ||
Theorem | mzpsubmpt 40481* | The difference of two polynomial functions is polynomial. (Contributed by Stefan O'Rear, 10-Oct-2014.) |
⊢ (((𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐴) ∈ (mzPoly‘𝑉) ∧ (𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐵) ∈ (mzPoly‘𝑉)) → (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝐴 − 𝐵)) ∈ (mzPoly‘𝑉)) | ||
Theorem | mzpnegmpt 40482* | Negation of a polynomial function. (Contributed by Stefan O'Rear, 11-Oct-2014.) |
⊢ ((𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐴) ∈ (mzPoly‘𝑉) → (𝑥 ∈ (ℤ ↑m 𝑉) ↦ -𝐴) ∈ (mzPoly‘𝑉)) | ||
Theorem | mzpexpmpt 40483* | Raise a polynomial function to a (fixed) exponent. (Contributed by Stefan O'Rear, 5-Oct-2014.) |
⊢ (((𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐴) ∈ (mzPoly‘𝑉) ∧ 𝐷 ∈ ℕ0) → (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝐴↑𝐷)) ∈ (mzPoly‘𝑉)) | ||
Theorem | mzpindd 40484* | "Structural" induction to prove properties of all polynomial functions. (Contributed by Stefan O'Rear, 4-Oct-2014.) |
⊢ ((𝜑 ∧ 𝑓 ∈ ℤ) → 𝜒) & ⊢ ((𝜑 ∧ 𝑓 ∈ 𝑉) → 𝜃) & ⊢ ((𝜑 ∧ (𝑓:(ℤ ↑m 𝑉)⟶ℤ ∧ 𝜏) ∧ (𝑔:(ℤ ↑m 𝑉)⟶ℤ ∧ 𝜂)) → 𝜁) & ⊢ ((𝜑 ∧ (𝑓:(ℤ ↑m 𝑉)⟶ℤ ∧ 𝜏) ∧ (𝑔:(ℤ ↑m 𝑉)⟶ℤ ∧ 𝜂)) → 𝜎) & ⊢ (𝑥 = ((ℤ ↑m 𝑉) × {𝑓}) → (𝜓 ↔ 𝜒)) & ⊢ (𝑥 = (𝑔 ∈ (ℤ ↑m 𝑉) ↦ (𝑔‘𝑓)) → (𝜓 ↔ 𝜃)) & ⊢ (𝑥 = 𝑓 → (𝜓 ↔ 𝜏)) & ⊢ (𝑥 = 𝑔 → (𝜓 ↔ 𝜂)) & ⊢ (𝑥 = (𝑓 ∘f + 𝑔) → (𝜓 ↔ 𝜁)) & ⊢ (𝑥 = (𝑓 ∘f · 𝑔) → (𝜓 ↔ 𝜎)) & ⊢ (𝑥 = 𝐴 → (𝜓 ↔ 𝜌)) ⇒ ⊢ ((𝜑 ∧ 𝐴 ∈ (mzPoly‘𝑉)) → 𝜌) | ||
Theorem | mzpmfp 40485 | Relationship between multivariate Z-polynomials and general multivariate polynomial functions. (Contributed by Stefan O'Rear, 20-Mar-2015.) (Revised by AV, 13-Jun-2019.) |
⊢ (mzPoly‘𝐼) = ran (𝐼 eval ℤring) | ||
Theorem | mzpsubst 40486* | Substituting polynomials for the variables of a polynomial results in a polynomial. 𝐺 is expected to depend on 𝑦 and provide the polynomials which are being substituted. (Contributed by Stefan O'Rear, 5-Oct-2014.) |
⊢ ((𝑊 ∈ V ∧ 𝐹 ∈ (mzPoly‘𝑉) ∧ ∀𝑦 ∈ 𝑉 𝐺 ∈ (mzPoly‘𝑊)) → (𝑥 ∈ (ℤ ↑m 𝑊) ↦ (𝐹‘(𝑦 ∈ 𝑉 ↦ (𝐺‘𝑥)))) ∈ (mzPoly‘𝑊)) | ||
Theorem | mzprename 40487* | Simplified version of mzpsubst 40486 to simply relabel variables in a polynomial. (Contributed by Stefan O'Rear, 5-Oct-2014.) |
⊢ ((𝑊 ∈ V ∧ 𝐹 ∈ (mzPoly‘𝑉) ∧ 𝑅:𝑉⟶𝑊) → (𝑥 ∈ (ℤ ↑m 𝑊) ↦ (𝐹‘(𝑥 ∘ 𝑅))) ∈ (mzPoly‘𝑊)) | ||
Theorem | mzpresrename 40488* | A polynomial is a polynomial over all larger index sets. (Contributed by Stefan O'Rear, 5-Oct-2014.) (Revised by Stefan O'Rear, 5-Jun-2015.) |
⊢ ((𝑊 ∈ V ∧ 𝑉 ⊆ 𝑊 ∧ 𝐹 ∈ (mzPoly‘𝑉)) → (𝑥 ∈ (ℤ ↑m 𝑊) ↦ (𝐹‘(𝑥 ↾ 𝑉))) ∈ (mzPoly‘𝑊)) | ||
Theorem | mzpcompact2lem 40489* | Lemma for mzpcompact2 40490. (Contributed by Stefan O'Rear, 9-Oct-2014.) |
⊢ 𝐵 ∈ V ⇒ ⊢ (𝐴 ∈ (mzPoly‘𝐵) → ∃𝑎 ∈ Fin ∃𝑏 ∈ (mzPoly‘𝑎)(𝑎 ⊆ 𝐵 ∧ 𝐴 = (𝑐 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑐 ↾ 𝑎))))) | ||
Theorem | mzpcompact2 40490* | Polynomials are finitary objects and can only reference a finite number of variables, even if the index set is infinite. Thus, every polynomial can be expressed as a (uniquely minimal, although we do not prove that) polynomial on a finite number of variables, which is then extended by adding an arbitrary set of ignored variables. (Contributed by Stefan O'Rear, 9-Oct-2014.) |
⊢ (𝐴 ∈ (mzPoly‘𝐵) → ∃𝑎 ∈ Fin ∃𝑏 ∈ (mzPoly‘𝑎)(𝑎 ⊆ 𝐵 ∧ 𝐴 = (𝑐 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑐 ↾ 𝑎))))) | ||
Theorem | coeq0i 40491 | coeq0 6148 but without explicitly introducing domain and range symbols. (Contributed by Stefan O'Rear, 16-Oct-2014.) |
⊢ ((𝐴:𝐶⟶𝐷 ∧ 𝐵:𝐸⟶𝐹 ∧ (𝐶 ∩ 𝐹) = ∅) → (𝐴 ∘ 𝐵) = ∅) | ||
Theorem | fzsplit1nn0 40492 | Split a finite 1-based set of integers in the middle, allowing either end to be empty ((1...0)). (Contributed by Stefan O'Rear, 8-Oct-2014.) |
⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ∧ 𝐴 ≤ 𝐵) → (1...𝐵) = ((1...𝐴) ∪ ((𝐴 + 1)...𝐵))) | ||
Syntax | cdioph 40493 | Extend class notation to include the family of Diophantine sets. |
class Dioph | ||
Definition | df-dioph 40494* | A Diophantine set is a set of positive integers which is a projection of the zero set of some polynomial. This definition somewhat awkwardly mixes ℤ (via mzPoly) and ℕ0 (to define the zero sets); the former could be avoided by considering coincidence sets of ℕ0 polynomials at the cost of requiring two, and the second is driven by consistency with our mu-recursive functions and the requirements of the Davis-Putnam-Robinson-Matiyasevich proof. Both are avoidable at a complexity cost. In particular, it is a consequence of 4sq 16593 that implicitly restricting variables to ℕ0 adds no expressive power over allowing them to range over ℤ. While this definition stipulates a specific index set for the polynomials, there is actually flexibility here, see eldioph2b 40501. (Contributed by Stefan O'Rear, 5-Oct-2014.) |
⊢ Dioph = (𝑛 ∈ ℕ0 ↦ ran (𝑘 ∈ (ℤ≥‘𝑛), 𝑝 ∈ (mzPoly‘(1...𝑘)) ↦ {𝑡 ∣ ∃𝑢 ∈ (ℕ0 ↑m (1...𝑘))(𝑡 = (𝑢 ↾ (1...𝑛)) ∧ (𝑝‘𝑢) = 0)})) | ||
Theorem | eldiophb 40495* | Initial expression of Diophantine property of a set. (Contributed by Stefan O'Rear, 5-Oct-2014.) (Revised by Mario Carneiro, 22-Sep-2015.) |
⊢ (𝐷 ∈ (Dioph‘𝑁) ↔ (𝑁 ∈ ℕ0 ∧ ∃𝑘 ∈ (ℤ≥‘𝑁)∃𝑝 ∈ (mzPoly‘(1...𝑘))𝐷 = {𝑡 ∣ ∃𝑢 ∈ (ℕ0 ↑m (1...𝑘))(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝‘𝑢) = 0)})) | ||
Theorem | eldioph 40496* | Condition for a set to be Diophantine (unpacking existential quantifier). (Contributed by Stefan O'Rear, 5-Oct-2014.) |
⊢ ((𝑁 ∈ ℕ0 ∧ 𝐾 ∈ (ℤ≥‘𝑁) ∧ 𝑃 ∈ (mzPoly‘(1...𝐾))) → {𝑡 ∣ ∃𝑢 ∈ (ℕ0 ↑m (1...𝐾))(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑃‘𝑢) = 0)} ∈ (Dioph‘𝑁)) | ||
Theorem | diophrw 40497* | Renaming and adding unused witness variables does not change the Diophantine set coded by a polynomial. (Contributed by Stefan O'Rear, 7-Oct-2014.) |
⊢ ((𝑆 ∈ V ∧ 𝑀:𝑇–1-1→𝑆 ∧ (𝑀 ↾ 𝑂) = ( I ↾ 𝑂)) → {𝑎 ∣ ∃𝑏 ∈ (ℕ0 ↑m 𝑆)(𝑎 = (𝑏 ↾ 𝑂) ∧ ((𝑑 ∈ (ℤ ↑m 𝑆) ↦ (𝑃‘(𝑑 ∘ 𝑀)))‘𝑏) = 0)} = {𝑎 ∣ ∃𝑐 ∈ (ℕ0 ↑m 𝑇)(𝑎 = (𝑐 ↾ 𝑂) ∧ (𝑃‘𝑐) = 0)}) | ||
Theorem | eldioph2lem1 40498* | Lemma for eldioph2 40500. Construct necessary renaming function for one direction. (Contributed by Stefan O'Rear, 8-Oct-2014.) |
⊢ ((𝑁 ∈ ℕ0 ∧ 𝐴 ∈ Fin ∧ (1...𝑁) ⊆ 𝐴) → ∃𝑑 ∈ (ℤ≥‘𝑁)∃𝑒 ∈ V (𝑒:(1...𝑑)–1-1-onto→𝐴 ∧ (𝑒 ↾ (1...𝑁)) = ( I ↾ (1...𝑁)))) | ||
Theorem | eldioph2lem2 40499* | Lemma for eldioph2 40500. Construct necessary renaming function for one direction. (Contributed by Stefan O'Rear, 8-Oct-2014.) |
⊢ (((𝑁 ∈ ℕ0 ∧ ¬ 𝑆 ∈ Fin) ∧ ((1...𝑁) ⊆ 𝑆 ∧ 𝐴 ∈ (ℤ≥‘𝑁))) → ∃𝑐(𝑐:(1...𝐴)–1-1→𝑆 ∧ (𝑐 ↾ (1...𝑁)) = ( I ↾ (1...𝑁)))) | ||
Theorem | eldioph2 40500* | Construct a Diophantine set from a polynomial with witness variables drawn from any set whatsoever, via mzpcompact2 40490. (Contributed by Stefan O'Rear, 8-Oct-2014.) (Revised by Stefan O'Rear, 5-Jun-2015.) |
⊢ ((𝑁 ∈ ℕ0 ∧ (𝑆 ∈ V ∧ (1...𝑁) ⊆ 𝑆) ∧ 𝑃 ∈ (mzPoly‘𝑆)) → {𝑡 ∣ ∃𝑢 ∈ (ℕ0 ↑m 𝑆)(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑃‘𝑢) = 0)} ∈ (Dioph‘𝑁)) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |