Home | Metamath
Proof Explorer Theorem List (p. 405 of 466) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | Metamath Proof Explorer
(1-29289) |
Hilbert Space Explorer
(29290-30812) |
Users' Mathboxes
(30813-46532) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | renegneg 40401 | A real number is equal to the negative of its negative. Compare negneg 11280. (Contributed by SN, 13-Feb-2024.) |
⊢ (𝐴 ∈ ℝ → (0 −ℝ (0 −ℝ 𝐴)) = 𝐴) | ||
Theorem | readdcan2 40402 | Commuted version of readdcan 11158 without ax-mulcom 10944. (Contributed by SN, 21-Feb-2024.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 + 𝐶) = (𝐵 + 𝐶) ↔ 𝐴 = 𝐵)) | ||
Theorem | renegid2 40403 | Commuted version of renegid 40363. (Contributed by SN, 4-May-2024.) |
⊢ (𝐴 ∈ ℝ → ((0 −ℝ 𝐴) + 𝐴) = 0) | ||
Theorem | sn-it0e0 40404 | Proof of it0e0 12204 without ax-mulcom 10944. Informally, a real number times 0 is 0, and ∃𝑟 ∈ ℝ𝑟 = i · 𝑠 by ax-cnre 10953 and renegid2 40403. (Contributed by SN, 30-Apr-2024.) |
⊢ (i · 0) = 0 | ||
Theorem | sn-negex12 40405* | A combination of cnegex 11165 and cnegex2 11166, this proof takes cnre 10981 𝐴 = 𝑟 + i · 𝑠 and shows that i · -𝑠 + -𝑟 is both a left and right inverse. (Contributed by SN, 5-May-2024.) |
⊢ (𝐴 ∈ ℂ → ∃𝑏 ∈ ℂ ((𝐴 + 𝑏) = 0 ∧ (𝑏 + 𝐴) = 0)) | ||
Theorem | sn-negex 40406* | Proof of cnegex 11165 without ax-mulcom 10944. (Contributed by SN, 30-Apr-2024.) |
⊢ (𝐴 ∈ ℂ → ∃𝑏 ∈ ℂ (𝐴 + 𝑏) = 0) | ||
Theorem | sn-negex2 40407* | Proof of cnegex2 11166 without ax-mulcom 10944. (Contributed by SN, 5-May-2024.) |
⊢ (𝐴 ∈ ℂ → ∃𝑏 ∈ ℂ (𝑏 + 𝐴) = 0) | ||
Theorem | sn-addcand 40408 | addcand 11187 without ax-mulcom 10944. Note how the proof is almost identical to addcan 11168. (Contributed by SN, 5-May-2024.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) ⇒ ⊢ (𝜑 → ((𝐴 + 𝐵) = (𝐴 + 𝐶) ↔ 𝐵 = 𝐶)) | ||
Theorem | sn-addid1 40409 | addid1 11164 without ax-mulcom 10944. (Contributed by SN, 5-May-2024.) |
⊢ (𝐴 ∈ ℂ → (𝐴 + 0) = 𝐴) | ||
Theorem | sn-addcan2d 40410 | addcan2d 11188 without ax-mulcom 10944. (Contributed by SN, 5-May-2024.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) ⇒ ⊢ (𝜑 → ((𝐴 + 𝐶) = (𝐵 + 𝐶) ↔ 𝐴 = 𝐵)) | ||
Theorem | reixi 40411 | ixi 11613 without ax-mulcom 10944. (Contributed by SN, 5-May-2024.) |
⊢ (i · i) = (0 −ℝ 1) | ||
Theorem | rei4 40412 | i4 13930 without ax-mulcom 10944. (Contributed by SN, 27-May-2024.) |
⊢ ((i · i) · (i · i)) = 1 | ||
Theorem | sn-addid0 40413 | A number that sums to itself is zero. Compare addid0 11403, readdid1addid2d 40301. (Contributed by SN, 5-May-2024.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → (𝐴 + 𝐴) = 𝐴) ⇒ ⊢ (𝜑 → 𝐴 = 0) | ||
Theorem | sn-mul01 40414 | mul01 11163 without ax-mulcom 10944. (Contributed by SN, 5-May-2024.) |
⊢ (𝐴 ∈ ℂ → (𝐴 · 0) = 0) | ||
Theorem | sn-subeu 40415* | negeu 11220 without ax-mulcom 10944 and complex number version of resubeu 40367. (Contributed by SN, 5-May-2024.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ∃!𝑥 ∈ ℂ (𝐴 + 𝑥) = 𝐵) | ||
Theorem | sn-subcl 40416 | subcl 11229 without ax-mulcom 10944. (Contributed by SN, 5-May-2024.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 − 𝐵) ∈ ℂ) | ||
Theorem | sn-subf 40417 | subf 11232 without ax-mulcom 10944. (Contributed by SN, 5-May-2024.) |
⊢ − :(ℂ × ℂ)⟶ℂ | ||
Theorem | resubeqsub 40418 | Equivalence between real subtraction and subtraction. (Contributed by SN, 5-May-2024.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 −ℝ 𝐵) = (𝐴 − 𝐵)) | ||
Theorem | subresre 40419 | Subtraction restricted to the reals. (Contributed by SN, 5-May-2024.) |
⊢ −ℝ = ( − ↾ (ℝ × ℝ)) | ||
Theorem | addinvcom 40420 | A number commutes with its additive inverse. Compare remulinvcom 40421. (Contributed by SN, 5-May-2024.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → (𝐴 + 𝐵) = 0) ⇒ ⊢ (𝜑 → (𝐵 + 𝐴) = 0) | ||
Theorem | remulinvcom 40421 | A left multiplicative inverse is a right multiplicative inverse. Proven without ax-mulcom 10944. (Contributed by SN, 5-Feb-2024.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → (𝐴 · 𝐵) = 1) ⇒ ⊢ (𝜑 → (𝐵 · 𝐴) = 1) | ||
Theorem | remulid2 40422 | Commuted version of ax-1rid 10950 without ax-mulcom 10944. (Contributed by SN, 5-Feb-2024.) |
⊢ (𝐴 ∈ ℝ → (1 · 𝐴) = 𝐴) | ||
Theorem | sn-1ticom 40423 | Lemma for sn-mulid2 40424 and it1ei 40425. (Contributed by SN, 27-May-2024.) |
⊢ (1 · i) = (i · 1) | ||
Theorem | sn-mulid2 40424 | mulid2 10983 without ax-mulcom 10944. (Contributed by SN, 27-May-2024.) |
⊢ (𝐴 ∈ ℂ → (1 · 𝐴) = 𝐴) | ||
Theorem | it1ei 40425 | 1 is a multiplicative identity for i (see sn-mulid2 40424 for commuted version). (Contributed by SN, 1-Jun-2024.) |
⊢ (i · 1) = i | ||
Theorem | ipiiie0 40426 | The multiplicative inverse of i (per i4 13930) is also its additive inverse. (Contributed by SN, 30-Jun-2024.) |
⊢ (i + (i · (i · i))) = 0 | ||
Theorem | remulcand 40427 | Commuted version of remulcan2d 40300 without ax-mulcom 10944. (Contributed by SN, 21-Feb-2024.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ≠ 0) ⇒ ⊢ (𝜑 → ((𝐶 · 𝐴) = (𝐶 · 𝐵) ↔ 𝐴 = 𝐵)) | ||
Theorem | sn-0tie0 40428 | Lemma for sn-mul02 40429. Commuted version of sn-it0e0 40404. (Contributed by SN, 30-Jun-2024.) |
⊢ (0 · i) = 0 | ||
Theorem | sn-mul02 40429 | mul02 11162 without ax-mulcom 10944. See https://github.com/icecream17/Stuff/blob/main/math/0A%3D0.md 10944 for an outline. (Contributed by SN, 30-Jun-2024.) |
⊢ (𝐴 ∈ ℂ → (0 · 𝐴) = 0) | ||
Theorem | sn-ltaddpos 40430 | ltaddpos 11474 without ax-mulcom 10944. (Contributed by SN, 13-Feb-2024.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 < 𝐴 ↔ 𝐵 < (𝐵 + 𝐴))) | ||
Theorem | reposdif 40431 | Comparison of two numbers whose difference is positive. Compare posdif 11477. (Contributed by SN, 13-Feb-2024.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ 0 < (𝐵 −ℝ 𝐴))) | ||
Theorem | relt0neg1 40432 | Comparison of a real and its negative to zero. Compare lt0neg1 11490. (Contributed by SN, 13-Feb-2024.) |
⊢ (𝐴 ∈ ℝ → (𝐴 < 0 ↔ 0 < (0 −ℝ 𝐴))) | ||
Theorem | relt0neg2 40433 | Comparison of a real and its negative to zero. Compare lt0neg2 11491. (Contributed by SN, 13-Feb-2024.) |
⊢ (𝐴 ∈ ℝ → (0 < 𝐴 ↔ (0 −ℝ 𝐴) < 0)) | ||
Theorem | mulgt0con1dlem 40434 | Lemma for mulgt0con1d 40435. Contraposes a positive deduction to a negative deduction. (Contributed by SN, 26-Jun-2024.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → (0 < 𝐴 → 0 < 𝐵)) & ⊢ (𝜑 → (𝐴 = 0 → 𝐵 = 0)) ⇒ ⊢ (𝜑 → (𝐵 < 0 → 𝐴 < 0)) | ||
Theorem | mulgt0con1d 40435 | Counterpart to mulgt0con2d 40436, though not a lemma of anything. This is the first use of ax-pre-mulgt0 10957. (Contributed by SN, 26-Jun-2024.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 0 < 𝐵) & ⊢ (𝜑 → (𝐴 · 𝐵) < 0) ⇒ ⊢ (𝜑 → 𝐴 < 0) | ||
Theorem | mulgt0con2d 40436 | Lemma for mulgt0b2d 40437 and contrapositive of mulgt0 11061. (Contributed by SN, 26-Jun-2024.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 0 < 𝐴) & ⊢ (𝜑 → (𝐴 · 𝐵) < 0) ⇒ ⊢ (𝜑 → 𝐵 < 0) | ||
Theorem | mulgt0b2d 40437 | Biconditional, deductive form of mulgt0 11061. The second factor is positive iff the product is. Note that the commuted form cannot be proven since resubdi 40386 does not have a commuted form. (Contributed by SN, 26-Jun-2024.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 0 < 𝐴) ⇒ ⊢ (𝜑 → (0 < 𝐵 ↔ 0 < (𝐴 · 𝐵))) | ||
Theorem | sn-ltmul2d 40438 | ltmul2d 12823 without ax-mulcom 10944. (Contributed by SN, 26-Jun-2024.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 0 < 𝐶) ⇒ ⊢ (𝜑 → ((𝐶 · 𝐴) < (𝐶 · 𝐵) ↔ 𝐴 < 𝐵)) | ||
Theorem | sn-0lt1 40439 | 0lt1 11506 without ax-mulcom 10944. (Contributed by SN, 13-Feb-2024.) |
⊢ 0 < 1 | ||
Theorem | sn-ltp1 40440 | ltp1 11824 without ax-mulcom 10944. (Contributed by SN, 13-Feb-2024.) |
⊢ (𝐴 ∈ ℝ → 𝐴 < (𝐴 + 1)) | ||
Theorem | reneg1lt0 40441 | Lemma for sn-inelr 40442. (Contributed by SN, 1-Jun-2024.) |
⊢ (0 −ℝ 1) < 0 | ||
Theorem | sn-inelr 40442 | inelr 11972 without ax-mulcom 10944. (Contributed by SN, 1-Jun-2024.) |
⊢ ¬ i ∈ ℝ | ||
Theorem | itrere 40443 | i times a real is real iff the real is zero. (Contributed by SN, 27-Jun-2024.) |
⊢ (𝑅 ∈ ℝ → ((i · 𝑅) ∈ ℝ ↔ 𝑅 = 0)) | ||
Theorem | retire 40444 | Commuted version of itrere 40443. (Contributed by SN, 27-Jun-2024.) |
⊢ (𝑅 ∈ ℝ → ((𝑅 · i) ∈ ℝ ↔ 𝑅 = 0)) | ||
Theorem | cnreeu 40445 | The reals in the expression given by cnre 10981 uniquely define a complex number. (Contributed by SN, 27-Jun-2024.) |
⊢ (𝜑 → 𝑟 ∈ ℝ) & ⊢ (𝜑 → 𝑠 ∈ ℝ) & ⊢ (𝜑 → 𝑡 ∈ ℝ) & ⊢ (𝜑 → 𝑢 ∈ ℝ) ⇒ ⊢ (𝜑 → ((𝑟 + (i · 𝑠)) = (𝑡 + (i · 𝑢)) ↔ (𝑟 = 𝑡 ∧ 𝑠 = 𝑢))) | ||
Theorem | sn-sup2 40446* | sup2 11940 with exactly the same proof except for using sn-ltp1 40440 instead of ltp1 11824, saving ax-mulcom 10944. (Contributed by SN, 26-Jun-2024.) |
⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 (𝑦 < 𝑥 ∨ 𝑦 = 𝑥)) → ∃𝑥 ∈ ℝ (∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧))) | ||
Looking at a corner in 3D space, one can see three right angles. It is impossible to draw three lines in 2D space such that any two of these lines are perpendicular, but a good enough representation is made by casting lines from the 2D surface. Points along the same cast line are collapsed into one point on the 2D surface. In many cases, the 2D surface is smaller than whatever needs to be represented. If the lines cast were perpendicular to the 2D surface, then only areas as small as the 2D surface could be represented. To fix this, the lines need to get further apart as they go farther from the 2D surface. On the other side of the 2D surface the lines will get closer together and intersect at a point. (Because it's defined that way). From this perspective, two parallel lines in 3D space will be represented by two lines that seem to intersect at a point "at infinity". Considering all maximal classes of parallel lines on a 2D plane in 3D space, these classes will all appear to intersect at different points at infinity, forming a line at infinity. Therefore the real projective plane can be thought of as the real affine plane together with the line at infinity. The projective plane takes care of some exceptions that may be found in the affine plane. For example, consider the curve that is the zeroes of 𝑦 = 𝑥↑2. Any line connecting the point (0, 1) to the x-axis intersects with the curve twice, except for the vertical line between (0, 1) and (0, 0). In the projective plane, the curve becomes an ellipse and there is no exception. While it may not seem like it, points at infinity and points corresponding to the affine plane are the same type of point. Consider a line going through the origin in 3D (affine) space. Either it intersects the plane 𝑧 = 1 once, or it is entirely within the plane 𝑧 = 0. If it is entirely within the plane 𝑧 = 0, then it corresponds to the point at infinity intersecting all lines on the plane 𝑧 = 1 with the same slope. Else it corresponds to the point in the 2D plane 𝑧 = 1 that it intersects. So there is a bijection between 3D lines through the origin and points on the real projective plane. The concept of projective spaces generalizes the projective plane to any dimension. | ||
Syntax | cprjsp 40447 | Extend class notation with the projective space function. |
class ℙ𝕣𝕠𝕛 | ||
Definition | df-prjsp 40448* | Define the projective space function. In the bijection between 3D lines through the origin and points in the projective plane (see section comment), this is equivalent to making any two 3D points (excluding the origin) equivalent iff one is a multiple of another. This definition does not quite give all the properties needed, since the scalars of a left vector space can be "less dense" than the vectors (for example, equivocating rational multiples of real numbers). Compare df-lsatoms 36997. (Contributed by BJ and SN, 29-Apr-2023.) |
⊢ ℙ𝕣𝕠𝕛 = (𝑣 ∈ LVec ↦ ⦋((Base‘𝑣) ∖ {(0g‘𝑣)}) / 𝑏⦌(𝑏 / {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝑏 ∧ 𝑦 ∈ 𝑏) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑣))𝑥 = (𝑙( ·𝑠 ‘𝑣)𝑦))})) | ||
Theorem | prjspval 40449* | Value of the projective space function, which is also known as the projectivization of 𝑉. (Contributed by Steven Nguyen, 29-Apr-2023.) |
⊢ 𝐵 = ((Base‘𝑉) ∖ {(0g‘𝑉)}) & ⊢ · = ( ·𝑠 ‘𝑉) & ⊢ 𝑆 = (Scalar‘𝑉) & ⊢ 𝐾 = (Base‘𝑆) ⇒ ⊢ (𝑉 ∈ LVec → (ℙ𝕣𝕠𝕛‘𝑉) = (𝐵 / {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ ∃𝑙 ∈ 𝐾 𝑥 = (𝑙 · 𝑦))})) | ||
Theorem | prjsprel 40450* | Utility theorem regarding the relation used in ℙ𝕣𝕠𝕛. (Contributed by Steven Nguyen, 29-Apr-2023.) |
⊢ ∼ = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ ∃𝑙 ∈ 𝐾 𝑥 = (𝑙 · 𝑦))} ⇒ ⊢ (𝑋 ∼ 𝑌 ↔ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ∃𝑚 ∈ 𝐾 𝑋 = (𝑚 · 𝑌))) | ||
Theorem | prjspertr 40451* | The relation in ℙ𝕣𝕠𝕛 is transitive. (Contributed by Steven Nguyen, 1-May-2023.) |
⊢ ∼ = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ ∃𝑙 ∈ 𝐾 𝑥 = (𝑙 · 𝑦))} & ⊢ 𝐵 = ((Base‘𝑉) ∖ {(0g‘𝑉)}) & ⊢ 𝑆 = (Scalar‘𝑉) & ⊢ · = ( ·𝑠 ‘𝑉) & ⊢ 𝐾 = (Base‘𝑆) ⇒ ⊢ ((𝑉 ∈ LMod ∧ (𝑋 ∼ 𝑌 ∧ 𝑌 ∼ 𝑍)) → 𝑋 ∼ 𝑍) | ||
Theorem | prjsperref 40452* | The relation in ℙ𝕣𝕠𝕛 is reflexive. (Contributed by Steven Nguyen, 30-Apr-2023.) |
⊢ ∼ = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ ∃𝑙 ∈ 𝐾 𝑥 = (𝑙 · 𝑦))} & ⊢ 𝐵 = ((Base‘𝑉) ∖ {(0g‘𝑉)}) & ⊢ 𝑆 = (Scalar‘𝑉) & ⊢ · = ( ·𝑠 ‘𝑉) & ⊢ 𝐾 = (Base‘𝑆) ⇒ ⊢ (𝑉 ∈ LMod → (𝑋 ∈ 𝐵 ↔ 𝑋 ∼ 𝑋)) | ||
Theorem | prjspersym 40453* | The relation in ℙ𝕣𝕠𝕛 is symmetric. (Contributed by Steven Nguyen, 1-May-2023.) |
⊢ ∼ = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ ∃𝑙 ∈ 𝐾 𝑥 = (𝑙 · 𝑦))} & ⊢ 𝐵 = ((Base‘𝑉) ∖ {(0g‘𝑉)}) & ⊢ 𝑆 = (Scalar‘𝑉) & ⊢ · = ( ·𝑠 ‘𝑉) & ⊢ 𝐾 = (Base‘𝑆) ⇒ ⊢ ((𝑉 ∈ LVec ∧ 𝑋 ∼ 𝑌) → 𝑌 ∼ 𝑋) | ||
Theorem | prjsper 40454* | The relation used to define ℙ𝕣𝕠𝕛 is an equivalence relation. (Contributed by Steven Nguyen, 1-May-2023.) |
⊢ ∼ = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ ∃𝑙 ∈ 𝐾 𝑥 = (𝑙 · 𝑦))} & ⊢ 𝐵 = ((Base‘𝑉) ∖ {(0g‘𝑉)}) & ⊢ 𝑆 = (Scalar‘𝑉) & ⊢ · = ( ·𝑠 ‘𝑉) & ⊢ 𝐾 = (Base‘𝑆) ⇒ ⊢ (𝑉 ∈ LVec → ∼ Er 𝐵) | ||
Theorem | prjspreln0 40455* | Two nonzero vectors are equivalent by a nonzero scalar. (Contributed by Steven Nguyen, 31-May-2023.) |
⊢ ∼ = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ ∃𝑙 ∈ 𝐾 𝑥 = (𝑙 · 𝑦))} & ⊢ 𝐵 = ((Base‘𝑉) ∖ {(0g‘𝑉)}) & ⊢ 𝑆 = (Scalar‘𝑉) & ⊢ · = ( ·𝑠 ‘𝑉) & ⊢ 𝐾 = (Base‘𝑆) & ⊢ 0 = (0g‘𝑆) ⇒ ⊢ (𝑉 ∈ LVec → (𝑋 ∼ 𝑌 ↔ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ∃𝑚 ∈ (𝐾 ∖ { 0 })𝑋 = (𝑚 · 𝑌)))) | ||
Theorem | prjspvs 40456* | A nonzero multiple of a vector is equivalent to the vector. (Contributed by Steven Nguyen, 6-Jun-2023.) |
⊢ ∼ = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ ∃𝑙 ∈ 𝐾 𝑥 = (𝑙 · 𝑦))} & ⊢ 𝐵 = ((Base‘𝑉) ∖ {(0g‘𝑉)}) & ⊢ 𝑆 = (Scalar‘𝑉) & ⊢ · = ( ·𝑠 ‘𝑉) & ⊢ 𝐾 = (Base‘𝑆) & ⊢ 0 = (0g‘𝑆) ⇒ ⊢ ((𝑉 ∈ LVec ∧ 𝑋 ∈ 𝐵 ∧ 𝑁 ∈ (𝐾 ∖ { 0 })) → (𝑁 · 𝑋) ∼ 𝑋) | ||
Theorem | prjsprellsp 40457* | Two vectors are equivalent iff their spans are equal. (Contributed by Steven Nguyen, 31-May-2023.) |
⊢ ∼ = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ ∃𝑙 ∈ 𝐾 𝑥 = (𝑙 · 𝑦))} & ⊢ 𝐵 = ((Base‘𝑉) ∖ {(0g‘𝑉)}) & ⊢ 𝑆 = (Scalar‘𝑉) & ⊢ · = ( ·𝑠 ‘𝑉) & ⊢ 𝐾 = (Base‘𝑆) & ⊢ 𝑁 = (LSpan‘𝑉) ⇒ ⊢ ((𝑉 ∈ LVec ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑋 ∼ 𝑌 ↔ (𝑁‘{𝑋}) = (𝑁‘{𝑌}))) | ||
Theorem | prjspeclsp 40458* | The vectors equivalent to a vector 𝑋 are the nonzero vectors in the span of 𝑋. (Contributed by Steven Nguyen, 6-Jun-2023.) |
⊢ ∼ = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ ∃𝑙 ∈ 𝐾 𝑥 = (𝑙 · 𝑦))} & ⊢ 𝐵 = ((Base‘𝑉) ∖ {(0g‘𝑉)}) & ⊢ 𝑆 = (Scalar‘𝑉) & ⊢ · = ( ·𝑠 ‘𝑉) & ⊢ 𝐾 = (Base‘𝑆) & ⊢ 𝑁 = (LSpan‘𝑉) ⇒ ⊢ ((𝑉 ∈ LVec ∧ 𝑋 ∈ 𝐵) → [𝑋] ∼ = ((𝑁‘{𝑋}) ∖ {(0g‘𝑉)})) | ||
Theorem | prjspval2 40459* | Alternate definition of projective space. (Contributed by Steven Nguyen, 7-Jun-2023.) |
⊢ 0 = (0g‘𝑉) & ⊢ 𝐵 = ((Base‘𝑉) ∖ { 0 }) & ⊢ 𝑁 = (LSpan‘𝑉) ⇒ ⊢ (𝑉 ∈ LVec → (ℙ𝕣𝕠𝕛‘𝑉) = ∪ 𝑧 ∈ 𝐵 {((𝑁‘{𝑧}) ∖ { 0 })}) | ||
Syntax | cprjspn 40460 | Extend class notation with the n-dimensional projective space function. |
class ℙ𝕣𝕠𝕛n | ||
Definition | df-prjspn 40461* | Define the n-dimensional projective space function. A projective space of dimension 1 is a projective line, and a projective space of dimension 2 is a projective plane. Compare df-ehl 24559. This space is considered n-dimensional because the vector space (𝑘 freeLMod (0...𝑛)) is (n+1)-dimensional and the ℙ𝕣𝕠𝕛 function returns equivalence classes with respect to a linear (1-dimensional) relation. (Contributed by BJ and Steven Nguyen, 29-Apr-2023.) |
⊢ ℙ𝕣𝕠𝕛n = (𝑛 ∈ ℕ0, 𝑘 ∈ DivRing ↦ (ℙ𝕣𝕠𝕛‘(𝑘 freeLMod (0...𝑛)))) | ||
Theorem | prjspnval 40462 | Value of the n-dimensional projective space function. (Contributed by Steven Nguyen, 1-May-2023.) |
⊢ ((𝑁 ∈ ℕ0 ∧ 𝐾 ∈ DivRing) → (𝑁ℙ𝕣𝕠𝕛n𝐾) = (ℙ𝕣𝕠𝕛‘(𝐾 freeLMod (0...𝑁)))) | ||
Theorem | prjspnerlem 40463* | A lemma showing that the equivalence relation used in prjspnval2 40464 and the equivalence relation used in prjspval 40449 are equal, but only with the antecedent 𝐾 ∈ DivRing. (Contributed by SN, 15-Jul-2023.) |
⊢ ∼ = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ ∃𝑙 ∈ 𝑆 𝑥 = (𝑙 · 𝑦))} & ⊢ 𝑊 = (𝐾 freeLMod (0...𝑁)) & ⊢ 𝐵 = ((Base‘𝑊) ∖ {(0g‘𝑊)}) & ⊢ 𝑆 = (Base‘𝐾) & ⊢ · = ( ·𝑠 ‘𝑊) ⇒ ⊢ (𝐾 ∈ DivRing → ∼ = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑊))𝑥 = (𝑙 · 𝑦))}) | ||
Theorem | prjspnval2 40464* | Value of the n-dimensional projective space function, expanded. (Contributed by Steven Nguyen, 15-Jul-2023.) |
⊢ ∼ = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ ∃𝑙 ∈ 𝑆 𝑥 = (𝑙 · 𝑦))} & ⊢ 𝑊 = (𝐾 freeLMod (0...𝑁)) & ⊢ 𝐵 = ((Base‘𝑊) ∖ {(0g‘𝑊)}) & ⊢ 𝑆 = (Base‘𝐾) & ⊢ · = ( ·𝑠 ‘𝑊) ⇒ ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐾 ∈ DivRing) → (𝑁ℙ𝕣𝕠𝕛n𝐾) = (𝐵 / ∼ )) | ||
Theorem | prjspner 40465* | The relation used to define ℙ𝕣𝕠𝕛 (and indirectly ℙ𝕣𝕠𝕛n through df-prjspn 40461) is an equivalence relation. This is a lemma that converts the equivalence relation used in results like prjspertr 40451 and prjspersym 40453 (see prjspnerlem 40463). Several theorems are covered in one thanks to the theorems around df-er 8507. (Contributed by SN, 14-Aug-2023.) |
⊢ ∼ = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ ∃𝑙 ∈ 𝑆 𝑥 = (𝑙 · 𝑦))} & ⊢ 𝑊 = (𝐾 freeLMod (0...𝑁)) & ⊢ 𝐵 = ((Base‘𝑊) ∖ {(0g‘𝑊)}) & ⊢ 𝑆 = (Base‘𝐾) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ (𝜑 → 𝐾 ∈ DivRing) ⇒ ⊢ (𝜑 → ∼ Er 𝐵) | ||
Theorem | prjspnvs 40466* | A nonzero multiple of a vector is equivalent to the vector. This converts the equivalence relation used in prjspvs 40456 (see prjspnerlem 40463). (Contributed by SN, 8-Aug-2024.) |
⊢ ∼ = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ ∃𝑙 ∈ 𝑆 𝑥 = (𝑙 · 𝑦))} & ⊢ 𝑊 = (𝐾 freeLMod (0...𝑁)) & ⊢ 𝐵 = ((Base‘𝑊) ∖ {(0g‘𝑊)}) & ⊢ 𝑆 = (Base‘𝐾) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 0 = (0g‘𝐾) & ⊢ (𝜑 → 𝐾 ∈ DivRing) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝐶 ∈ 𝑆) & ⊢ (𝜑 → 𝐶 ≠ 0 ) ⇒ ⊢ (𝜑 → (𝐶 · 𝑋) ∼ 𝑋) | ||
Theorem | 0prjspnlem 40467 | Lemma for 0prjspn 40472. The given unit vector is a nonzero vector. (Contributed by Steven Nguyen, 16-Jul-2023.) |
⊢ 𝐵 = ((Base‘𝑊) ∖ {(0g‘𝑊)}) & ⊢ 𝑊 = (𝐾 freeLMod (0...0)) & ⊢ 1 = ((𝐾 unitVec (0...0))‘0) ⇒ ⊢ (𝐾 ∈ DivRing → 1 ∈ 𝐵) | ||
Theorem | prjspnfv01 40468* | Any vector is equivalent to a vector whose zeroth coordinate is 0 or 1 (proof of the value of the zeroth coordinate). (Contributed by SN, 13-Aug-2023.) |
⊢ 𝐹 = (𝑏 ∈ 𝐵 ↦ if((𝑏‘0) = 0 , 𝑏, ((𝐼‘(𝑏‘0)) · 𝑏))) & ⊢ 𝐵 = ((Base‘𝑊) ∖ {(0g‘𝑊)}) & ⊢ 𝑊 = (𝐾 freeLMod (0...𝑁)) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 0 = (0g‘𝐾) & ⊢ 1 = (1r‘𝐾) & ⊢ 𝐼 = (invr‘𝐾) & ⊢ (𝜑 → 𝐾 ∈ DivRing) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) ⇒ ⊢ (𝜑 → ((𝐹‘𝑋)‘0) = if((𝑋‘0) = 0 , 0 , 1 )) | ||
Theorem | prjspner01 40469* | Any vector is equivalent to a vector whose zeroth coordinate is 0 or 1 (proof of the equivalence). (Contributed by SN, 13-Aug-2023.) |
⊢ ∼ = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ ∃𝑙 ∈ 𝑆 𝑥 = (𝑙 · 𝑦))} & ⊢ 𝐹 = (𝑏 ∈ 𝐵 ↦ if((𝑏‘0) = 0 , 𝑏, ((𝐼‘(𝑏‘0)) · 𝑏))) & ⊢ 𝐵 = ((Base‘𝑊) ∖ {(0g‘𝑊)}) & ⊢ 𝑊 = (𝐾 freeLMod (0...𝑁)) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 𝑆 = (Base‘𝐾) & ⊢ 0 = (0g‘𝐾) & ⊢ 𝐼 = (invr‘𝐾) & ⊢ (𝜑 → 𝐾 ∈ DivRing) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) ⇒ ⊢ (𝜑 → 𝑋 ∼ (𝐹‘𝑋)) | ||
Theorem | prjspner1 40470* | Two vectors whose zeroth coordinate is nonzero are equivalent if and only if they have the same representative in the (n-1)-dimensional affine subspace { x0 = 1 } . For example, vectors in 3D space whose 𝑥 coordinate is nonzero are equivalent iff they intersect at the plane 𝑥 = 1 at the same point (also see section header). (Contributed by SN, 13-Aug-2023.) |
⊢ ∼ = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ ∃𝑙 ∈ 𝑆 𝑥 = (𝑙 · 𝑦))} & ⊢ 𝐹 = (𝑏 ∈ 𝐵 ↦ if((𝑏‘0) = 0 , 𝑏, ((𝐼‘(𝑏‘0)) · 𝑏))) & ⊢ 𝐵 = ((Base‘𝑊) ∖ {(0g‘𝑊)}) & ⊢ 𝑊 = (𝐾 freeLMod (0...𝑁)) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 𝑆 = (Base‘𝐾) & ⊢ 0 = (0g‘𝐾) & ⊢ 𝐼 = (invr‘𝐾) & ⊢ (𝜑 → 𝐾 ∈ DivRing) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → (𝑋‘0) ≠ 0 ) & ⊢ (𝜑 → (𝑌‘0) ≠ 0 ) ⇒ ⊢ (𝜑 → (𝑋 ∼ 𝑌 ↔ (𝐹‘𝑋) = (𝐹‘𝑌))) | ||
Theorem | 0prjspnrel 40471* | In the zero-dimensional projective space, all vectors are equivalent to the unit vector. (Contributed by Steven Nguyen, 7-Jun-2023.) |
⊢ ∼ = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ ∃𝑙 ∈ 𝑆 𝑥 = (𝑙 · 𝑦))} & ⊢ 𝐵 = ((Base‘𝑊) ∖ {(0g‘𝑊)}) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 𝑆 = (Base‘𝐾) & ⊢ 𝑊 = (𝐾 freeLMod (0...0)) & ⊢ 1 = ((𝐾 unitVec (0...0))‘0) ⇒ ⊢ ((𝐾 ∈ DivRing ∧ 𝑋 ∈ 𝐵) → 𝑋 ∼ 1 ) | ||
Theorem | 0prjspn 40472 | A zero-dimensional projective space has only 1 point. (Contributed by Steven Nguyen, 9-Jun-2023.) |
⊢ 𝑊 = (𝐾 freeLMod (0...0)) & ⊢ 𝐵 = ((Base‘𝑊) ∖ {(0g‘𝑊)}) ⇒ ⊢ (𝐾 ∈ DivRing → (0ℙ𝕣𝕠𝕛n𝐾) = {𝐵}) | ||
Syntax | cprjcrv 40473 | Extend class notation with the projective curve function. |
class ℙ𝕣𝕠𝕛Crv | ||
Definition | df-prjcrv 40474* | Define the projective curve function. This takes a homogeneous polynomial and outputs the homogeneous coordinates where the polynomial evaluates to zero (the "zero set"). (In other words, scalar multiples are collapsed into the same projective point. See mhphf4 40295 and prjspvs 40456). (Contributed by SN, 23-Nov-2024.) |
⊢ ℙ𝕣𝕠𝕛Crv = (𝑛 ∈ ℕ0, 𝑘 ∈ Field ↦ (𝑓 ∈ ∪ ran ((0...𝑛) mHomP 𝑘) ↦ {𝑝 ∈ (𝑛ℙ𝕣𝕠𝕛n𝑘) ∣ ((((0...𝑛) eval 𝑘)‘𝑓) “ 𝑝) = {(0g‘𝑘)}})) | ||
Theorem | prjcrvfval 40475* | Value of the projective curve function. (Contributed by SN, 23-Nov-2024.) |
⊢ 𝐻 = ((0...𝑁) mHomP 𝐾) & ⊢ 𝐸 = ((0...𝑁) eval 𝐾) & ⊢ 𝑃 = (𝑁ℙ𝕣𝕠𝕛n𝐾) & ⊢ 0 = (0g‘𝐾) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝐾 ∈ Field) ⇒ ⊢ (𝜑 → (𝑁ℙ𝕣𝕠𝕛Crv𝐾) = (𝑓 ∈ ∪ ran 𝐻 ↦ {𝑝 ∈ 𝑃 ∣ ((𝐸‘𝑓) “ 𝑝) = { 0 }})) | ||
Theorem | prjcrvval 40476* | Value of the projective curve function. (Contributed by SN, 23-Nov-2024.) |
⊢ 𝐻 = ((0...𝑁) mHomP 𝐾) & ⊢ 𝐸 = ((0...𝑁) eval 𝐾) & ⊢ 𝑃 = (𝑁ℙ𝕣𝕠𝕛n𝐾) & ⊢ 0 = (0g‘𝐾) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝐾 ∈ Field) & ⊢ (𝜑 → 𝐹 ∈ ∪ ran 𝐻) ⇒ ⊢ (𝜑 → ((𝑁ℙ𝕣𝕠𝕛Crv𝐾)‘𝐹) = {𝑝 ∈ 𝑃 ∣ ((𝐸‘𝐹) “ 𝑝) = { 0 }}) | ||
Theorem | prjcrv0 40477 | The "curve" (zero set) corresponding to the zero polynomial contains all coordinates. (Contributed by SN, 23-Nov-2024.) |
⊢ 𝑌 = ((0...𝑁) mPoly 𝐾) & ⊢ 0 = (0g‘𝑌) & ⊢ 𝑃 = (𝑁ℙ𝕣𝕠𝕛n𝐾) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝐾 ∈ Field) ⇒ ⊢ (𝜑 → ((𝑁ℙ𝕣𝕠𝕛Crv𝐾)‘ 0 ) = 𝑃) | ||
Theorem | dffltz 40478* | Fermat's Last Theorem (FLT) for nonzero integers is equivalent to the original scope of natural numbers. The backwards direction takes (𝑎↑𝑛) + (𝑏↑𝑛) = (𝑐↑𝑛), and adds the negative of any negative term to both sides, thus creating the corresponding equation with only positive integers. There are six combinations of negativity, so the proof is particularly long. (Contributed by Steven Nguyen, 27-Feb-2023.) |
⊢ (∀𝑛 ∈ (ℤ≥‘3)∀𝑥 ∈ ℕ ∀𝑦 ∈ ℕ ∀𝑧 ∈ ℕ ((𝑥↑𝑛) + (𝑦↑𝑛)) ≠ (𝑧↑𝑛) ↔ ∀𝑛 ∈ (ℤ≥‘3)∀𝑎 ∈ (ℤ ∖ {0})∀𝑏 ∈ (ℤ ∖ {0})∀𝑐 ∈ (ℤ ∖ {0})((𝑎↑𝑛) + (𝑏↑𝑛)) ≠ (𝑐↑𝑛)) | ||
Theorem | fltmul 40479 | A counterexample to FLT stays valid when scaled. The hypotheses are more general than they need to be for convenience. (There does not seem to be a standard term for Fermat or Pythagorean triples extended to any 𝑁 ∈ ℕ0, so the label is more about the context in which this theorem is used). (Contributed by SN, 20-Aug-2024.) |
⊢ (𝜑 → 𝑆 ∈ ℂ) & ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → ((𝐴↑𝑁) + (𝐵↑𝑁)) = (𝐶↑𝑁)) ⇒ ⊢ (𝜑 → (((𝑆 · 𝐴)↑𝑁) + ((𝑆 · 𝐵)↑𝑁)) = ((𝑆 · 𝐶)↑𝑁)) | ||
Theorem | fltdiv 40480 | A counterexample to FLT stays valid when scaled. The hypotheses are more general than they need to be for convenience. (Contributed by SN, 20-Aug-2024.) |
⊢ (𝜑 → 𝑆 ∈ ℂ) & ⊢ (𝜑 → 𝑆 ≠ 0) & ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → ((𝐴↑𝑁) + (𝐵↑𝑁)) = (𝐶↑𝑁)) ⇒ ⊢ (𝜑 → (((𝐴 / 𝑆)↑𝑁) + ((𝐵 / 𝑆)↑𝑁)) = ((𝐶 / 𝑆)↑𝑁)) | ||
Theorem | flt0 40481 | A counterexample for FLT does not exist for 𝑁 = 0. (Contributed by SN, 20-Aug-2024.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → ((𝐴↑𝑁) + (𝐵↑𝑁)) = (𝐶↑𝑁)) ⇒ ⊢ (𝜑 → 𝑁 ∈ ℕ) | ||
Theorem | fltdvdsabdvdsc 40482 | Any factor of both 𝐴 and 𝐵 also divides 𝐶. This establishes the validity of fltabcoprmex 40483. (Contributed by SN, 21-Aug-2024.) |
⊢ (𝜑 → 𝐴 ∈ ℕ) & ⊢ (𝜑 → 𝐵 ∈ ℕ) & ⊢ (𝜑 → 𝐶 ∈ ℕ) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → ((𝐴↑𝑁) + (𝐵↑𝑁)) = (𝐶↑𝑁)) ⇒ ⊢ (𝜑 → (𝐴 gcd 𝐵) ∥ 𝐶) | ||
Theorem | fltabcoprmex 40483 | A counterexample to FLT implies a counterexample to FLT with 𝐴, 𝐵 (assigned to 𝐴 / (𝐴 gcd 𝐵) and 𝐵 / (𝐴 gcd 𝐵)) coprime (by divgcdcoprm0 16379). (Contributed by SN, 20-Aug-2024.) |
⊢ (𝜑 → 𝐴 ∈ ℕ) & ⊢ (𝜑 → 𝐵 ∈ ℕ) & ⊢ (𝜑 → 𝐶 ∈ ℕ) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → ((𝐴↑𝑁) + (𝐵↑𝑁)) = (𝐶↑𝑁)) ⇒ ⊢ (𝜑 → (((𝐴 / (𝐴 gcd 𝐵))↑𝑁) + ((𝐵 / (𝐴 gcd 𝐵))↑𝑁)) = ((𝐶 / (𝐴 gcd 𝐵))↑𝑁)) | ||
Theorem | fltaccoprm 40484 | A counterexample to FLT with 𝐴, 𝐵 coprime also has 𝐴, 𝐶 coprime. (Contributed by SN, 20-Aug-2024.) |
⊢ (𝜑 → 𝐴 ∈ ℕ) & ⊢ (𝜑 → 𝐵 ∈ ℕ) & ⊢ (𝜑 → 𝐶 ∈ ℕ) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → ((𝐴↑𝑁) + (𝐵↑𝑁)) = (𝐶↑𝑁)) & ⊢ (𝜑 → (𝐴 gcd 𝐵) = 1) ⇒ ⊢ (𝜑 → (𝐴 gcd 𝐶) = 1) | ||
Theorem | fltbccoprm 40485 | A counterexample to FLT with 𝐴, 𝐵 coprime also has 𝐵, 𝐶 coprime. Proven from fltaccoprm 40484 using commutativity of addition. (Contributed by SN, 20-Aug-2024.) |
⊢ (𝜑 → 𝐴 ∈ ℕ) & ⊢ (𝜑 → 𝐵 ∈ ℕ) & ⊢ (𝜑 → 𝐶 ∈ ℕ) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → ((𝐴↑𝑁) + (𝐵↑𝑁)) = (𝐶↑𝑁)) & ⊢ (𝜑 → (𝐴 gcd 𝐵) = 1) ⇒ ⊢ (𝜑 → (𝐵 gcd 𝐶) = 1) | ||
Theorem | fltabcoprm 40486 | A counterexample to FLT with 𝐴, 𝐶 coprime also has 𝐴, 𝐵 coprime. Converse of fltaccoprm 40484. (Contributed by SN, 22-Aug-2024.) |
⊢ (𝜑 → 𝐴 ∈ ℕ) & ⊢ (𝜑 → 𝐵 ∈ ℕ) & ⊢ (𝜑 → 𝐶 ∈ ℕ) & ⊢ (𝜑 → (𝐴 gcd 𝐶) = 1) & ⊢ (𝜑 → ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2)) ⇒ ⊢ (𝜑 → (𝐴 gcd 𝐵) = 1) | ||
Theorem | infdesc 40487* | Infinite descent. The hypotheses say that 𝑆 is lower bounded, and that if 𝜓 holds for an integer in 𝑆, it holds for a smaller integer in 𝑆. By infinite descent, eventually we cannot go any smaller, therefore 𝜓 holds for no integer in 𝑆. (Contributed by SN, 20-Aug-2024.) |
⊢ (𝑦 = 𝑥 → (𝜓 ↔ 𝜒)) & ⊢ (𝑦 = 𝑧 → (𝜓 ↔ 𝜃)) & ⊢ (𝜑 → 𝑆 ⊆ (ℤ≥‘𝑀)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝜒)) → ∃𝑧 ∈ 𝑆 (𝜃 ∧ 𝑧 < 𝑥)) ⇒ ⊢ (𝜑 → {𝑦 ∈ 𝑆 ∣ 𝜓} = ∅) | ||
Theorem | fltne 40488 | If a counterexample to FLT exists, its addends are not equal. (Contributed by SN, 1-Jun-2023.) |
⊢ (𝜑 → 𝐴 ∈ ℕ) & ⊢ (𝜑 → 𝐵 ∈ ℕ) & ⊢ (𝜑 → 𝐶 ∈ ℕ) & ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘2)) & ⊢ (𝜑 → ((𝐴↑𝑁) + (𝐵↑𝑁)) = (𝐶↑𝑁)) ⇒ ⊢ (𝜑 → 𝐴 ≠ 𝐵) | ||
Theorem | flt4lem 40489 | Raising a number to the fourth power is equivalent to squaring it twice. (Contributed by SN, 21-Aug-2024.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) ⇒ ⊢ (𝜑 → (𝐴↑4) = ((𝐴↑2)↑2)) | ||
Theorem | flt4lem1 40490 | Satisfy the antecedent used in several pythagtrip 16544 lemmas, with 𝐴, 𝐶 coprime rather than 𝐴, 𝐵. (Contributed by SN, 21-Aug-2024.) |
⊢ (𝜑 → 𝐴 ∈ ℕ) & ⊢ (𝜑 → 𝐵 ∈ ℕ) & ⊢ (𝜑 → 𝐶 ∈ ℕ) & ⊢ (𝜑 → ¬ 2 ∥ 𝐴) & ⊢ (𝜑 → (𝐴 gcd 𝐶) = 1) & ⊢ (𝜑 → ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2)) ⇒ ⊢ (𝜑 → ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴))) | ||
Theorem | flt4lem2 40491 | If 𝐴 is even, 𝐵 is odd. (Contributed by SN, 22-Aug-2024.) |
⊢ (𝜑 → 𝐴 ∈ ℕ) & ⊢ (𝜑 → 𝐵 ∈ ℕ) & ⊢ (𝜑 → 𝐶 ∈ ℕ) & ⊢ (𝜑 → 2 ∥ 𝐴) & ⊢ (𝜑 → (𝐴 gcd 𝐶) = 1) & ⊢ (𝜑 → ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2)) ⇒ ⊢ (𝜑 → ¬ 2 ∥ 𝐵) | ||
Theorem | flt4lem3 40492 | Equivalent to pythagtriplem4 16529. Show that 𝐶 + 𝐴 and 𝐶 − 𝐴 are coprime. (Contributed by SN, 22-Aug-2024.) |
⊢ (𝜑 → 𝐴 ∈ ℕ) & ⊢ (𝜑 → 𝐵 ∈ ℕ) & ⊢ (𝜑 → 𝐶 ∈ ℕ) & ⊢ (𝜑 → 2 ∥ 𝐴) & ⊢ (𝜑 → (𝐴 gcd 𝐶) = 1) & ⊢ (𝜑 → ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2)) ⇒ ⊢ (𝜑 → ((𝐶 + 𝐴) gcd (𝐶 − 𝐴)) = 1) | ||
Theorem | flt4lem4 40493 | If the product of two coprime factors is a perfect square, the factors are perfect squares. (Contributed by SN, 22-Aug-2024.) |
⊢ (𝜑 → 𝐴 ∈ ℕ) & ⊢ (𝜑 → 𝐵 ∈ ℕ) & ⊢ (𝜑 → 𝐶 ∈ ℕ) & ⊢ (𝜑 → (𝐴 gcd 𝐵) = 1) & ⊢ (𝜑 → (𝐴 · 𝐵) = (𝐶↑2)) ⇒ ⊢ (𝜑 → (𝐴 = ((𝐴 gcd 𝐶)↑2) ∧ 𝐵 = ((𝐵 gcd 𝐶)↑2))) | ||
Theorem | flt4lem5 40494 | In the context of the lemmas of pythagtrip 16544, 𝑀 and 𝑁 are coprime. (Contributed by SN, 23-Aug-2024.) |
⊢ 𝑀 = (((√‘(𝐶 + 𝐵)) + (√‘(𝐶 − 𝐵))) / 2) & ⊢ 𝑁 = (((√‘(𝐶 + 𝐵)) − (√‘(𝐶 − 𝐵))) / 2) ⇒ ⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (𝑀 gcd 𝑁) = 1) | ||
Theorem | flt4lem5elem 40495 | Version of fltaccoprm 40484 and fltbccoprm 40485 where 𝑀 is not squared. This can be proved in general for any polynomial in three variables: using prmdvdsncoprmbd 16440, dvds2addd 16010, and prmdvdsexp 16429, we can show that if two variables are coprime, the third is also coprime to the two. (Contributed by SN, 24-Aug-2024.) |
⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑅 ∈ ℕ) & ⊢ (𝜑 → 𝑆 ∈ ℕ) & ⊢ (𝜑 → 𝑀 = ((𝑅↑2) + (𝑆↑2))) & ⊢ (𝜑 → (𝑅 gcd 𝑆) = 1) ⇒ ⊢ (𝜑 → ((𝑅 gcd 𝑀) = 1 ∧ (𝑆 gcd 𝑀) = 1)) | ||
Theorem | flt4lem5a 40496 | Part 1 of Equation 1 of https://crypto.stanford.edu/pbc/notes/numberfield/fermatn4.html. (Contributed by SN, 22-Aug-2024.) |
⊢ 𝑀 = (((√‘(𝐶 + (𝐵↑2))) + (√‘(𝐶 − (𝐵↑2)))) / 2) & ⊢ 𝑁 = (((√‘(𝐶 + (𝐵↑2))) − (√‘(𝐶 − (𝐵↑2)))) / 2) & ⊢ 𝑅 = (((√‘(𝑀 + 𝑁)) + (√‘(𝑀 − 𝑁))) / 2) & ⊢ 𝑆 = (((√‘(𝑀 + 𝑁)) − (√‘(𝑀 − 𝑁))) / 2) & ⊢ (𝜑 → 𝐴 ∈ ℕ) & ⊢ (𝜑 → 𝐵 ∈ ℕ) & ⊢ (𝜑 → 𝐶 ∈ ℕ) & ⊢ (𝜑 → ¬ 2 ∥ 𝐴) & ⊢ (𝜑 → (𝐴 gcd 𝐶) = 1) & ⊢ (𝜑 → ((𝐴↑4) + (𝐵↑4)) = (𝐶↑2)) ⇒ ⊢ (𝜑 → ((𝐴↑2) + (𝑁↑2)) = (𝑀↑2)) | ||
Theorem | flt4lem5b 40497 | Part 2 of Equation 1 of https://crypto.stanford.edu/pbc/notes/numberfield/fermatn4.html. (Contributed by SN, 22-Aug-2024.) |
⊢ 𝑀 = (((√‘(𝐶 + (𝐵↑2))) + (√‘(𝐶 − (𝐵↑2)))) / 2) & ⊢ 𝑁 = (((√‘(𝐶 + (𝐵↑2))) − (√‘(𝐶 − (𝐵↑2)))) / 2) & ⊢ 𝑅 = (((√‘(𝑀 + 𝑁)) + (√‘(𝑀 − 𝑁))) / 2) & ⊢ 𝑆 = (((√‘(𝑀 + 𝑁)) − (√‘(𝑀 − 𝑁))) / 2) & ⊢ (𝜑 → 𝐴 ∈ ℕ) & ⊢ (𝜑 → 𝐵 ∈ ℕ) & ⊢ (𝜑 → 𝐶 ∈ ℕ) & ⊢ (𝜑 → ¬ 2 ∥ 𝐴) & ⊢ (𝜑 → (𝐴 gcd 𝐶) = 1) & ⊢ (𝜑 → ((𝐴↑4) + (𝐵↑4)) = (𝐶↑2)) ⇒ ⊢ (𝜑 → (2 · (𝑀 · 𝑁)) = (𝐵↑2)) | ||
Theorem | flt4lem5c 40498 | Part 2 of Equation 2 of https://crypto.stanford.edu/pbc/notes/numberfield/fermatn4.html. (Contributed by SN, 22-Aug-2024.) |
⊢ 𝑀 = (((√‘(𝐶 + (𝐵↑2))) + (√‘(𝐶 − (𝐵↑2)))) / 2) & ⊢ 𝑁 = (((√‘(𝐶 + (𝐵↑2))) − (√‘(𝐶 − (𝐵↑2)))) / 2) & ⊢ 𝑅 = (((√‘(𝑀 + 𝑁)) + (√‘(𝑀 − 𝑁))) / 2) & ⊢ 𝑆 = (((√‘(𝑀 + 𝑁)) − (√‘(𝑀 − 𝑁))) / 2) & ⊢ (𝜑 → 𝐴 ∈ ℕ) & ⊢ (𝜑 → 𝐵 ∈ ℕ) & ⊢ (𝜑 → 𝐶 ∈ ℕ) & ⊢ (𝜑 → ¬ 2 ∥ 𝐴) & ⊢ (𝜑 → (𝐴 gcd 𝐶) = 1) & ⊢ (𝜑 → ((𝐴↑4) + (𝐵↑4)) = (𝐶↑2)) ⇒ ⊢ (𝜑 → 𝑁 = (2 · (𝑅 · 𝑆))) | ||
Theorem | flt4lem5d 40499 | Part 3 of Equation 2 of https://crypto.stanford.edu/pbc/notes/numberfield/fermatn4.html. (Contributed by SN, 23-Aug-2024.) |
⊢ 𝑀 = (((√‘(𝐶 + (𝐵↑2))) + (√‘(𝐶 − (𝐵↑2)))) / 2) & ⊢ 𝑁 = (((√‘(𝐶 + (𝐵↑2))) − (√‘(𝐶 − (𝐵↑2)))) / 2) & ⊢ 𝑅 = (((√‘(𝑀 + 𝑁)) + (√‘(𝑀 − 𝑁))) / 2) & ⊢ 𝑆 = (((√‘(𝑀 + 𝑁)) − (√‘(𝑀 − 𝑁))) / 2) & ⊢ (𝜑 → 𝐴 ∈ ℕ) & ⊢ (𝜑 → 𝐵 ∈ ℕ) & ⊢ (𝜑 → 𝐶 ∈ ℕ) & ⊢ (𝜑 → ¬ 2 ∥ 𝐴) & ⊢ (𝜑 → (𝐴 gcd 𝐶) = 1) & ⊢ (𝜑 → ((𝐴↑4) + (𝐵↑4)) = (𝐶↑2)) ⇒ ⊢ (𝜑 → 𝑀 = ((𝑅↑2) + (𝑆↑2))) | ||
Theorem | flt4lem5e 40500 | Satisfy the hypotheses of flt4lem4 40493. (Contributed by SN, 23-Aug-2024.) |
⊢ 𝑀 = (((√‘(𝐶 + (𝐵↑2))) + (√‘(𝐶 − (𝐵↑2)))) / 2) & ⊢ 𝑁 = (((√‘(𝐶 + (𝐵↑2))) − (√‘(𝐶 − (𝐵↑2)))) / 2) & ⊢ 𝑅 = (((√‘(𝑀 + 𝑁)) + (√‘(𝑀 − 𝑁))) / 2) & ⊢ 𝑆 = (((√‘(𝑀 + 𝑁)) − (√‘(𝑀 − 𝑁))) / 2) & ⊢ (𝜑 → 𝐴 ∈ ℕ) & ⊢ (𝜑 → 𝐵 ∈ ℕ) & ⊢ (𝜑 → 𝐶 ∈ ℕ) & ⊢ (𝜑 → ¬ 2 ∥ 𝐴) & ⊢ (𝜑 → (𝐴 gcd 𝐶) = 1) & ⊢ (𝜑 → ((𝐴↑4) + (𝐵↑4)) = (𝐶↑2)) ⇒ ⊢ (𝜑 → (((𝑅 gcd 𝑆) = 1 ∧ (𝑅 gcd 𝑀) = 1 ∧ (𝑆 gcd 𝑀) = 1) ∧ (𝑅 ∈ ℕ ∧ 𝑆 ∈ ℕ ∧ 𝑀 ∈ ℕ) ∧ ((𝑀 · (𝑅 · 𝑆)) = ((𝐵 / 2)↑2) ∧ (𝐵 / 2) ∈ ℕ))) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |