Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dihffval Structured version   Visualization version   GIF version

Theorem dihffval 39240
Description: The isomorphism H for a lattice 𝐾. Definition of isomorphism map in [Crawley] p. 122 line 3. (Contributed by NM, 28-Jan-2014.)
Hypotheses
Ref Expression
dihval.b 𝐵 = (Base‘𝐾)
dihval.l = (le‘𝐾)
dihval.j = (join‘𝐾)
dihval.m = (meet‘𝐾)
dihval.a 𝐴 = (Atoms‘𝐾)
dihval.h 𝐻 = (LHyp‘𝐾)
Assertion
Ref Expression
dihffval (𝐾𝑉 → (DIsoH‘𝐾) = (𝑤𝐻 ↦ (𝑥𝐵 ↦ if(𝑥 𝑤, (((DIsoB‘𝐾)‘𝑤)‘𝑥), (𝑢 ∈ (LSubSp‘((DVecH‘𝐾)‘𝑤))∀𝑞𝐴 ((¬ 𝑞 𝑤 ∧ (𝑞 (𝑥 𝑤)) = 𝑥) → 𝑢 = ((((DIsoC‘𝐾)‘𝑤)‘𝑞)(LSSum‘((DVecH‘𝐾)‘𝑤))(((DIsoB‘𝐾)‘𝑤)‘(𝑥 𝑤)))))))))
Distinct variable groups:   𝐴,𝑞   𝑤,𝐻   𝑢,𝑞,𝑤,𝑥,𝐾
Allowed substitution hints:   𝐴(𝑥,𝑤,𝑢)   𝐵(𝑥,𝑤,𝑢,𝑞)   𝐻(𝑥,𝑢,𝑞)   (𝑥,𝑤,𝑢,𝑞)   (𝑥,𝑤,𝑢,𝑞)   (𝑥,𝑤,𝑢,𝑞)   𝑉(𝑥,𝑤,𝑢,𝑞)

Proof of Theorem dihffval
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 elex 3449 . 2 (𝐾𝑉𝐾 ∈ V)
2 fveq2 6771 . . . . 5 (𝑘 = 𝐾 → (LHyp‘𝑘) = (LHyp‘𝐾))
3 dihval.h . . . . 5 𝐻 = (LHyp‘𝐾)
42, 3eqtr4di 2798 . . . 4 (𝑘 = 𝐾 → (LHyp‘𝑘) = 𝐻)
5 fveq2 6771 . . . . . 6 (𝑘 = 𝐾 → (Base‘𝑘) = (Base‘𝐾))
6 dihval.b . . . . . 6 𝐵 = (Base‘𝐾)
75, 6eqtr4di 2798 . . . . 5 (𝑘 = 𝐾 → (Base‘𝑘) = 𝐵)
8 fveq2 6771 . . . . . . . 8 (𝑘 = 𝐾 → (le‘𝑘) = (le‘𝐾))
9 dihval.l . . . . . . . 8 = (le‘𝐾)
108, 9eqtr4di 2798 . . . . . . 7 (𝑘 = 𝐾 → (le‘𝑘) = )
1110breqd 5090 . . . . . 6 (𝑘 = 𝐾 → (𝑥(le‘𝑘)𝑤𝑥 𝑤))
12 fveq2 6771 . . . . . . . 8 (𝑘 = 𝐾 → (DIsoB‘𝑘) = (DIsoB‘𝐾))
1312fveq1d 6773 . . . . . . 7 (𝑘 = 𝐾 → ((DIsoB‘𝑘)‘𝑤) = ((DIsoB‘𝐾)‘𝑤))
1413fveq1d 6773 . . . . . 6 (𝑘 = 𝐾 → (((DIsoB‘𝑘)‘𝑤)‘𝑥) = (((DIsoB‘𝐾)‘𝑤)‘𝑥))
15 fveq2 6771 . . . . . . . . 9 (𝑘 = 𝐾 → (DVecH‘𝑘) = (DVecH‘𝐾))
1615fveq1d 6773 . . . . . . . 8 (𝑘 = 𝐾 → ((DVecH‘𝑘)‘𝑤) = ((DVecH‘𝐾)‘𝑤))
1716fveq2d 6775 . . . . . . 7 (𝑘 = 𝐾 → (LSubSp‘((DVecH‘𝑘)‘𝑤)) = (LSubSp‘((DVecH‘𝐾)‘𝑤)))
18 fveq2 6771 . . . . . . . . 9 (𝑘 = 𝐾 → (Atoms‘𝑘) = (Atoms‘𝐾))
19 dihval.a . . . . . . . . 9 𝐴 = (Atoms‘𝐾)
2018, 19eqtr4di 2798 . . . . . . . 8 (𝑘 = 𝐾 → (Atoms‘𝑘) = 𝐴)
2110breqd 5090 . . . . . . . . . . 11 (𝑘 = 𝐾 → (𝑞(le‘𝑘)𝑤𝑞 𝑤))
2221notbid 318 . . . . . . . . . 10 (𝑘 = 𝐾 → (¬ 𝑞(le‘𝑘)𝑤 ↔ ¬ 𝑞 𝑤))
23 fveq2 6771 . . . . . . . . . . . . 13 (𝑘 = 𝐾 → (join‘𝑘) = (join‘𝐾))
24 dihval.j . . . . . . . . . . . . 13 = (join‘𝐾)
2523, 24eqtr4di 2798 . . . . . . . . . . . 12 (𝑘 = 𝐾 → (join‘𝑘) = )
26 eqidd 2741 . . . . . . . . . . . 12 (𝑘 = 𝐾𝑞 = 𝑞)
27 fveq2 6771 . . . . . . . . . . . . . 14 (𝑘 = 𝐾 → (meet‘𝑘) = (meet‘𝐾))
28 dihval.m . . . . . . . . . . . . . 14 = (meet‘𝐾)
2927, 28eqtr4di 2798 . . . . . . . . . . . . 13 (𝑘 = 𝐾 → (meet‘𝑘) = )
3029oveqd 7288 . . . . . . . . . . . 12 (𝑘 = 𝐾 → (𝑥(meet‘𝑘)𝑤) = (𝑥 𝑤))
3125, 26, 30oveq123d 7292 . . . . . . . . . . 11 (𝑘 = 𝐾 → (𝑞(join‘𝑘)(𝑥(meet‘𝑘)𝑤)) = (𝑞 (𝑥 𝑤)))
3231eqeq1d 2742 . . . . . . . . . 10 (𝑘 = 𝐾 → ((𝑞(join‘𝑘)(𝑥(meet‘𝑘)𝑤)) = 𝑥 ↔ (𝑞 (𝑥 𝑤)) = 𝑥))
3322, 32anbi12d 631 . . . . . . . . 9 (𝑘 = 𝐾 → ((¬ 𝑞(le‘𝑘)𝑤 ∧ (𝑞(join‘𝑘)(𝑥(meet‘𝑘)𝑤)) = 𝑥) ↔ (¬ 𝑞 𝑤 ∧ (𝑞 (𝑥 𝑤)) = 𝑥)))
3416fveq2d 6775 . . . . . . . . . . 11 (𝑘 = 𝐾 → (LSSum‘((DVecH‘𝑘)‘𝑤)) = (LSSum‘((DVecH‘𝐾)‘𝑤)))
35 fveq2 6771 . . . . . . . . . . . . 13 (𝑘 = 𝐾 → (DIsoC‘𝑘) = (DIsoC‘𝐾))
3635fveq1d 6773 . . . . . . . . . . . 12 (𝑘 = 𝐾 → ((DIsoC‘𝑘)‘𝑤) = ((DIsoC‘𝐾)‘𝑤))
3736fveq1d 6773 . . . . . . . . . . 11 (𝑘 = 𝐾 → (((DIsoC‘𝑘)‘𝑤)‘𝑞) = (((DIsoC‘𝐾)‘𝑤)‘𝑞))
3813, 30fveq12d 6778 . . . . . . . . . . 11 (𝑘 = 𝐾 → (((DIsoB‘𝑘)‘𝑤)‘(𝑥(meet‘𝑘)𝑤)) = (((DIsoB‘𝐾)‘𝑤)‘(𝑥 𝑤)))
3934, 37, 38oveq123d 7292 . . . . . . . . . 10 (𝑘 = 𝐾 → ((((DIsoC‘𝑘)‘𝑤)‘𝑞)(LSSum‘((DVecH‘𝑘)‘𝑤))(((DIsoB‘𝑘)‘𝑤)‘(𝑥(meet‘𝑘)𝑤))) = ((((DIsoC‘𝐾)‘𝑤)‘𝑞)(LSSum‘((DVecH‘𝐾)‘𝑤))(((DIsoB‘𝐾)‘𝑤)‘(𝑥 𝑤))))
4039eqeq2d 2751 . . . . . . . . 9 (𝑘 = 𝐾 → (𝑢 = ((((DIsoC‘𝑘)‘𝑤)‘𝑞)(LSSum‘((DVecH‘𝑘)‘𝑤))(((DIsoB‘𝑘)‘𝑤)‘(𝑥(meet‘𝑘)𝑤))) ↔ 𝑢 = ((((DIsoC‘𝐾)‘𝑤)‘𝑞)(LSSum‘((DVecH‘𝐾)‘𝑤))(((DIsoB‘𝐾)‘𝑤)‘(𝑥 𝑤)))))
4133, 40imbi12d 345 . . . . . . . 8 (𝑘 = 𝐾 → (((¬ 𝑞(le‘𝑘)𝑤 ∧ (𝑞(join‘𝑘)(𝑥(meet‘𝑘)𝑤)) = 𝑥) → 𝑢 = ((((DIsoC‘𝑘)‘𝑤)‘𝑞)(LSSum‘((DVecH‘𝑘)‘𝑤))(((DIsoB‘𝑘)‘𝑤)‘(𝑥(meet‘𝑘)𝑤)))) ↔ ((¬ 𝑞 𝑤 ∧ (𝑞 (𝑥 𝑤)) = 𝑥) → 𝑢 = ((((DIsoC‘𝐾)‘𝑤)‘𝑞)(LSSum‘((DVecH‘𝐾)‘𝑤))(((DIsoB‘𝐾)‘𝑤)‘(𝑥 𝑤))))))
4220, 41raleqbidv 3335 . . . . . . 7 (𝑘 = 𝐾 → (∀𝑞 ∈ (Atoms‘𝑘)((¬ 𝑞(le‘𝑘)𝑤 ∧ (𝑞(join‘𝑘)(𝑥(meet‘𝑘)𝑤)) = 𝑥) → 𝑢 = ((((DIsoC‘𝑘)‘𝑤)‘𝑞)(LSSum‘((DVecH‘𝑘)‘𝑤))(((DIsoB‘𝑘)‘𝑤)‘(𝑥(meet‘𝑘)𝑤)))) ↔ ∀𝑞𝐴 ((¬ 𝑞 𝑤 ∧ (𝑞 (𝑥 𝑤)) = 𝑥) → 𝑢 = ((((DIsoC‘𝐾)‘𝑤)‘𝑞)(LSSum‘((DVecH‘𝐾)‘𝑤))(((DIsoB‘𝐾)‘𝑤)‘(𝑥 𝑤))))))
4317, 42riotaeqbidv 7231 . . . . . 6 (𝑘 = 𝐾 → (𝑢 ∈ (LSubSp‘((DVecH‘𝑘)‘𝑤))∀𝑞 ∈ (Atoms‘𝑘)((¬ 𝑞(le‘𝑘)𝑤 ∧ (𝑞(join‘𝑘)(𝑥(meet‘𝑘)𝑤)) = 𝑥) → 𝑢 = ((((DIsoC‘𝑘)‘𝑤)‘𝑞)(LSSum‘((DVecH‘𝑘)‘𝑤))(((DIsoB‘𝑘)‘𝑤)‘(𝑥(meet‘𝑘)𝑤))))) = (𝑢 ∈ (LSubSp‘((DVecH‘𝐾)‘𝑤))∀𝑞𝐴 ((¬ 𝑞 𝑤 ∧ (𝑞 (𝑥 𝑤)) = 𝑥) → 𝑢 = ((((DIsoC‘𝐾)‘𝑤)‘𝑞)(LSSum‘((DVecH‘𝐾)‘𝑤))(((DIsoB‘𝐾)‘𝑤)‘(𝑥 𝑤))))))
4411, 14, 43ifbieq12d 4493 . . . . 5 (𝑘 = 𝐾 → if(𝑥(le‘𝑘)𝑤, (((DIsoB‘𝑘)‘𝑤)‘𝑥), (𝑢 ∈ (LSubSp‘((DVecH‘𝑘)‘𝑤))∀𝑞 ∈ (Atoms‘𝑘)((¬ 𝑞(le‘𝑘)𝑤 ∧ (𝑞(join‘𝑘)(𝑥(meet‘𝑘)𝑤)) = 𝑥) → 𝑢 = ((((DIsoC‘𝑘)‘𝑤)‘𝑞)(LSSum‘((DVecH‘𝑘)‘𝑤))(((DIsoB‘𝑘)‘𝑤)‘(𝑥(meet‘𝑘)𝑤)))))) = if(𝑥 𝑤, (((DIsoB‘𝐾)‘𝑤)‘𝑥), (𝑢 ∈ (LSubSp‘((DVecH‘𝐾)‘𝑤))∀𝑞𝐴 ((¬ 𝑞 𝑤 ∧ (𝑞 (𝑥 𝑤)) = 𝑥) → 𝑢 = ((((DIsoC‘𝐾)‘𝑤)‘𝑞)(LSSum‘((DVecH‘𝐾)‘𝑤))(((DIsoB‘𝐾)‘𝑤)‘(𝑥 𝑤)))))))
457, 44mpteq12dv 5170 . . . 4 (𝑘 = 𝐾 → (𝑥 ∈ (Base‘𝑘) ↦ if(𝑥(le‘𝑘)𝑤, (((DIsoB‘𝑘)‘𝑤)‘𝑥), (𝑢 ∈ (LSubSp‘((DVecH‘𝑘)‘𝑤))∀𝑞 ∈ (Atoms‘𝑘)((¬ 𝑞(le‘𝑘)𝑤 ∧ (𝑞(join‘𝑘)(𝑥(meet‘𝑘)𝑤)) = 𝑥) → 𝑢 = ((((DIsoC‘𝑘)‘𝑤)‘𝑞)(LSSum‘((DVecH‘𝑘)‘𝑤))(((DIsoB‘𝑘)‘𝑤)‘(𝑥(meet‘𝑘)𝑤))))))) = (𝑥𝐵 ↦ if(𝑥 𝑤, (((DIsoB‘𝐾)‘𝑤)‘𝑥), (𝑢 ∈ (LSubSp‘((DVecH‘𝐾)‘𝑤))∀𝑞𝐴 ((¬ 𝑞 𝑤 ∧ (𝑞 (𝑥 𝑤)) = 𝑥) → 𝑢 = ((((DIsoC‘𝐾)‘𝑤)‘𝑞)(LSSum‘((DVecH‘𝐾)‘𝑤))(((DIsoB‘𝐾)‘𝑤)‘(𝑥 𝑤))))))))
464, 45mpteq12dv 5170 . . 3 (𝑘 = 𝐾 → (𝑤 ∈ (LHyp‘𝑘) ↦ (𝑥 ∈ (Base‘𝑘) ↦ if(𝑥(le‘𝑘)𝑤, (((DIsoB‘𝑘)‘𝑤)‘𝑥), (𝑢 ∈ (LSubSp‘((DVecH‘𝑘)‘𝑤))∀𝑞 ∈ (Atoms‘𝑘)((¬ 𝑞(le‘𝑘)𝑤 ∧ (𝑞(join‘𝑘)(𝑥(meet‘𝑘)𝑤)) = 𝑥) → 𝑢 = ((((DIsoC‘𝑘)‘𝑤)‘𝑞)(LSSum‘((DVecH‘𝑘)‘𝑤))(((DIsoB‘𝑘)‘𝑤)‘(𝑥(meet‘𝑘)𝑤)))))))) = (𝑤𝐻 ↦ (𝑥𝐵 ↦ if(𝑥 𝑤, (((DIsoB‘𝐾)‘𝑤)‘𝑥), (𝑢 ∈ (LSubSp‘((DVecH‘𝐾)‘𝑤))∀𝑞𝐴 ((¬ 𝑞 𝑤 ∧ (𝑞 (𝑥 𝑤)) = 𝑥) → 𝑢 = ((((DIsoC‘𝐾)‘𝑤)‘𝑞)(LSSum‘((DVecH‘𝐾)‘𝑤))(((DIsoB‘𝐾)‘𝑤)‘(𝑥 𝑤)))))))))
47 df-dih 39239 . . 3 DIsoH = (𝑘 ∈ V ↦ (𝑤 ∈ (LHyp‘𝑘) ↦ (𝑥 ∈ (Base‘𝑘) ↦ if(𝑥(le‘𝑘)𝑤, (((DIsoB‘𝑘)‘𝑤)‘𝑥), (𝑢 ∈ (LSubSp‘((DVecH‘𝑘)‘𝑤))∀𝑞 ∈ (Atoms‘𝑘)((¬ 𝑞(le‘𝑘)𝑤 ∧ (𝑞(join‘𝑘)(𝑥(meet‘𝑘)𝑤)) = 𝑥) → 𝑢 = ((((DIsoC‘𝑘)‘𝑤)‘𝑞)(LSSum‘((DVecH‘𝑘)‘𝑤))(((DIsoB‘𝑘)‘𝑤)‘(𝑥(meet‘𝑘)𝑤)))))))))
4846, 47, 3mptfvmpt 7101 . 2 (𝐾 ∈ V → (DIsoH‘𝐾) = (𝑤𝐻 ↦ (𝑥𝐵 ↦ if(𝑥 𝑤, (((DIsoB‘𝐾)‘𝑤)‘𝑥), (𝑢 ∈ (LSubSp‘((DVecH‘𝐾)‘𝑤))∀𝑞𝐴 ((¬ 𝑞 𝑤 ∧ (𝑞 (𝑥 𝑤)) = 𝑥) → 𝑢 = ((((DIsoC‘𝐾)‘𝑤)‘𝑞)(LSSum‘((DVecH‘𝐾)‘𝑤))(((DIsoB‘𝐾)‘𝑤)‘(𝑥 𝑤)))))))))
491, 48syl 17 1 (𝐾𝑉 → (DIsoH‘𝐾) = (𝑤𝐻 ↦ (𝑥𝐵 ↦ if(𝑥 𝑤, (((DIsoB‘𝐾)‘𝑤)‘𝑥), (𝑢 ∈ (LSubSp‘((DVecH‘𝐾)‘𝑤))∀𝑞𝐴 ((¬ 𝑞 𝑤 ∧ (𝑞 (𝑥 𝑤)) = 𝑥) → 𝑢 = ((((DIsoC‘𝐾)‘𝑤)‘𝑞)(LSSum‘((DVecH‘𝐾)‘𝑤))(((DIsoB‘𝐾)‘𝑤)‘(𝑥 𝑤)))))))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396   = wceq 1542  wcel 2110  wral 3066  Vcvv 3431  ifcif 4465   class class class wbr 5079  cmpt 5162  cfv 6432  crio 7227  (class class class)co 7271  Basecbs 16910  lecple 16967  joincjn 18027  meetcmee 18028  LSSumclsm 19237  LSubSpclss 20191  Atomscatm 37273  LHypclh 37994  DVecHcdvh 39088  DIsoBcdib 39148  DIsoCcdic 39182  DIsoHcdih 39238
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-rep 5214  ax-sep 5227  ax-nul 5234  ax-pr 5356
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-ral 3071  df-rex 3072  df-reu 3073  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-iun 4932  df-br 5080  df-opab 5142  df-mpt 5163  df-id 5490  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-iota 6390  df-fun 6434  df-fn 6435  df-f 6436  df-f1 6437  df-fo 6438  df-f1o 6439  df-fv 6440  df-riota 7228  df-ov 7274  df-dih 39239
This theorem is referenced by:  dihfval  39241
  Copyright terms: Public domain W3C validator