Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dihffval Structured version   Visualization version   GIF version

Theorem dihffval 40591
Description: The isomorphism H for a lattice 𝐾. Definition of isomorphism map in [Crawley] p. 122 line 3. (Contributed by NM, 28-Jan-2014.)
Hypotheses
Ref Expression
dihval.b 𝐵 = (Base‘𝐾)
dihval.l = (le‘𝐾)
dihval.j = (join‘𝐾)
dihval.m = (meet‘𝐾)
dihval.a 𝐴 = (Atoms‘𝐾)
dihval.h 𝐻 = (LHyp‘𝐾)
Assertion
Ref Expression
dihffval (𝐾𝑉 → (DIsoH‘𝐾) = (𝑤𝐻 ↦ (𝑥𝐵 ↦ if(𝑥 𝑤, (((DIsoB‘𝐾)‘𝑤)‘𝑥), (𝑢 ∈ (LSubSp‘((DVecH‘𝐾)‘𝑤))∀𝑞𝐴 ((¬ 𝑞 𝑤 ∧ (𝑞 (𝑥 𝑤)) = 𝑥) → 𝑢 = ((((DIsoC‘𝐾)‘𝑤)‘𝑞)(LSSum‘((DVecH‘𝐾)‘𝑤))(((DIsoB‘𝐾)‘𝑤)‘(𝑥 𝑤)))))))))
Distinct variable groups:   𝐴,𝑞   𝑤,𝐻   𝑢,𝑞,𝑤,𝑥,𝐾
Allowed substitution hints:   𝐴(𝑥,𝑤,𝑢)   𝐵(𝑥,𝑤,𝑢,𝑞)   𝐻(𝑥,𝑢,𝑞)   (𝑥,𝑤,𝑢,𝑞)   (𝑥,𝑤,𝑢,𝑞)   (𝑥,𝑤,𝑢,𝑞)   𝑉(𝑥,𝑤,𝑢,𝑞)

Proof of Theorem dihffval
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 elex 3485 . 2 (𝐾𝑉𝐾 ∈ V)
2 fveq2 6881 . . . . 5 (𝑘 = 𝐾 → (LHyp‘𝑘) = (LHyp‘𝐾))
3 dihval.h . . . . 5 𝐻 = (LHyp‘𝐾)
42, 3eqtr4di 2782 . . . 4 (𝑘 = 𝐾 → (LHyp‘𝑘) = 𝐻)
5 fveq2 6881 . . . . . 6 (𝑘 = 𝐾 → (Base‘𝑘) = (Base‘𝐾))
6 dihval.b . . . . . 6 𝐵 = (Base‘𝐾)
75, 6eqtr4di 2782 . . . . 5 (𝑘 = 𝐾 → (Base‘𝑘) = 𝐵)
8 fveq2 6881 . . . . . . . 8 (𝑘 = 𝐾 → (le‘𝑘) = (le‘𝐾))
9 dihval.l . . . . . . . 8 = (le‘𝐾)
108, 9eqtr4di 2782 . . . . . . 7 (𝑘 = 𝐾 → (le‘𝑘) = )
1110breqd 5149 . . . . . 6 (𝑘 = 𝐾 → (𝑥(le‘𝑘)𝑤𝑥 𝑤))
12 fveq2 6881 . . . . . . . 8 (𝑘 = 𝐾 → (DIsoB‘𝑘) = (DIsoB‘𝐾))
1312fveq1d 6883 . . . . . . 7 (𝑘 = 𝐾 → ((DIsoB‘𝑘)‘𝑤) = ((DIsoB‘𝐾)‘𝑤))
1413fveq1d 6883 . . . . . 6 (𝑘 = 𝐾 → (((DIsoB‘𝑘)‘𝑤)‘𝑥) = (((DIsoB‘𝐾)‘𝑤)‘𝑥))
15 fveq2 6881 . . . . . . . . 9 (𝑘 = 𝐾 → (DVecH‘𝑘) = (DVecH‘𝐾))
1615fveq1d 6883 . . . . . . . 8 (𝑘 = 𝐾 → ((DVecH‘𝑘)‘𝑤) = ((DVecH‘𝐾)‘𝑤))
1716fveq2d 6885 . . . . . . 7 (𝑘 = 𝐾 → (LSubSp‘((DVecH‘𝑘)‘𝑤)) = (LSubSp‘((DVecH‘𝐾)‘𝑤)))
18 fveq2 6881 . . . . . . . . 9 (𝑘 = 𝐾 → (Atoms‘𝑘) = (Atoms‘𝐾))
19 dihval.a . . . . . . . . 9 𝐴 = (Atoms‘𝐾)
2018, 19eqtr4di 2782 . . . . . . . 8 (𝑘 = 𝐾 → (Atoms‘𝑘) = 𝐴)
2110breqd 5149 . . . . . . . . . . 11 (𝑘 = 𝐾 → (𝑞(le‘𝑘)𝑤𝑞 𝑤))
2221notbid 318 . . . . . . . . . 10 (𝑘 = 𝐾 → (¬ 𝑞(le‘𝑘)𝑤 ↔ ¬ 𝑞 𝑤))
23 fveq2 6881 . . . . . . . . . . . . 13 (𝑘 = 𝐾 → (join‘𝑘) = (join‘𝐾))
24 dihval.j . . . . . . . . . . . . 13 = (join‘𝐾)
2523, 24eqtr4di 2782 . . . . . . . . . . . 12 (𝑘 = 𝐾 → (join‘𝑘) = )
26 eqidd 2725 . . . . . . . . . . . 12 (𝑘 = 𝐾𝑞 = 𝑞)
27 fveq2 6881 . . . . . . . . . . . . . 14 (𝑘 = 𝐾 → (meet‘𝑘) = (meet‘𝐾))
28 dihval.m . . . . . . . . . . . . . 14 = (meet‘𝐾)
2927, 28eqtr4di 2782 . . . . . . . . . . . . 13 (𝑘 = 𝐾 → (meet‘𝑘) = )
3029oveqd 7418 . . . . . . . . . . . 12 (𝑘 = 𝐾 → (𝑥(meet‘𝑘)𝑤) = (𝑥 𝑤))
3125, 26, 30oveq123d 7422 . . . . . . . . . . 11 (𝑘 = 𝐾 → (𝑞(join‘𝑘)(𝑥(meet‘𝑘)𝑤)) = (𝑞 (𝑥 𝑤)))
3231eqeq1d 2726 . . . . . . . . . 10 (𝑘 = 𝐾 → ((𝑞(join‘𝑘)(𝑥(meet‘𝑘)𝑤)) = 𝑥 ↔ (𝑞 (𝑥 𝑤)) = 𝑥))
3322, 32anbi12d 630 . . . . . . . . 9 (𝑘 = 𝐾 → ((¬ 𝑞(le‘𝑘)𝑤 ∧ (𝑞(join‘𝑘)(𝑥(meet‘𝑘)𝑤)) = 𝑥) ↔ (¬ 𝑞 𝑤 ∧ (𝑞 (𝑥 𝑤)) = 𝑥)))
3416fveq2d 6885 . . . . . . . . . . 11 (𝑘 = 𝐾 → (LSSum‘((DVecH‘𝑘)‘𝑤)) = (LSSum‘((DVecH‘𝐾)‘𝑤)))
35 fveq2 6881 . . . . . . . . . . . . 13 (𝑘 = 𝐾 → (DIsoC‘𝑘) = (DIsoC‘𝐾))
3635fveq1d 6883 . . . . . . . . . . . 12 (𝑘 = 𝐾 → ((DIsoC‘𝑘)‘𝑤) = ((DIsoC‘𝐾)‘𝑤))
3736fveq1d 6883 . . . . . . . . . . 11 (𝑘 = 𝐾 → (((DIsoC‘𝑘)‘𝑤)‘𝑞) = (((DIsoC‘𝐾)‘𝑤)‘𝑞))
3813, 30fveq12d 6888 . . . . . . . . . . 11 (𝑘 = 𝐾 → (((DIsoB‘𝑘)‘𝑤)‘(𝑥(meet‘𝑘)𝑤)) = (((DIsoB‘𝐾)‘𝑤)‘(𝑥 𝑤)))
3934, 37, 38oveq123d 7422 . . . . . . . . . 10 (𝑘 = 𝐾 → ((((DIsoC‘𝑘)‘𝑤)‘𝑞)(LSSum‘((DVecH‘𝑘)‘𝑤))(((DIsoB‘𝑘)‘𝑤)‘(𝑥(meet‘𝑘)𝑤))) = ((((DIsoC‘𝐾)‘𝑤)‘𝑞)(LSSum‘((DVecH‘𝐾)‘𝑤))(((DIsoB‘𝐾)‘𝑤)‘(𝑥 𝑤))))
4039eqeq2d 2735 . . . . . . . . 9 (𝑘 = 𝐾 → (𝑢 = ((((DIsoC‘𝑘)‘𝑤)‘𝑞)(LSSum‘((DVecH‘𝑘)‘𝑤))(((DIsoB‘𝑘)‘𝑤)‘(𝑥(meet‘𝑘)𝑤))) ↔ 𝑢 = ((((DIsoC‘𝐾)‘𝑤)‘𝑞)(LSSum‘((DVecH‘𝐾)‘𝑤))(((DIsoB‘𝐾)‘𝑤)‘(𝑥 𝑤)))))
4133, 40imbi12d 344 . . . . . . . 8 (𝑘 = 𝐾 → (((¬ 𝑞(le‘𝑘)𝑤 ∧ (𝑞(join‘𝑘)(𝑥(meet‘𝑘)𝑤)) = 𝑥) → 𝑢 = ((((DIsoC‘𝑘)‘𝑤)‘𝑞)(LSSum‘((DVecH‘𝑘)‘𝑤))(((DIsoB‘𝑘)‘𝑤)‘(𝑥(meet‘𝑘)𝑤)))) ↔ ((¬ 𝑞 𝑤 ∧ (𝑞 (𝑥 𝑤)) = 𝑥) → 𝑢 = ((((DIsoC‘𝐾)‘𝑤)‘𝑞)(LSSum‘((DVecH‘𝐾)‘𝑤))(((DIsoB‘𝐾)‘𝑤)‘(𝑥 𝑤))))))
4220, 41raleqbidv 3334 . . . . . . 7 (𝑘 = 𝐾 → (∀𝑞 ∈ (Atoms‘𝑘)((¬ 𝑞(le‘𝑘)𝑤 ∧ (𝑞(join‘𝑘)(𝑥(meet‘𝑘)𝑤)) = 𝑥) → 𝑢 = ((((DIsoC‘𝑘)‘𝑤)‘𝑞)(LSSum‘((DVecH‘𝑘)‘𝑤))(((DIsoB‘𝑘)‘𝑤)‘(𝑥(meet‘𝑘)𝑤)))) ↔ ∀𝑞𝐴 ((¬ 𝑞 𝑤 ∧ (𝑞 (𝑥 𝑤)) = 𝑥) → 𝑢 = ((((DIsoC‘𝐾)‘𝑤)‘𝑞)(LSSum‘((DVecH‘𝐾)‘𝑤))(((DIsoB‘𝐾)‘𝑤)‘(𝑥 𝑤))))))
4317, 42riotaeqbidv 7360 . . . . . 6 (𝑘 = 𝐾 → (𝑢 ∈ (LSubSp‘((DVecH‘𝑘)‘𝑤))∀𝑞 ∈ (Atoms‘𝑘)((¬ 𝑞(le‘𝑘)𝑤 ∧ (𝑞(join‘𝑘)(𝑥(meet‘𝑘)𝑤)) = 𝑥) → 𝑢 = ((((DIsoC‘𝑘)‘𝑤)‘𝑞)(LSSum‘((DVecH‘𝑘)‘𝑤))(((DIsoB‘𝑘)‘𝑤)‘(𝑥(meet‘𝑘)𝑤))))) = (𝑢 ∈ (LSubSp‘((DVecH‘𝐾)‘𝑤))∀𝑞𝐴 ((¬ 𝑞 𝑤 ∧ (𝑞 (𝑥 𝑤)) = 𝑥) → 𝑢 = ((((DIsoC‘𝐾)‘𝑤)‘𝑞)(LSSum‘((DVecH‘𝐾)‘𝑤))(((DIsoB‘𝐾)‘𝑤)‘(𝑥 𝑤))))))
4411, 14, 43ifbieq12d 4548 . . . . 5 (𝑘 = 𝐾 → if(𝑥(le‘𝑘)𝑤, (((DIsoB‘𝑘)‘𝑤)‘𝑥), (𝑢 ∈ (LSubSp‘((DVecH‘𝑘)‘𝑤))∀𝑞 ∈ (Atoms‘𝑘)((¬ 𝑞(le‘𝑘)𝑤 ∧ (𝑞(join‘𝑘)(𝑥(meet‘𝑘)𝑤)) = 𝑥) → 𝑢 = ((((DIsoC‘𝑘)‘𝑤)‘𝑞)(LSSum‘((DVecH‘𝑘)‘𝑤))(((DIsoB‘𝑘)‘𝑤)‘(𝑥(meet‘𝑘)𝑤)))))) = if(𝑥 𝑤, (((DIsoB‘𝐾)‘𝑤)‘𝑥), (𝑢 ∈ (LSubSp‘((DVecH‘𝐾)‘𝑤))∀𝑞𝐴 ((¬ 𝑞 𝑤 ∧ (𝑞 (𝑥 𝑤)) = 𝑥) → 𝑢 = ((((DIsoC‘𝐾)‘𝑤)‘𝑞)(LSSum‘((DVecH‘𝐾)‘𝑤))(((DIsoB‘𝐾)‘𝑤)‘(𝑥 𝑤)))))))
457, 44mpteq12dv 5229 . . . 4 (𝑘 = 𝐾 → (𝑥 ∈ (Base‘𝑘) ↦ if(𝑥(le‘𝑘)𝑤, (((DIsoB‘𝑘)‘𝑤)‘𝑥), (𝑢 ∈ (LSubSp‘((DVecH‘𝑘)‘𝑤))∀𝑞 ∈ (Atoms‘𝑘)((¬ 𝑞(le‘𝑘)𝑤 ∧ (𝑞(join‘𝑘)(𝑥(meet‘𝑘)𝑤)) = 𝑥) → 𝑢 = ((((DIsoC‘𝑘)‘𝑤)‘𝑞)(LSSum‘((DVecH‘𝑘)‘𝑤))(((DIsoB‘𝑘)‘𝑤)‘(𝑥(meet‘𝑘)𝑤))))))) = (𝑥𝐵 ↦ if(𝑥 𝑤, (((DIsoB‘𝐾)‘𝑤)‘𝑥), (𝑢 ∈ (LSubSp‘((DVecH‘𝐾)‘𝑤))∀𝑞𝐴 ((¬ 𝑞 𝑤 ∧ (𝑞 (𝑥 𝑤)) = 𝑥) → 𝑢 = ((((DIsoC‘𝐾)‘𝑤)‘𝑞)(LSSum‘((DVecH‘𝐾)‘𝑤))(((DIsoB‘𝐾)‘𝑤)‘(𝑥 𝑤))))))))
464, 45mpteq12dv 5229 . . 3 (𝑘 = 𝐾 → (𝑤 ∈ (LHyp‘𝑘) ↦ (𝑥 ∈ (Base‘𝑘) ↦ if(𝑥(le‘𝑘)𝑤, (((DIsoB‘𝑘)‘𝑤)‘𝑥), (𝑢 ∈ (LSubSp‘((DVecH‘𝑘)‘𝑤))∀𝑞 ∈ (Atoms‘𝑘)((¬ 𝑞(le‘𝑘)𝑤 ∧ (𝑞(join‘𝑘)(𝑥(meet‘𝑘)𝑤)) = 𝑥) → 𝑢 = ((((DIsoC‘𝑘)‘𝑤)‘𝑞)(LSSum‘((DVecH‘𝑘)‘𝑤))(((DIsoB‘𝑘)‘𝑤)‘(𝑥(meet‘𝑘)𝑤)))))))) = (𝑤𝐻 ↦ (𝑥𝐵 ↦ if(𝑥 𝑤, (((DIsoB‘𝐾)‘𝑤)‘𝑥), (𝑢 ∈ (LSubSp‘((DVecH‘𝐾)‘𝑤))∀𝑞𝐴 ((¬ 𝑞 𝑤 ∧ (𝑞 (𝑥 𝑤)) = 𝑥) → 𝑢 = ((((DIsoC‘𝐾)‘𝑤)‘𝑞)(LSSum‘((DVecH‘𝐾)‘𝑤))(((DIsoB‘𝐾)‘𝑤)‘(𝑥 𝑤)))))))))
47 df-dih 40590 . . 3 DIsoH = (𝑘 ∈ V ↦ (𝑤 ∈ (LHyp‘𝑘) ↦ (𝑥 ∈ (Base‘𝑘) ↦ if(𝑥(le‘𝑘)𝑤, (((DIsoB‘𝑘)‘𝑤)‘𝑥), (𝑢 ∈ (LSubSp‘((DVecH‘𝑘)‘𝑤))∀𝑞 ∈ (Atoms‘𝑘)((¬ 𝑞(le‘𝑘)𝑤 ∧ (𝑞(join‘𝑘)(𝑥(meet‘𝑘)𝑤)) = 𝑥) → 𝑢 = ((((DIsoC‘𝑘)‘𝑤)‘𝑞)(LSSum‘((DVecH‘𝑘)‘𝑤))(((DIsoB‘𝑘)‘𝑤)‘(𝑥(meet‘𝑘)𝑤)))))))))
4846, 47, 3mptfvmpt 7221 . 2 (𝐾 ∈ V → (DIsoH‘𝐾) = (𝑤𝐻 ↦ (𝑥𝐵 ↦ if(𝑥 𝑤, (((DIsoB‘𝐾)‘𝑤)‘𝑥), (𝑢 ∈ (LSubSp‘((DVecH‘𝐾)‘𝑤))∀𝑞𝐴 ((¬ 𝑞 𝑤 ∧ (𝑞 (𝑥 𝑤)) = 𝑥) → 𝑢 = ((((DIsoC‘𝐾)‘𝑤)‘𝑞)(LSSum‘((DVecH‘𝐾)‘𝑤))(((DIsoB‘𝐾)‘𝑤)‘(𝑥 𝑤)))))))))
491, 48syl 17 1 (𝐾𝑉 → (DIsoH‘𝐾) = (𝑤𝐻 ↦ (𝑥𝐵 ↦ if(𝑥 𝑤, (((DIsoB‘𝐾)‘𝑤)‘𝑥), (𝑢 ∈ (LSubSp‘((DVecH‘𝐾)‘𝑤))∀𝑞𝐴 ((¬ 𝑞 𝑤 ∧ (𝑞 (𝑥 𝑤)) = 𝑥) → 𝑢 = ((((DIsoC‘𝐾)‘𝑤)‘𝑞)(LSSum‘((DVecH‘𝐾)‘𝑤))(((DIsoB‘𝐾)‘𝑤)‘(𝑥 𝑤)))))))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1533  wcel 2098  wral 3053  Vcvv 3466  ifcif 4520   class class class wbr 5138  cmpt 5221  cfv 6533  crio 7356  (class class class)co 7401  Basecbs 17143  lecple 17203  joincjn 18266  meetcmee 18267  LSSumclsm 19544  LSubSpclss 20768  Atomscatm 38623  LHypclh 39345  DVecHcdvh 40439  DIsoBcdib 40499  DIsoCcdic 40533  DIsoHcdih 40589
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5275  ax-sep 5289  ax-nul 5296  ax-pr 5417
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-ral 3054  df-rex 3063  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-nul 4315  df-if 4521  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-iun 4989  df-br 5139  df-opab 5201  df-mpt 5222  df-id 5564  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-riota 7357  df-ov 7404  df-dih 40590
This theorem is referenced by:  dihfval  40592
  Copyright terms: Public domain W3C validator