Detailed syntax breakdown of Definition df-dir
Step | Hyp | Ref
| Expression |
1 | | cdir 18357 |
. 2
class
DirRel |
2 | | vr |
. . . . . . 7
setvar 𝑟 |
3 | 2 | cv 1538 |
. . . . . 6
class 𝑟 |
4 | 3 | wrel 5605 |
. . . . 5
wff Rel 𝑟 |
5 | | cid 5499 |
. . . . . . 7
class
I |
6 | 3 | cuni 4844 |
. . . . . . . 8
class ∪ 𝑟 |
7 | 6 | cuni 4844 |
. . . . . . 7
class ∪ ∪ 𝑟 |
8 | 5, 7 | cres 5602 |
. . . . . 6
class ( I
↾ ∪ ∪ 𝑟) |
9 | 8, 3 | wss 3892 |
. . . . 5
wff ( I ↾
∪ ∪ 𝑟) ⊆ 𝑟 |
10 | 4, 9 | wa 397 |
. . . 4
wff (Rel 𝑟 ∧ ( I ↾ ∪ ∪ 𝑟) ⊆ 𝑟) |
11 | 3, 3 | ccom 5604 |
. . . . . 6
class (𝑟 ∘ 𝑟) |
12 | 11, 3 | wss 3892 |
. . . . 5
wff (𝑟 ∘ 𝑟) ⊆ 𝑟 |
13 | 7, 7 | cxp 5598 |
. . . . . 6
class (∪ ∪ 𝑟 × ∪ ∪ 𝑟) |
14 | 3 | ccnv 5599 |
. . . . . . 7
class ◡𝑟 |
15 | 14, 3 | ccom 5604 |
. . . . . 6
class (◡𝑟 ∘ 𝑟) |
16 | 13, 15 | wss 3892 |
. . . . 5
wff (∪ ∪ 𝑟 × ∪ ∪ 𝑟)
⊆ (◡𝑟 ∘ 𝑟) |
17 | 12, 16 | wa 397 |
. . . 4
wff ((𝑟 ∘ 𝑟) ⊆ 𝑟 ∧ (∪ ∪ 𝑟
× ∪ ∪ 𝑟) ⊆ (◡𝑟 ∘ 𝑟)) |
18 | 10, 17 | wa 397 |
. . 3
wff ((Rel 𝑟 ∧ ( I ↾ ∪ ∪ 𝑟) ⊆ 𝑟) ∧ ((𝑟 ∘ 𝑟) ⊆ 𝑟 ∧ (∪ ∪ 𝑟
× ∪ ∪ 𝑟) ⊆ (◡𝑟 ∘ 𝑟))) |
19 | 18, 2 | cab 2713 |
. 2
class {𝑟 ∣ ((Rel 𝑟 ∧ ( I ↾ ∪ ∪ 𝑟) ⊆ 𝑟) ∧ ((𝑟 ∘ 𝑟) ⊆ 𝑟 ∧ (∪ ∪ 𝑟
× ∪ ∪ 𝑟) ⊆ (◡𝑟 ∘ 𝑟)))} |
20 | 1, 19 | wceq 1539 |
1
wff DirRel =
{𝑟 ∣ ((Rel 𝑟 ∧ ( I ↾ ∪ ∪ 𝑟) ⊆ 𝑟) ∧ ((𝑟 ∘ 𝑟) ⊆ 𝑟 ∧ (∪ ∪ 𝑟
× ∪ ∪ 𝑟) ⊆ (◡𝑟 ∘ 𝑟)))} |