Detailed syntax breakdown of Definition df-dir
| Step | Hyp | Ref
| Expression |
| 1 | | cdir 18639 |
. 2
class
DirRel |
| 2 | | vr |
. . . . . . 7
setvar 𝑟 |
| 3 | 2 | cv 1539 |
. . . . . 6
class 𝑟 |
| 4 | 3 | wrel 5690 |
. . . . 5
wff Rel 𝑟 |
| 5 | | cid 5577 |
. . . . . . 7
class
I |
| 6 | 3 | cuni 4907 |
. . . . . . . 8
class ∪ 𝑟 |
| 7 | 6 | cuni 4907 |
. . . . . . 7
class ∪ ∪ 𝑟 |
| 8 | 5, 7 | cres 5687 |
. . . . . 6
class ( I
↾ ∪ ∪ 𝑟) |
| 9 | 8, 3 | wss 3951 |
. . . . 5
wff ( I ↾
∪ ∪ 𝑟) ⊆ 𝑟 |
| 10 | 4, 9 | wa 395 |
. . . 4
wff (Rel 𝑟 ∧ ( I ↾ ∪ ∪ 𝑟) ⊆ 𝑟) |
| 11 | 3, 3 | ccom 5689 |
. . . . . 6
class (𝑟 ∘ 𝑟) |
| 12 | 11, 3 | wss 3951 |
. . . . 5
wff (𝑟 ∘ 𝑟) ⊆ 𝑟 |
| 13 | 7, 7 | cxp 5683 |
. . . . . 6
class (∪ ∪ 𝑟 × ∪ ∪ 𝑟) |
| 14 | 3 | ccnv 5684 |
. . . . . . 7
class ◡𝑟 |
| 15 | 14, 3 | ccom 5689 |
. . . . . 6
class (◡𝑟 ∘ 𝑟) |
| 16 | 13, 15 | wss 3951 |
. . . . 5
wff (∪ ∪ 𝑟 × ∪ ∪ 𝑟)
⊆ (◡𝑟 ∘ 𝑟) |
| 17 | 12, 16 | wa 395 |
. . . 4
wff ((𝑟 ∘ 𝑟) ⊆ 𝑟 ∧ (∪ ∪ 𝑟
× ∪ ∪ 𝑟) ⊆ (◡𝑟 ∘ 𝑟)) |
| 18 | 10, 17 | wa 395 |
. . 3
wff ((Rel 𝑟 ∧ ( I ↾ ∪ ∪ 𝑟) ⊆ 𝑟) ∧ ((𝑟 ∘ 𝑟) ⊆ 𝑟 ∧ (∪ ∪ 𝑟
× ∪ ∪ 𝑟) ⊆ (◡𝑟 ∘ 𝑟))) |
| 19 | 18, 2 | cab 2714 |
. 2
class {𝑟 ∣ ((Rel 𝑟 ∧ ( I ↾ ∪ ∪ 𝑟) ⊆ 𝑟) ∧ ((𝑟 ∘ 𝑟) ⊆ 𝑟 ∧ (∪ ∪ 𝑟
× ∪ ∪ 𝑟) ⊆ (◡𝑟 ∘ 𝑟)))} |
| 20 | 1, 19 | wceq 1540 |
1
wff DirRel =
{𝑟 ∣ ((Rel 𝑟 ∧ ( I ↾ ∪ ∪ 𝑟) ⊆ 𝑟) ∧ ((𝑟 ∘ 𝑟) ⊆ 𝑟 ∧ (∪ ∪ 𝑟
× ∪ ∪ 𝑟) ⊆ (◡𝑟 ∘ 𝑟)))} |