| Metamath
Proof Explorer Theorem List (p. 186 of 497) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30845) |
(30846-32368) |
(32369-49617) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | mod1ile 18501 | The weak direction of the modular law (e.g., pmod1i 39813, atmod1i1 39822) that holds in any lattice. (Contributed by NM, 11-May-2012.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) ⇒ ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑋 ≤ 𝑍 → (𝑋 ∨ (𝑌 ∧ 𝑍)) ≤ ((𝑋 ∨ 𝑌) ∧ 𝑍))) | ||
| Theorem | mod2ile 18502 | The weak direction of the modular law (e.g., pmod2iN 39814) that holds in any lattice. (Contributed by NM, 11-May-2012.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) ⇒ ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑍 ≤ 𝑋 → ((𝑋 ∧ 𝑌) ∨ 𝑍) ≤ (𝑋 ∧ (𝑌 ∨ 𝑍)))) | ||
| Theorem | latmass 18503 | Lattice meet is associative. (Contributed by Stefan O'Rear, 30-Jan-2015.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ∧ = (meet‘𝐾) ⇒ ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 ∧ 𝑌) ∧ 𝑍) = (𝑋 ∧ (𝑌 ∧ 𝑍))) | ||
| Theorem | latdisdlem 18504* | Lemma for latdisd 18505. (Contributed by Stefan O'Rear, 30-Jan-2015.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) ⇒ ⊢ (𝐾 ∈ Lat → (∀𝑢 ∈ 𝐵 ∀𝑣 ∈ 𝐵 ∀𝑤 ∈ 𝐵 (𝑢 ∨ (𝑣 ∧ 𝑤)) = ((𝑢 ∨ 𝑣) ∧ (𝑢 ∨ 𝑤)) → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 (𝑥 ∧ (𝑦 ∨ 𝑧)) = ((𝑥 ∧ 𝑦) ∨ (𝑥 ∧ 𝑧)))) | ||
| Theorem | latdisd 18505* | In a lattice, joins distribute over meets if and only if meets distribute over joins; the distributive property is self-dual. (Contributed by Stefan O'Rear, 29-Jan-2015.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) ⇒ ⊢ (𝐾 ∈ Lat → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 (𝑥 ∨ (𝑦 ∧ 𝑧)) = ((𝑥 ∨ 𝑦) ∧ (𝑥 ∨ 𝑧)) ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 (𝑥 ∧ (𝑦 ∨ 𝑧)) = ((𝑥 ∧ 𝑦) ∨ (𝑥 ∧ 𝑧)))) | ||
| Syntax | ccla 18506 | Extend class notation with complete lattices. |
| class CLat | ||
| Definition | df-clat 18507 | Define the class of all complete lattices, where every subset of the base set has an LUB and a GLB. (Contributed by NM, 18-Oct-2012.) (Revised by NM, 12-Sep-2018.) |
| ⊢ CLat = {𝑝 ∈ Poset ∣ (dom (lub‘𝑝) = 𝒫 (Base‘𝑝) ∧ dom (glb‘𝑝) = 𝒫 (Base‘𝑝))} | ||
| Theorem | isclat 18508 | The predicate "is a complete lattice". (Contributed by NM, 18-Oct-2012.) (Revised by NM, 12-Sep-2018.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ 𝑈 = (lub‘𝐾) & ⊢ 𝐺 = (glb‘𝐾) ⇒ ⊢ (𝐾 ∈ CLat ↔ (𝐾 ∈ Poset ∧ (dom 𝑈 = 𝒫 𝐵 ∧ dom 𝐺 = 𝒫 𝐵))) | ||
| Theorem | clatpos 18509 | A complete lattice is a poset. (Contributed by NM, 8-Sep-2018.) |
| ⊢ (𝐾 ∈ CLat → 𝐾 ∈ Poset) | ||
| Theorem | clatlem 18510 | Lemma for properties of a complete lattice. (Contributed by NM, 14-Sep-2011.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ 𝑈 = (lub‘𝐾) & ⊢ 𝐺 = (glb‘𝐾) ⇒ ⊢ ((𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵) → ((𝑈‘𝑆) ∈ 𝐵 ∧ (𝐺‘𝑆) ∈ 𝐵)) | ||
| Theorem | clatlubcl 18511 | Any subset of the base set has an LUB in a complete lattice. (Contributed by NM, 14-Sep-2011.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ 𝑈 = (lub‘𝐾) ⇒ ⊢ ((𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵) → (𝑈‘𝑆) ∈ 𝐵) | ||
| Theorem | clatlubcl2 18512 | Any subset of the base set has an LUB in a complete lattice. (Contributed by NM, 13-Sep-2018.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ 𝑈 = (lub‘𝐾) ⇒ ⊢ ((𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵) → 𝑆 ∈ dom 𝑈) | ||
| Theorem | clatglbcl 18513 | Any subset of the base set has a GLB in a complete lattice. (Contributed by NM, 14-Sep-2011.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ 𝐺 = (glb‘𝐾) ⇒ ⊢ ((𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵) → (𝐺‘𝑆) ∈ 𝐵) | ||
| Theorem | clatglbcl2 18514 | Any subset of the base set has a GLB in a complete lattice. (Contributed by NM, 13-Sep-2018.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ 𝐺 = (glb‘𝐾) ⇒ ⊢ ((𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵) → 𝑆 ∈ dom 𝐺) | ||
| Theorem | oduclatb 18515 | Being a complete lattice is self-dual. (Contributed by Stefan O'Rear, 29-Jan-2015.) |
| ⊢ 𝐷 = (ODual‘𝑂) ⇒ ⊢ (𝑂 ∈ CLat ↔ 𝐷 ∈ CLat) | ||
| Theorem | clatl 18516 | A complete lattice is a lattice. (Contributed by NM, 18-Sep-2011.) TODO: use eqrelrdv2 5774 to shorten proof and eliminate joindmss 18387 and meetdmss 18401? |
| ⊢ (𝐾 ∈ CLat → 𝐾 ∈ Lat) | ||
| Theorem | isglbd 18517* | Properties that determine the greatest lower bound of a complete lattice. (Contributed by Mario Carneiro, 19-Mar-2014.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 𝐺 = (glb‘𝐾) & ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → 𝐻 ≤ 𝑦) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦) → 𝑥 ≤ 𝐻) & ⊢ (𝜑 → 𝐾 ∈ CLat) & ⊢ (𝜑 → 𝑆 ⊆ 𝐵) & ⊢ (𝜑 → 𝐻 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝐺‘𝑆) = 𝐻) | ||
| Theorem | lublem 18518* | Lemma for the least upper bound properties in a complete lattice. (Contributed by NM, 19-Oct-2011.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 𝑈 = (lub‘𝐾) ⇒ ⊢ ((𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵) → (∀𝑦 ∈ 𝑆 𝑦 ≤ (𝑈‘𝑆) ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑧 → (𝑈‘𝑆) ≤ 𝑧))) | ||
| Theorem | lubub 18519 | The LUB of a complete lattice subset is an upper bound. (Contributed by NM, 19-Oct-2011.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 𝑈 = (lub‘𝐾) ⇒ ⊢ ((𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵 ∧ 𝑋 ∈ 𝑆) → 𝑋 ≤ (𝑈‘𝑆)) | ||
| Theorem | lubl 18520* | The LUB of a complete lattice subset is the least bound. (Contributed by NM, 19-Oct-2011.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 𝑈 = (lub‘𝐾) ⇒ ⊢ ((𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵 ∧ 𝑋 ∈ 𝐵) → (∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑋 → (𝑈‘𝑆) ≤ 𝑋)) | ||
| Theorem | lubss 18521 | Subset law for least upper bounds. (chsupss 31269 analog.) (Contributed by NM, 20-Oct-2011.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 𝑈 = (lub‘𝐾) ⇒ ⊢ ((𝐾 ∈ CLat ∧ 𝑇 ⊆ 𝐵 ∧ 𝑆 ⊆ 𝑇) → (𝑈‘𝑆) ≤ (𝑈‘𝑇)) | ||
| Theorem | lubel 18522 | An element of a set is less than or equal to the least upper bound of the set. (Contributed by NM, 21-Oct-2011.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 𝑈 = (lub‘𝐾) ⇒ ⊢ ((𝐾 ∈ CLat ∧ 𝑋 ∈ 𝑆 ∧ 𝑆 ⊆ 𝐵) → 𝑋 ≤ (𝑈‘𝑆)) | ||
| Theorem | lubun 18523 | The LUB of a union. (Contributed by NM, 5-Mar-2012.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝑈 = (lub‘𝐾) ⇒ ⊢ ((𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵 ∧ 𝑇 ⊆ 𝐵) → (𝑈‘(𝑆 ∪ 𝑇)) = ((𝑈‘𝑆) ∨ (𝑈‘𝑇))) | ||
| Theorem | clatglb 18524* | Properties of greatest lower bound of a complete lattice. (Contributed by NM, 5-Dec-2011.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 𝐺 = (glb‘𝐾) ⇒ ⊢ ((𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵) → (∀𝑦 ∈ 𝑆 (𝐺‘𝑆) ≤ 𝑦 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑧 ≤ 𝑦 → 𝑧 ≤ (𝐺‘𝑆)))) | ||
| Theorem | clatglble 18525 | The greatest lower bound is the least element. (Contributed by NM, 5-Dec-2011.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 𝐺 = (glb‘𝐾) ⇒ ⊢ ((𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵 ∧ 𝑋 ∈ 𝑆) → (𝐺‘𝑆) ≤ 𝑋) | ||
| Theorem | clatleglb 18526* | Two ways of expressing "less than or equal to the greatest lower bound." (Contributed by NM, 5-Dec-2011.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 𝐺 = (glb‘𝐾) ⇒ ⊢ ((𝐾 ∈ CLat ∧ 𝑋 ∈ 𝐵 ∧ 𝑆 ⊆ 𝐵) → (𝑋 ≤ (𝐺‘𝑆) ↔ ∀𝑦 ∈ 𝑆 𝑋 ≤ 𝑦)) | ||
| Theorem | clatglbss 18527 | Subset law for greatest lower bound. (Contributed by Mario Carneiro, 16-Apr-2014.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 𝐺 = (glb‘𝐾) ⇒ ⊢ ((𝐾 ∈ CLat ∧ 𝑇 ⊆ 𝐵 ∧ 𝑆 ⊆ 𝑇) → (𝐺‘𝑇) ≤ (𝐺‘𝑆)) | ||
| Syntax | cdlat 18528 | The class of distributive lattices. |
| class DLat | ||
| Definition | df-dlat 18529* | A distributive lattice is a lattice in which meets distribute over joins, or equivalently (latdisd 18505) joins distribute over meets. (Contributed by Stefan O'Rear, 30-Jan-2015.) |
| ⊢ DLat = {𝑘 ∈ Lat ∣ [(Base‘𝑘) / 𝑏][(join‘𝑘) / 𝑗][(meet‘𝑘) / 𝑚]∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 ∀𝑧 ∈ 𝑏 (𝑥𝑚(𝑦𝑗𝑧)) = ((𝑥𝑚𝑦)𝑗(𝑥𝑚𝑧))} | ||
| Theorem | isdlat 18530* | Property of being a distributive lattice. (Contributed by Stefan O'Rear, 30-Jan-2015.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) ⇒ ⊢ (𝐾 ∈ DLat ↔ (𝐾 ∈ Lat ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 (𝑥 ∧ (𝑦 ∨ 𝑧)) = ((𝑥 ∧ 𝑦) ∨ (𝑥 ∧ 𝑧)))) | ||
| Theorem | dlatmjdi 18531 | In a distributive lattice, meets distribute over joins. (Contributed by Stefan O'Rear, 30-Jan-2015.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) ⇒ ⊢ ((𝐾 ∈ DLat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑋 ∧ (𝑌 ∨ 𝑍)) = ((𝑋 ∧ 𝑌) ∨ (𝑋 ∧ 𝑍))) | ||
| Theorem | dlatl 18532 | A distributive lattice is a lattice. (Contributed by Stefan O'Rear, 30-Jan-2015.) |
| ⊢ (𝐾 ∈ DLat → 𝐾 ∈ Lat) | ||
| Theorem | odudlatb 18533 | The dual of a distributive lattice is a distributive lattice and conversely. (Contributed by Stefan O'Rear, 30-Jan-2015.) |
| ⊢ 𝐷 = (ODual‘𝐾) ⇒ ⊢ (𝐾 ∈ 𝑉 → (𝐾 ∈ DLat ↔ 𝐷 ∈ DLat)) | ||
| Theorem | dlatjmdi 18534 | In a distributive lattice, joins distribute over meets. (Contributed by Stefan O'Rear, 30-Jan-2015.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) ⇒ ⊢ ((𝐾 ∈ DLat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑋 ∨ (𝑌 ∧ 𝑍)) = ((𝑋 ∨ 𝑌) ∧ (𝑋 ∨ 𝑍))) | ||
| Syntax | cipo 18535 | Class function defining inclusion posets. |
| class toInc | ||
| Definition | df-ipo 18536* |
For any family of sets, define the poset of that family ordered by
inclusion. See ipobas 18539, ipolerval 18540, and ipole 18542 for its contract.
EDITORIAL: I'm not thrilled with the name. Any suggestions? (Contributed by Stefan O'Rear, 30-Jan-2015.) (New usage is discouraged.) |
| ⊢ toInc = (𝑓 ∈ V ↦ ⦋{〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝑓 ∧ 𝑥 ⊆ 𝑦)} / 𝑜⦌({〈(Base‘ndx), 𝑓〉, 〈(TopSet‘ndx), (ordTop‘𝑜)〉} ∪ {〈(le‘ndx), 𝑜〉, 〈(oc‘ndx), (𝑥 ∈ 𝑓 ↦ ∪ {𝑦 ∈ 𝑓 ∣ (𝑦 ∩ 𝑥) = ∅})〉})) | ||
| Theorem | ipostr 18537 | The structure of df-ipo 18536 is a structure defining indices up to 11. (Contributed by Mario Carneiro, 25-Oct-2015.) |
| ⊢ ({〈(Base‘ndx), 𝐵〉, 〈(TopSet‘ndx), 𝐽〉} ∪ {〈(le‘ndx), ≤ 〉, 〈(oc‘ndx), ⊥ 〉}) Struct 〈1, ;11〉 | ||
| Theorem | ipoval 18538* | Value of the inclusion poset. (Contributed by Stefan O'Rear, 30-Jan-2015.) |
| ⊢ 𝐼 = (toInc‘𝐹) & ⊢ ≤ = {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝐹 ∧ 𝑥 ⊆ 𝑦)} ⇒ ⊢ (𝐹 ∈ 𝑉 → 𝐼 = ({〈(Base‘ndx), 𝐹〉, 〈(TopSet‘ndx), (ordTop‘ ≤ )〉} ∪ {〈(le‘ndx), ≤ 〉, 〈(oc‘ndx), (𝑥 ∈ 𝐹 ↦ ∪ {𝑦 ∈ 𝐹 ∣ (𝑦 ∩ 𝑥) = ∅})〉})) | ||
| Theorem | ipobas 18539 | Base set of the inclusion poset. (Contributed by Stefan O'Rear, 30-Jan-2015.) (Revised by Mario Carneiro, 25-Oct-2015.) |
| ⊢ 𝐼 = (toInc‘𝐹) ⇒ ⊢ (𝐹 ∈ 𝑉 → 𝐹 = (Base‘𝐼)) | ||
| Theorem | ipolerval 18540* | Relation of the inclusion poset. (Contributed by Stefan O'Rear, 30-Jan-2015.) |
| ⊢ 𝐼 = (toInc‘𝐹) ⇒ ⊢ (𝐹 ∈ 𝑉 → {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝐹 ∧ 𝑥 ⊆ 𝑦)} = (le‘𝐼)) | ||
| Theorem | ipotset 18541 | Topology of the inclusion poset. (Contributed by Mario Carneiro, 24-Oct-2015.) |
| ⊢ 𝐼 = (toInc‘𝐹) & ⊢ ≤ = (le‘𝐼) ⇒ ⊢ (𝐹 ∈ 𝑉 → (ordTop‘ ≤ ) = (TopSet‘𝐼)) | ||
| Theorem | ipole 18542 | Weak order condition of the inclusion poset. (Contributed by Stefan O'Rear, 30-Jan-2015.) |
| ⊢ 𝐼 = (toInc‘𝐹) & ⊢ ≤ = (le‘𝐼) ⇒ ⊢ ((𝐹 ∈ 𝑉 ∧ 𝑋 ∈ 𝐹 ∧ 𝑌 ∈ 𝐹) → (𝑋 ≤ 𝑌 ↔ 𝑋 ⊆ 𝑌)) | ||
| Theorem | ipolt 18543 | Strict order condition of the inclusion poset. (Contributed by Stefan O'Rear, 30-Jan-2015.) |
| ⊢ 𝐼 = (toInc‘𝐹) & ⊢ < = (lt‘𝐼) ⇒ ⊢ ((𝐹 ∈ 𝑉 ∧ 𝑋 ∈ 𝐹 ∧ 𝑌 ∈ 𝐹) → (𝑋 < 𝑌 ↔ 𝑋 ⊊ 𝑌)) | ||
| Theorem | ipopos 18544 | The inclusion poset on a family of sets is actually a poset. (Contributed by Stefan O'Rear, 30-Jan-2015.) |
| ⊢ 𝐼 = (toInc‘𝐹) ⇒ ⊢ 𝐼 ∈ Poset | ||
| Theorem | isipodrs 18545* | Condition for a family of sets to be directed by inclusion. (Contributed by Stefan O'Rear, 2-Apr-2015.) |
| ⊢ ((toInc‘𝐴) ∈ Dirset ↔ (𝐴 ∈ V ∧ 𝐴 ≠ ∅ ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ∃𝑧 ∈ 𝐴 (𝑥 ∪ 𝑦) ⊆ 𝑧)) | ||
| Theorem | ipodrscl 18546 | Direction by inclusion as used here implies sethood. (Contributed by Stefan O'Rear, 2-Apr-2015.) |
| ⊢ ((toInc‘𝐴) ∈ Dirset → 𝐴 ∈ V) | ||
| Theorem | ipodrsfi 18547* | Finite upper bound property for directed collections of sets. (Contributed by Stefan O'Rear, 2-Apr-2015.) |
| ⊢ (((toInc‘𝐴) ∈ Dirset ∧ 𝑋 ⊆ 𝐴 ∧ 𝑋 ∈ Fin) → ∃𝑧 ∈ 𝐴 ∪ 𝑋 ⊆ 𝑧) | ||
| Theorem | fpwipodrs 18548 | The finite subsets of any set are directed by inclusion. (Contributed by Stefan O'Rear, 2-Apr-2015.) |
| ⊢ (𝐴 ∈ 𝑉 → (toInc‘(𝒫 𝐴 ∩ Fin)) ∈ Dirset) | ||
| Theorem | ipodrsima 18549* | The monotone image of a directed set. (Contributed by Stefan O'Rear, 2-Apr-2015.) |
| ⊢ (𝜑 → 𝐹 Fn 𝒫 𝐴) & ⊢ ((𝜑 ∧ (𝑢 ⊆ 𝑣 ∧ 𝑣 ⊆ 𝐴)) → (𝐹‘𝑢) ⊆ (𝐹‘𝑣)) & ⊢ (𝜑 → (toInc‘𝐵) ∈ Dirset) & ⊢ (𝜑 → 𝐵 ⊆ 𝒫 𝐴) & ⊢ (𝜑 → (𝐹 “ 𝐵) ∈ 𝑉) ⇒ ⊢ (𝜑 → (toInc‘(𝐹 “ 𝐵)) ∈ Dirset) | ||
| Theorem | isacs3lem 18550* | An algebraic closure system satisfies isacs3 18558. (Contributed by Stefan O'Rear, 2-Apr-2015.) |
| ⊢ (𝐶 ∈ (ACS‘𝑋) → (𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → ∪ 𝑠 ∈ 𝐶))) | ||
| Theorem | acsdrsel 18551 | An algebraic closure system contains all directed unions of closed sets. (Contributed by Stefan O'Rear, 2-Apr-2015.) |
| ⊢ ((𝐶 ∈ (ACS‘𝑋) ∧ 𝑌 ⊆ 𝐶 ∧ (toInc‘𝑌) ∈ Dirset) → ∪ 𝑌 ∈ 𝐶) | ||
| Theorem | isacs4lem 18552* | In a closure system in which directed unions of closed sets are closed, closure commutes with directed unions. (Contributed by Stefan O'Rear, 2-Apr-2015.) |
| ⊢ 𝐹 = (mrCls‘𝐶) ⇒ ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → ∪ 𝑠 ∈ 𝐶)) → (𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑡 ∈ 𝒫 𝒫 𝑋((toInc‘𝑡) ∈ Dirset → (𝐹‘∪ 𝑡) = ∪ (𝐹 “ 𝑡)))) | ||
| Theorem | isacs5lem 18553* | If closure commutes with directed unions, then the closure of a set is the closure of its finite subsets. (Contributed by Stefan O'Rear, 2-Apr-2015.) |
| ⊢ 𝐹 = (mrCls‘𝐶) ⇒ ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑡 ∈ 𝒫 𝒫 𝑋((toInc‘𝑡) ∈ Dirset → (𝐹‘∪ 𝑡) = ∪ (𝐹 “ 𝑡))) → (𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝑋(𝐹‘𝑠) = ∪ (𝐹 “ (𝒫 𝑠 ∩ Fin)))) | ||
| Theorem | acsdrscl 18554 | In an algebraic closure system, closure commutes with directed unions. (Contributed by Stefan O'Rear, 2-Apr-2015.) |
| ⊢ 𝐹 = (mrCls‘𝐶) ⇒ ⊢ ((𝐶 ∈ (ACS‘𝑋) ∧ 𝑌 ⊆ 𝒫 𝑋 ∧ (toInc‘𝑌) ∈ Dirset) → (𝐹‘∪ 𝑌) = ∪ (𝐹 “ 𝑌)) | ||
| Theorem | acsficl 18555 | A closure in an algebraic closure system is the union of the closures of finite subsets. (Contributed by Stefan O'Rear, 2-Apr-2015.) |
| ⊢ 𝐹 = (mrCls‘𝐶) ⇒ ⊢ ((𝐶 ∈ (ACS‘𝑋) ∧ 𝑆 ⊆ 𝑋) → (𝐹‘𝑆) = ∪ (𝐹 “ (𝒫 𝑆 ∩ Fin))) | ||
| Theorem | isacs5 18556* | A closure system is algebraic iff the closure of a generating set is the union of the closures of its finite subsets. (Contributed by Stefan O'Rear, 2-Apr-2015.) |
| ⊢ 𝐹 = (mrCls‘𝐶) ⇒ ⊢ (𝐶 ∈ (ACS‘𝑋) ↔ (𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝑋(𝐹‘𝑠) = ∪ (𝐹 “ (𝒫 𝑠 ∩ Fin)))) | ||
| Theorem | isacs4 18557* | A closure system is algebraic iff closure commutes with directed unions. (Contributed by Stefan O'Rear, 2-Apr-2015.) |
| ⊢ 𝐹 = (mrCls‘𝐶) ⇒ ⊢ (𝐶 ∈ (ACS‘𝑋) ↔ (𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝒫 𝑋((toInc‘𝑠) ∈ Dirset → (𝐹‘∪ 𝑠) = ∪ (𝐹 “ 𝑠)))) | ||
| Theorem | isacs3 18558* | A closure system is algebraic iff directed unions of closed sets are closed. (Contributed by Stefan O'Rear, 2-Apr-2015.) |
| ⊢ (𝐶 ∈ (ACS‘𝑋) ↔ (𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → ∪ 𝑠 ∈ 𝐶))) | ||
| Theorem | acsficld 18559 | In an algebraic closure system, the closure of a set is the union of the closures of its finite subsets. Deduction form of acsficl 18555. (Contributed by David Moews, 1-May-2017.) |
| ⊢ (𝜑 → 𝐴 ∈ (ACS‘𝑋)) & ⊢ 𝑁 = (mrCls‘𝐴) & ⊢ (𝜑 → 𝑆 ⊆ 𝑋) ⇒ ⊢ (𝜑 → (𝑁‘𝑆) = ∪ (𝑁 “ (𝒫 𝑆 ∩ Fin))) | ||
| Theorem | acsficl2d 18560* | In an algebraic closure system, an element is in the closure of a set if and only if it is in the closure of a finite subset. Alternate form of acsficl 18555. Deduction form. (Contributed by David Moews, 1-May-2017.) |
| ⊢ (𝜑 → 𝐴 ∈ (ACS‘𝑋)) & ⊢ 𝑁 = (mrCls‘𝐴) & ⊢ (𝜑 → 𝑆 ⊆ 𝑋) ⇒ ⊢ (𝜑 → (𝑌 ∈ (𝑁‘𝑆) ↔ ∃𝑥 ∈ (𝒫 𝑆 ∩ Fin)𝑌 ∈ (𝑁‘𝑥))) | ||
| Theorem | acsfiindd 18561 | In an algebraic closure system, a set is independent if and only if all its finite subsets are independent. Part of Proposition 4.1.3 in [FaureFrolicher] p. 83. (Contributed by David Moews, 1-May-2017.) |
| ⊢ (𝜑 → 𝐴 ∈ (ACS‘𝑋)) & ⊢ 𝑁 = (mrCls‘𝐴) & ⊢ 𝐼 = (mrInd‘𝐴) & ⊢ (𝜑 → 𝑆 ⊆ 𝑋) ⇒ ⊢ (𝜑 → (𝑆 ∈ 𝐼 ↔ (𝒫 𝑆 ∩ Fin) ⊆ 𝐼)) | ||
| Theorem | acsmapd 18562* | In an algebraic closure system, if 𝑇 is contained in the closure of 𝑆, there is a map 𝑓 from 𝑇 into the set of finite subsets of 𝑆 such that the closure of ∪ ran 𝑓 contains 𝑇. This is proven by applying acsficl2d 18560 to each element of 𝑇. See Section II.5 in [Cohn] p. 81 to 82. (Contributed by David Moews, 1-May-2017.) |
| ⊢ (𝜑 → 𝐴 ∈ (ACS‘𝑋)) & ⊢ 𝑁 = (mrCls‘𝐴) & ⊢ (𝜑 → 𝑆 ⊆ 𝑋) & ⊢ (𝜑 → 𝑇 ⊆ (𝑁‘𝑆)) ⇒ ⊢ (𝜑 → ∃𝑓(𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ 𝑇 ⊆ (𝑁‘∪ ran 𝑓))) | ||
| Theorem | acsmap2d 18563* | In an algebraic closure system, if 𝑆 and 𝑇 have the same closure and 𝑆 is independent, then there is a map 𝑓 from 𝑇 into the set of finite subsets of 𝑆 such that 𝑆 equals the union of ran 𝑓. This is proven by taking the map 𝑓 from acsmapd 18562 and observing that, since 𝑆 and 𝑇 have the same closure, the closure of ∪ ran 𝑓 must contain 𝑆. Since 𝑆 is independent, by mrissmrcd 17650, ∪ ran 𝑓 must equal 𝑆. See Section II.5 in [Cohn] p. 81 to 82. (Contributed by David Moews, 1-May-2017.) |
| ⊢ (𝜑 → 𝐴 ∈ (ACS‘𝑋)) & ⊢ 𝑁 = (mrCls‘𝐴) & ⊢ 𝐼 = (mrInd‘𝐴) & ⊢ (𝜑 → 𝑆 ∈ 𝐼) & ⊢ (𝜑 → 𝑇 ⊆ 𝑋) & ⊢ (𝜑 → (𝑁‘𝑆) = (𝑁‘𝑇)) ⇒ ⊢ (𝜑 → ∃𝑓(𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ 𝑆 = ∪ ran 𝑓)) | ||
| Theorem | acsinfd 18564 | In an algebraic closure system, if 𝑆 and 𝑇 have the same closure and 𝑆 is infinite independent, then 𝑇 is infinite. This follows from applying unirnffid 9357 to the map given in acsmap2d 18563. See Section II.5 in [Cohn] p. 81 to 82. (Contributed by David Moews, 1-May-2017.) |
| ⊢ (𝜑 → 𝐴 ∈ (ACS‘𝑋)) & ⊢ 𝑁 = (mrCls‘𝐴) & ⊢ 𝐼 = (mrInd‘𝐴) & ⊢ (𝜑 → 𝑆 ∈ 𝐼) & ⊢ (𝜑 → 𝑇 ⊆ 𝑋) & ⊢ (𝜑 → (𝑁‘𝑆) = (𝑁‘𝑇)) & ⊢ (𝜑 → ¬ 𝑆 ∈ Fin) ⇒ ⊢ (𝜑 → ¬ 𝑇 ∈ Fin) | ||
| Theorem | acsdomd 18565 | In an algebraic closure system, if 𝑆 and 𝑇 have the same closure and 𝑆 is infinite independent, then 𝑇 dominates 𝑆. This follows from applying acsinfd 18564 and then applying unirnfdomd 10579 to the map given in acsmap2d 18563. See Section II.5 in [Cohn] p. 81 to 82. (Contributed by David Moews, 1-May-2017.) |
| ⊢ (𝜑 → 𝐴 ∈ (ACS‘𝑋)) & ⊢ 𝑁 = (mrCls‘𝐴) & ⊢ 𝐼 = (mrInd‘𝐴) & ⊢ (𝜑 → 𝑆 ∈ 𝐼) & ⊢ (𝜑 → 𝑇 ⊆ 𝑋) & ⊢ (𝜑 → (𝑁‘𝑆) = (𝑁‘𝑇)) & ⊢ (𝜑 → ¬ 𝑆 ∈ Fin) ⇒ ⊢ (𝜑 → 𝑆 ≼ 𝑇) | ||
| Theorem | acsinfdimd 18566 | In an algebraic closure system, if two independent sets have equal closure and one is infinite, then they are equinumerous. This is proven by using acsdomd 18565 twice with acsinfd 18564. See Section II.5 in [Cohn] p. 81 to 82. (Contributed by David Moews, 1-May-2017.) |
| ⊢ (𝜑 → 𝐴 ∈ (ACS‘𝑋)) & ⊢ 𝑁 = (mrCls‘𝐴) & ⊢ 𝐼 = (mrInd‘𝐴) & ⊢ (𝜑 → 𝑆 ∈ 𝐼) & ⊢ (𝜑 → 𝑇 ∈ 𝐼) & ⊢ (𝜑 → (𝑁‘𝑆) = (𝑁‘𝑇)) & ⊢ (𝜑 → ¬ 𝑆 ∈ Fin) ⇒ ⊢ (𝜑 → 𝑆 ≈ 𝑇) | ||
| Theorem | acsexdimd 18567* | In an algebraic closure system whose closure operator has the exchange property, if two independent sets have equal closure, they are equinumerous. See mreexfidimd 17660 for the finite case and acsinfdimd 18566 for the infinite case. This is a special case of Theorem 4.2.2 in [FaureFrolicher] p. 87. (Contributed by David Moews, 1-May-2017.) |
| ⊢ (𝜑 → 𝐴 ∈ (ACS‘𝑋)) & ⊢ 𝑁 = (mrCls‘𝐴) & ⊢ 𝐼 = (mrInd‘𝐴) & ⊢ (𝜑 → ∀𝑠 ∈ 𝒫 𝑋∀𝑦 ∈ 𝑋 ∀𝑧 ∈ ((𝑁‘(𝑠 ∪ {𝑦})) ∖ (𝑁‘𝑠))𝑦 ∈ (𝑁‘(𝑠 ∪ {𝑧}))) & ⊢ (𝜑 → 𝑆 ∈ 𝐼) & ⊢ (𝜑 → 𝑇 ∈ 𝐼) & ⊢ (𝜑 → (𝑁‘𝑆) = (𝑁‘𝑇)) ⇒ ⊢ (𝜑 → 𝑆 ≈ 𝑇) | ||
| Theorem | mrelatglb 18568 | Greatest lower bounds in a Moore space are realized by intersections. (Contributed by Stefan O'Rear, 31-Jan-2015.) See mrelatglbALT 48918 for an alternate proof. |
| ⊢ 𝐼 = (toInc‘𝐶) & ⊢ 𝐺 = (glb‘𝐼) ⇒ ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝐶 ∧ 𝑈 ≠ ∅) → (𝐺‘𝑈) = ∩ 𝑈) | ||
| Theorem | mrelatglb0 18569 | The empty intersection in a Moore space is realized by the base set. (Contributed by Stefan O'Rear, 31-Jan-2015.) |
| ⊢ 𝐼 = (toInc‘𝐶) & ⊢ 𝐺 = (glb‘𝐼) ⇒ ⊢ (𝐶 ∈ (Moore‘𝑋) → (𝐺‘∅) = 𝑋) | ||
| Theorem | mrelatlub 18570 | Least upper bounds in a Moore space are realized by the closure of the union. (Contributed by Stefan O'Rear, 31-Jan-2015.) See mrelatlubALT 48917 for an alternate proof. |
| ⊢ 𝐼 = (toInc‘𝐶) & ⊢ 𝐹 = (mrCls‘𝐶) & ⊢ 𝐿 = (lub‘𝐼) ⇒ ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝐶) → (𝐿‘𝑈) = (𝐹‘∪ 𝑈)) | ||
| Theorem | mreclatBAD 18571* | A Moore space is a complete lattice under inclusion. (Contributed by Stefan O'Rear, 31-Jan-2015.) TODO (df-riota 7360 update): Reprove using isclat 18508 instead of the isclatBAD. hypothesis. See commented-out mreclat above. See mreclat 48919 for a good version. |
| ⊢ 𝐼 = (toInc‘𝐶) & ⊢ (𝐼 ∈ CLat ↔ (𝐼 ∈ Poset ∧ ∀𝑥(𝑥 ⊆ (Base‘𝐼) → (((lub‘𝐼)‘𝑥) ∈ (Base‘𝐼) ∧ ((glb‘𝐼)‘𝑥) ∈ (Base‘𝐼))))) ⇒ ⊢ (𝐶 ∈ (Moore‘𝑋) → 𝐼 ∈ CLat) | ||
See commented-out notes for lattices as relations. | ||
| Syntax | cps 18572 | Extend class notation with the class of all posets. |
| class PosetRel | ||
| Syntax | ctsr 18573 | Extend class notation with the class of all totally ordered sets. |
| class TosetRel | ||
| Definition | df-ps 18574 | Define the class of all posets (partially ordered sets) with weak ordering (e.g., "less than or equal to" instead of "less than"). A poset is a relation which is transitive, reflexive, and antisymmetric. (Contributed by NM, 11-May-2008.) |
| ⊢ PosetRel = {𝑟 ∣ (Rel 𝑟 ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟 ∧ (𝑟 ∩ ◡𝑟) = ( I ↾ ∪ ∪ 𝑟))} | ||
| Definition | df-tsr 18575 | Define the class of all totally ordered sets. (Contributed by FL, 1-Nov-2009.) |
| ⊢ TosetRel = {𝑟 ∈ PosetRel ∣ (dom 𝑟 × dom 𝑟) ⊆ (𝑟 ∪ ◡𝑟)} | ||
| Theorem | isps 18576 | The predicate "is a poset" i.e. a transitive, reflexive, antisymmetric relation. (Contributed by NM, 11-May-2008.) |
| ⊢ (𝑅 ∈ 𝐴 → (𝑅 ∈ PosetRel ↔ (Rel 𝑅 ∧ (𝑅 ∘ 𝑅) ⊆ 𝑅 ∧ (𝑅 ∩ ◡𝑅) = ( I ↾ ∪ ∪ 𝑅)))) | ||
| Theorem | psrel 18577 | A poset is a relation. (Contributed by NM, 12-May-2008.) |
| ⊢ (𝐴 ∈ PosetRel → Rel 𝐴) | ||
| Theorem | psref2 18578 | A poset is antisymmetric and reflexive. (Contributed by FL, 3-Aug-2009.) |
| ⊢ (𝑅 ∈ PosetRel → (𝑅 ∩ ◡𝑅) = ( I ↾ ∪ ∪ 𝑅)) | ||
| Theorem | pstr2 18579 | A poset is transitive. (Contributed by FL, 3-Aug-2009.) |
| ⊢ (𝑅 ∈ PosetRel → (𝑅 ∘ 𝑅) ⊆ 𝑅) | ||
| Theorem | pslem 18580 | Lemma for psref 18582 and others. (Contributed by NM, 12-May-2008.) (Revised by Mario Carneiro, 30-Apr-2015.) |
| ⊢ (𝑅 ∈ PosetRel → (((𝐴𝑅𝐵 ∧ 𝐵𝑅𝐶) → 𝐴𝑅𝐶) ∧ (𝐴 ∈ ∪ ∪ 𝑅 → 𝐴𝑅𝐴) ∧ ((𝐴𝑅𝐵 ∧ 𝐵𝑅𝐴) → 𝐴 = 𝐵))) | ||
| Theorem | psdmrn 18581 | The domain and range of a poset equal its field. (Contributed by NM, 13-May-2008.) |
| ⊢ (𝑅 ∈ PosetRel → (dom 𝑅 = ∪ ∪ 𝑅 ∧ ran 𝑅 = ∪ ∪ 𝑅)) | ||
| Theorem | psref 18582 | A poset is reflexive. (Contributed by NM, 13-May-2008.) |
| ⊢ 𝑋 = dom 𝑅 ⇒ ⊢ ((𝑅 ∈ PosetRel ∧ 𝐴 ∈ 𝑋) → 𝐴𝑅𝐴) | ||
| Theorem | psrn 18583 | The range of a poset equals it domain. (Contributed by NM, 7-Jul-2008.) |
| ⊢ 𝑋 = dom 𝑅 ⇒ ⊢ (𝑅 ∈ PosetRel → 𝑋 = ran 𝑅) | ||
| Theorem | psasym 18584 | A poset is antisymmetric. (Contributed by NM, 12-May-2008.) |
| ⊢ ((𝑅 ∈ PosetRel ∧ 𝐴𝑅𝐵 ∧ 𝐵𝑅𝐴) → 𝐴 = 𝐵) | ||
| Theorem | pstr 18585 | A poset is transitive. (Contributed by NM, 12-May-2008.) (Revised by Mario Carneiro, 30-Apr-2015.) |
| ⊢ ((𝑅 ∈ PosetRel ∧ 𝐴𝑅𝐵 ∧ 𝐵𝑅𝐶) → 𝐴𝑅𝐶) | ||
| Theorem | cnvps 18586 | The converse of a poset is a poset. In the general case (◡𝑅 ∈ PosetRel → 𝑅 ∈ PosetRel) is not true. See cnvpsb 18587 for a special case where the property holds. (Contributed by FL, 5-Jan-2009.) (Proof shortened by Mario Carneiro, 3-Sep-2015.) |
| ⊢ (𝑅 ∈ PosetRel → ◡𝑅 ∈ PosetRel) | ||
| Theorem | cnvpsb 18587 | The converse of a poset is a poset. (Contributed by FL, 5-Jan-2009.) |
| ⊢ (Rel 𝑅 → (𝑅 ∈ PosetRel ↔ ◡𝑅 ∈ PosetRel)) | ||
| Theorem | psss 18588 | Any subset of a partially ordered set is partially ordered. (Contributed by FL, 24-Jan-2010.) |
| ⊢ (𝑅 ∈ PosetRel → (𝑅 ∩ (𝐴 × 𝐴)) ∈ PosetRel) | ||
| Theorem | psssdm2 18589 | Field of a subposet. (Contributed by Mario Carneiro, 9-Sep-2015.) |
| ⊢ 𝑋 = dom 𝑅 ⇒ ⊢ (𝑅 ∈ PosetRel → dom (𝑅 ∩ (𝐴 × 𝐴)) = (𝑋 ∩ 𝐴)) | ||
| Theorem | psssdm 18590 | Field of a subposet. (Contributed by FL, 19-Sep-2011.) (Revised by Mario Carneiro, 9-Sep-2015.) |
| ⊢ 𝑋 = dom 𝑅 ⇒ ⊢ ((𝑅 ∈ PosetRel ∧ 𝐴 ⊆ 𝑋) → dom (𝑅 ∩ (𝐴 × 𝐴)) = 𝐴) | ||
| Theorem | istsr 18591 | The predicate is a toset. (Contributed by FL, 1-Nov-2009.) (Revised by Mario Carneiro, 22-Nov-2013.) |
| ⊢ 𝑋 = dom 𝑅 ⇒ ⊢ (𝑅 ∈ TosetRel ↔ (𝑅 ∈ PosetRel ∧ (𝑋 × 𝑋) ⊆ (𝑅 ∪ ◡𝑅))) | ||
| Theorem | istsr2 18592* | The predicate is a toset. (Contributed by FL, 1-Nov-2009.) (Revised by Mario Carneiro, 22-Nov-2013.) |
| ⊢ 𝑋 = dom 𝑅 ⇒ ⊢ (𝑅 ∈ TosetRel ↔ (𝑅 ∈ PosetRel ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑅𝑦 ∨ 𝑦𝑅𝑥))) | ||
| Theorem | tsrlin 18593 | A toset is a linear order. (Contributed by Mario Carneiro, 9-Sep-2015.) |
| ⊢ 𝑋 = dom 𝑅 ⇒ ⊢ ((𝑅 ∈ TosetRel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝑅𝐵 ∨ 𝐵𝑅𝐴)) | ||
| Theorem | tsrlemax 18594 | Two ways of saying a number is less than or equal to the maximum of two others. (Contributed by Mario Carneiro, 9-Sep-2015.) |
| ⊢ 𝑋 = dom 𝑅 ⇒ ⊢ ((𝑅 ∈ TosetRel ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (𝐴𝑅if(𝐵𝑅𝐶, 𝐶, 𝐵) ↔ (𝐴𝑅𝐵 ∨ 𝐴𝑅𝐶))) | ||
| Theorem | tsrps 18595 | A toset is a poset. (Contributed by Mario Carneiro, 9-Sep-2015.) |
| ⊢ (𝑅 ∈ TosetRel → 𝑅 ∈ PosetRel) | ||
| Theorem | cnvtsr 18596 | The converse of a toset is a toset. (Contributed by Mario Carneiro, 3-Sep-2015.) |
| ⊢ (𝑅 ∈ TosetRel → ◡𝑅 ∈ TosetRel ) | ||
| Theorem | tsrss 18597 | Any subset of a totally ordered set is totally ordered. (Contributed by FL, 24-Jan-2010.) (Proof shortened by Mario Carneiro, 21-Nov-2013.) |
| ⊢ (𝑅 ∈ TosetRel → (𝑅 ∩ (𝐴 × 𝐴)) ∈ TosetRel ) | ||
| Theorem | ledm 18598 | The domain of ≤ is ℝ*. (Contributed by FL, 2-Aug-2009.) (Revised by Mario Carneiro, 4-May-2015.) |
| ⊢ ℝ* = dom ≤ | ||
| Theorem | lern 18599 | The range of ≤ is ℝ*. (Contributed by FL, 2-Aug-2009.) (Revised by Mario Carneiro, 3-Sep-2015.) |
| ⊢ ℝ* = ran ≤ | ||
| Theorem | lefld 18600 | The field of the 'less or equal to' relationship on the extended real. (Contributed by FL, 2-Aug-2009.) (Revised by Mario Carneiro, 4-May-2015.) |
| ⊢ ℝ* = ∪ ∪ ≤ | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |