Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > df-tail | Structured version Visualization version GIF version |
Description: Define the tail function for directed sets. (Contributed by Jeff Hankins, 25-Nov-2009.) |
Ref | Expression |
---|---|
df-tail | ⊢ tail = (𝑟 ∈ DirRel ↦ (𝑥 ∈ ∪ ∪ 𝑟 ↦ (𝑟 “ {𝑥}))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ctail 18101 | . 2 class tail | |
2 | vr | . . 3 setvar 𝑟 | |
3 | cdir 18100 | . . 3 class DirRel | |
4 | vx | . . . 4 setvar 𝑥 | |
5 | 2 | cv 1542 | . . . . . 6 class 𝑟 |
6 | 5 | cuni 4819 | . . . . 5 class ∪ 𝑟 |
7 | 6 | cuni 4819 | . . . 4 class ∪ ∪ 𝑟 |
8 | 4 | cv 1542 | . . . . . 6 class 𝑥 |
9 | 8 | csn 4541 | . . . . 5 class {𝑥} |
10 | 5, 9 | cima 5554 | . . . 4 class (𝑟 “ {𝑥}) |
11 | 4, 7, 10 | cmpt 5135 | . . 3 class (𝑥 ∈ ∪ ∪ 𝑟 ↦ (𝑟 “ {𝑥})) |
12 | 2, 3, 11 | cmpt 5135 | . 2 class (𝑟 ∈ DirRel ↦ (𝑥 ∈ ∪ ∪ 𝑟 ↦ (𝑟 “ {𝑥}))) |
13 | 1, 12 | wceq 1543 | 1 wff tail = (𝑟 ∈ DirRel ↦ (𝑥 ∈ ∪ ∪ 𝑟 ↦ (𝑟 “ {𝑥}))) |
Colors of variables: wff setvar class |
This definition is referenced by: tailfval 34298 |
Copyright terms: Public domain | W3C validator |