Step | Hyp | Ref
| Expression |
1 | | releq 5677 |
. . . 4
⊢ (𝑟 = 𝑅 → (Rel 𝑟 ↔ Rel 𝑅)) |
2 | | unieq 4847 |
. . . . . . . 8
⊢ (𝑟 = 𝑅 → ∪ 𝑟 = ∪
𝑅) |
3 | 2 | unieqd 4850 |
. . . . . . 7
⊢ (𝑟 = 𝑅 → ∪ ∪ 𝑟 =
∪ ∪ 𝑅) |
4 | | isdir.1 |
. . . . . . 7
⊢ 𝐴 = ∪
∪ 𝑅 |
5 | 3, 4 | eqtr4di 2797 |
. . . . . 6
⊢ (𝑟 = 𝑅 → ∪ ∪ 𝑟 =
𝐴) |
6 | 5 | reseq2d 5880 |
. . . . 5
⊢ (𝑟 = 𝑅 → ( I ↾ ∪ ∪ 𝑟) = ( I ↾ 𝐴)) |
7 | | id 22 |
. . . . 5
⊢ (𝑟 = 𝑅 → 𝑟 = 𝑅) |
8 | 6, 7 | sseq12d 3950 |
. . . 4
⊢ (𝑟 = 𝑅 → (( I ↾ ∪ ∪ 𝑟) ⊆ 𝑟 ↔ ( I ↾ 𝐴) ⊆ 𝑅)) |
9 | 1, 8 | anbi12d 630 |
. . 3
⊢ (𝑟 = 𝑅 → ((Rel 𝑟 ∧ ( I ↾ ∪ ∪ 𝑟) ⊆ 𝑟) ↔ (Rel 𝑅 ∧ ( I ↾ 𝐴) ⊆ 𝑅))) |
10 | 7, 7 | coeq12d 5762 |
. . . . 5
⊢ (𝑟 = 𝑅 → (𝑟 ∘ 𝑟) = (𝑅 ∘ 𝑅)) |
11 | 10, 7 | sseq12d 3950 |
. . . 4
⊢ (𝑟 = 𝑅 → ((𝑟 ∘ 𝑟) ⊆ 𝑟 ↔ (𝑅 ∘ 𝑅) ⊆ 𝑅)) |
12 | 5 | sqxpeqd 5612 |
. . . . 5
⊢ (𝑟 = 𝑅 → (∪ ∪ 𝑟
× ∪ ∪ 𝑟) = (𝐴 × 𝐴)) |
13 | | cnveq 5771 |
. . . . . 6
⊢ (𝑟 = 𝑅 → ◡𝑟 = ◡𝑅) |
14 | 13, 7 | coeq12d 5762 |
. . . . 5
⊢ (𝑟 = 𝑅 → (◡𝑟 ∘ 𝑟) = (◡𝑅 ∘ 𝑅)) |
15 | 12, 14 | sseq12d 3950 |
. . . 4
⊢ (𝑟 = 𝑅 → ((∪ ∪ 𝑟
× ∪ ∪ 𝑟) ⊆ (◡𝑟 ∘ 𝑟) ↔ (𝐴 × 𝐴) ⊆ (◡𝑅 ∘ 𝑅))) |
16 | 11, 15 | anbi12d 630 |
. . 3
⊢ (𝑟 = 𝑅 → (((𝑟 ∘ 𝑟) ⊆ 𝑟 ∧ (∪ ∪ 𝑟
× ∪ ∪ 𝑟) ⊆ (◡𝑟 ∘ 𝑟)) ↔ ((𝑅 ∘ 𝑅) ⊆ 𝑅 ∧ (𝐴 × 𝐴) ⊆ (◡𝑅 ∘ 𝑅)))) |
17 | 9, 16 | anbi12d 630 |
. 2
⊢ (𝑟 = 𝑅 → (((Rel 𝑟 ∧ ( I ↾ ∪ ∪ 𝑟) ⊆ 𝑟) ∧ ((𝑟 ∘ 𝑟) ⊆ 𝑟 ∧ (∪ ∪ 𝑟
× ∪ ∪ 𝑟) ⊆ (◡𝑟 ∘ 𝑟))) ↔ ((Rel 𝑅 ∧ ( I ↾ 𝐴) ⊆ 𝑅) ∧ ((𝑅 ∘ 𝑅) ⊆ 𝑅 ∧ (𝐴 × 𝐴) ⊆ (◡𝑅 ∘ 𝑅))))) |
18 | | df-dir 18229 |
. 2
⊢ DirRel =
{𝑟 ∣ ((Rel 𝑟 ∧ ( I ↾ ∪ ∪ 𝑟) ⊆ 𝑟) ∧ ((𝑟 ∘ 𝑟) ⊆ 𝑟 ∧ (∪ ∪ 𝑟
× ∪ ∪ 𝑟) ⊆ (◡𝑟 ∘ 𝑟)))} |
19 | 17, 18 | elab2g 3604 |
1
⊢ (𝑅 ∈ 𝑉 → (𝑅 ∈ DirRel ↔ ((Rel 𝑅 ∧ ( I ↾ 𝐴) ⊆ 𝑅) ∧ ((𝑅 ∘ 𝑅) ⊆ 𝑅 ∧ (𝐴 × 𝐴) ⊆ (◡𝑅 ∘ 𝑅))))) |