MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isdir Structured version   Visualization version   GIF version

Theorem isdir 18231
Description: A condition for a relation to be a direction. (Contributed by Jeff Hankins, 25-Nov-2009.) (Revised by Mario Carneiro, 22-Nov-2013.)
Hypothesis
Ref Expression
isdir.1 𝐴 = 𝑅
Assertion
Ref Expression
isdir (𝑅𝑉 → (𝑅 ∈ DirRel ↔ ((Rel 𝑅 ∧ ( I ↾ 𝐴) ⊆ 𝑅) ∧ ((𝑅𝑅) ⊆ 𝑅 ∧ (𝐴 × 𝐴) ⊆ (𝑅𝑅)))))

Proof of Theorem isdir
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 releq 5677 . . . 4 (𝑟 = 𝑅 → (Rel 𝑟 ↔ Rel 𝑅))
2 unieq 4847 . . . . . . . 8 (𝑟 = 𝑅 𝑟 = 𝑅)
32unieqd 4850 . . . . . . 7 (𝑟 = 𝑅 𝑟 = 𝑅)
4 isdir.1 . . . . . . 7 𝐴 = 𝑅
53, 4eqtr4di 2797 . . . . . 6 (𝑟 = 𝑅 𝑟 = 𝐴)
65reseq2d 5880 . . . . 5 (𝑟 = 𝑅 → ( I ↾ 𝑟) = ( I ↾ 𝐴))
7 id 22 . . . . 5 (𝑟 = 𝑅𝑟 = 𝑅)
86, 7sseq12d 3950 . . . 4 (𝑟 = 𝑅 → (( I ↾ 𝑟) ⊆ 𝑟 ↔ ( I ↾ 𝐴) ⊆ 𝑅))
91, 8anbi12d 630 . . 3 (𝑟 = 𝑅 → ((Rel 𝑟 ∧ ( I ↾ 𝑟) ⊆ 𝑟) ↔ (Rel 𝑅 ∧ ( I ↾ 𝐴) ⊆ 𝑅)))
107, 7coeq12d 5762 . . . . 5 (𝑟 = 𝑅 → (𝑟𝑟) = (𝑅𝑅))
1110, 7sseq12d 3950 . . . 4 (𝑟 = 𝑅 → ((𝑟𝑟) ⊆ 𝑟 ↔ (𝑅𝑅) ⊆ 𝑅))
125sqxpeqd 5612 . . . . 5 (𝑟 = 𝑅 → ( 𝑟 × 𝑟) = (𝐴 × 𝐴))
13 cnveq 5771 . . . . . 6 (𝑟 = 𝑅𝑟 = 𝑅)
1413, 7coeq12d 5762 . . . . 5 (𝑟 = 𝑅 → (𝑟𝑟) = (𝑅𝑅))
1512, 14sseq12d 3950 . . . 4 (𝑟 = 𝑅 → (( 𝑟 × 𝑟) ⊆ (𝑟𝑟) ↔ (𝐴 × 𝐴) ⊆ (𝑅𝑅)))
1611, 15anbi12d 630 . . 3 (𝑟 = 𝑅 → (((𝑟𝑟) ⊆ 𝑟 ∧ ( 𝑟 × 𝑟) ⊆ (𝑟𝑟)) ↔ ((𝑅𝑅) ⊆ 𝑅 ∧ (𝐴 × 𝐴) ⊆ (𝑅𝑅))))
179, 16anbi12d 630 . 2 (𝑟 = 𝑅 → (((Rel 𝑟 ∧ ( I ↾ 𝑟) ⊆ 𝑟) ∧ ((𝑟𝑟) ⊆ 𝑟 ∧ ( 𝑟 × 𝑟) ⊆ (𝑟𝑟))) ↔ ((Rel 𝑅 ∧ ( I ↾ 𝐴) ⊆ 𝑅) ∧ ((𝑅𝑅) ⊆ 𝑅 ∧ (𝐴 × 𝐴) ⊆ (𝑅𝑅)))))
18 df-dir 18229 . 2 DirRel = {𝑟 ∣ ((Rel 𝑟 ∧ ( I ↾ 𝑟) ⊆ 𝑟) ∧ ((𝑟𝑟) ⊆ 𝑟 ∧ ( 𝑟 × 𝑟) ⊆ (𝑟𝑟)))}
1917, 18elab2g 3604 1 (𝑅𝑉 → (𝑅 ∈ DirRel ↔ ((Rel 𝑅 ∧ ( I ↾ 𝐴) ⊆ 𝑅) ∧ ((𝑅𝑅) ⊆ 𝑅 ∧ (𝐴 × 𝐴) ⊆ (𝑅𝑅)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wss 3883   cuni 4836   I cid 5479   × cxp 5578  ccnv 5579  cres 5582  ccom 5584  Rel wrel 5585  DirRelcdir 18227
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1542  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-rab 3072  df-v 3424  df-in 3890  df-ss 3900  df-uni 4837  df-br 5071  df-opab 5133  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-res 5592  df-dir 18229
This theorem is referenced by:  reldir  18232  dirdm  18233  dirref  18234  dirtr  18235  dirge  18236  tsrdir  18237  filnetlem3  34496
  Copyright terms: Public domain W3C validator