Detailed syntax breakdown of Definition df-djaN
Step | Hyp | Ref
| Expression |
1 | | cdjaN 38707 |
. 2
class
vA |
2 | | vk |
. . 3
setvar 𝑘 |
3 | | cvv 3409 |
. . 3
class
V |
4 | | vw |
. . . 4
setvar 𝑤 |
5 | 2 | cv 1537 |
. . . . 5
class 𝑘 |
6 | | clh 37560 |
. . . . 5
class
LHyp |
7 | 5, 6 | cfv 6335 |
. . . 4
class
(LHyp‘𝑘) |
8 | | vx |
. . . . 5
setvar 𝑥 |
9 | | vy |
. . . . 5
setvar 𝑦 |
10 | 4 | cv 1537 |
. . . . . . 7
class 𝑤 |
11 | | cltrn 37677 |
. . . . . . . 8
class
LTrn |
12 | 5, 11 | cfv 6335 |
. . . . . . 7
class
(LTrn‘𝑘) |
13 | 10, 12 | cfv 6335 |
. . . . . 6
class
((LTrn‘𝑘)‘𝑤) |
14 | 13 | cpw 4494 |
. . . . 5
class 𝒫
((LTrn‘𝑘)‘𝑤) |
15 | 8 | cv 1537 |
. . . . . . . 8
class 𝑥 |
16 | | cocaN 38695 |
. . . . . . . . . 10
class
ocA |
17 | 5, 16 | cfv 6335 |
. . . . . . . . 9
class
(ocA‘𝑘) |
18 | 10, 17 | cfv 6335 |
. . . . . . . 8
class
((ocA‘𝑘)‘𝑤) |
19 | 15, 18 | cfv 6335 |
. . . . . . 7
class
(((ocA‘𝑘)‘𝑤)‘𝑥) |
20 | 9 | cv 1537 |
. . . . . . . 8
class 𝑦 |
21 | 20, 18 | cfv 6335 |
. . . . . . 7
class
(((ocA‘𝑘)‘𝑤)‘𝑦) |
22 | 19, 21 | cin 3857 |
. . . . . 6
class
((((ocA‘𝑘)‘𝑤)‘𝑥) ∩ (((ocA‘𝑘)‘𝑤)‘𝑦)) |
23 | 22, 18 | cfv 6335 |
. . . . 5
class
(((ocA‘𝑘)‘𝑤)‘((((ocA‘𝑘)‘𝑤)‘𝑥) ∩ (((ocA‘𝑘)‘𝑤)‘𝑦))) |
24 | 8, 9, 14, 14, 23 | cmpo 7152 |
. . . 4
class (𝑥 ∈ 𝒫
((LTrn‘𝑘)‘𝑤), 𝑦 ∈ 𝒫 ((LTrn‘𝑘)‘𝑤) ↦ (((ocA‘𝑘)‘𝑤)‘((((ocA‘𝑘)‘𝑤)‘𝑥) ∩ (((ocA‘𝑘)‘𝑤)‘𝑦)))) |
25 | 4, 7, 24 | cmpt 5112 |
. . 3
class (𝑤 ∈ (LHyp‘𝑘) ↦ (𝑥 ∈ 𝒫 ((LTrn‘𝑘)‘𝑤), 𝑦 ∈ 𝒫 ((LTrn‘𝑘)‘𝑤) ↦ (((ocA‘𝑘)‘𝑤)‘((((ocA‘𝑘)‘𝑤)‘𝑥) ∩ (((ocA‘𝑘)‘𝑤)‘𝑦))))) |
26 | 2, 3, 25 | cmpt 5112 |
. 2
class (𝑘 ∈ V ↦ (𝑤 ∈ (LHyp‘𝑘) ↦ (𝑥 ∈ 𝒫 ((LTrn‘𝑘)‘𝑤), 𝑦 ∈ 𝒫 ((LTrn‘𝑘)‘𝑤) ↦ (((ocA‘𝑘)‘𝑤)‘((((ocA‘𝑘)‘𝑤)‘𝑥) ∩ (((ocA‘𝑘)‘𝑤)‘𝑦)))))) |
27 | 1, 26 | wceq 1538 |
1
wff vA = (𝑘 ∈ V ↦ (𝑤 ∈ (LHyp‘𝑘) ↦ (𝑥 ∈ 𝒫 ((LTrn‘𝑘)‘𝑤), 𝑦 ∈ 𝒫 ((LTrn‘𝑘)‘𝑤) ↦ (((ocA‘𝑘)‘𝑤)‘((((ocA‘𝑘)‘𝑤)‘𝑥) ∩ (((ocA‘𝑘)‘𝑤)‘𝑦)))))) |