Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  djaffvalN Structured version   Visualization version   GIF version

Theorem djaffvalN 38743
Description: Subspace join for DVecA partial vector space. (Contributed by NM, 6-Dec-2013.) (New usage is discouraged.)
Hypothesis
Ref Expression
djaval.h 𝐻 = (LHyp‘𝐾)
Assertion
Ref Expression
djaffvalN (𝐾𝑉 → (vA‘𝐾) = (𝑤𝐻 ↦ (𝑥 ∈ 𝒫 ((LTrn‘𝐾)‘𝑤), 𝑦 ∈ 𝒫 ((LTrn‘𝐾)‘𝑤) ↦ (((ocA‘𝐾)‘𝑤)‘((((ocA‘𝐾)‘𝑤)‘𝑥) ∩ (((ocA‘𝐾)‘𝑤)‘𝑦))))))
Distinct variable groups:   𝑤,𝐻   𝑥,𝑤,𝑦,𝐾
Allowed substitution hints:   𝐻(𝑥,𝑦)   𝑉(𝑥,𝑦,𝑤)

Proof of Theorem djaffvalN
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 elex 3428 . 2 (𝐾𝑉𝐾 ∈ V)
2 fveq2 6663 . . . . 5 (𝑘 = 𝐾 → (LHyp‘𝑘) = (LHyp‘𝐾))
3 djaval.h . . . . 5 𝐻 = (LHyp‘𝐾)
42, 3eqtr4di 2811 . . . 4 (𝑘 = 𝐾 → (LHyp‘𝑘) = 𝐻)
5 fveq2 6663 . . . . . . 7 (𝑘 = 𝐾 → (LTrn‘𝑘) = (LTrn‘𝐾))
65fveq1d 6665 . . . . . 6 (𝑘 = 𝐾 → ((LTrn‘𝑘)‘𝑤) = ((LTrn‘𝐾)‘𝑤))
76pweqd 4516 . . . . 5 (𝑘 = 𝐾 → 𝒫 ((LTrn‘𝑘)‘𝑤) = 𝒫 ((LTrn‘𝐾)‘𝑤))
8 fveq2 6663 . . . . . . 7 (𝑘 = 𝐾 → (ocA‘𝑘) = (ocA‘𝐾))
98fveq1d 6665 . . . . . 6 (𝑘 = 𝐾 → ((ocA‘𝑘)‘𝑤) = ((ocA‘𝐾)‘𝑤))
109fveq1d 6665 . . . . . . 7 (𝑘 = 𝐾 → (((ocA‘𝑘)‘𝑤)‘𝑥) = (((ocA‘𝐾)‘𝑤)‘𝑥))
119fveq1d 6665 . . . . . . 7 (𝑘 = 𝐾 → (((ocA‘𝑘)‘𝑤)‘𝑦) = (((ocA‘𝐾)‘𝑤)‘𝑦))
1210, 11ineq12d 4120 . . . . . 6 (𝑘 = 𝐾 → ((((ocA‘𝑘)‘𝑤)‘𝑥) ∩ (((ocA‘𝑘)‘𝑤)‘𝑦)) = ((((ocA‘𝐾)‘𝑤)‘𝑥) ∩ (((ocA‘𝐾)‘𝑤)‘𝑦)))
139, 12fveq12d 6670 . . . . 5 (𝑘 = 𝐾 → (((ocA‘𝑘)‘𝑤)‘((((ocA‘𝑘)‘𝑤)‘𝑥) ∩ (((ocA‘𝑘)‘𝑤)‘𝑦))) = (((ocA‘𝐾)‘𝑤)‘((((ocA‘𝐾)‘𝑤)‘𝑥) ∩ (((ocA‘𝐾)‘𝑤)‘𝑦))))
147, 7, 13mpoeq123dv 7229 . . . 4 (𝑘 = 𝐾 → (𝑥 ∈ 𝒫 ((LTrn‘𝑘)‘𝑤), 𝑦 ∈ 𝒫 ((LTrn‘𝑘)‘𝑤) ↦ (((ocA‘𝑘)‘𝑤)‘((((ocA‘𝑘)‘𝑤)‘𝑥) ∩ (((ocA‘𝑘)‘𝑤)‘𝑦)))) = (𝑥 ∈ 𝒫 ((LTrn‘𝐾)‘𝑤), 𝑦 ∈ 𝒫 ((LTrn‘𝐾)‘𝑤) ↦ (((ocA‘𝐾)‘𝑤)‘((((ocA‘𝐾)‘𝑤)‘𝑥) ∩ (((ocA‘𝐾)‘𝑤)‘𝑦)))))
154, 14mpteq12dv 5121 . . 3 (𝑘 = 𝐾 → (𝑤 ∈ (LHyp‘𝑘) ↦ (𝑥 ∈ 𝒫 ((LTrn‘𝑘)‘𝑤), 𝑦 ∈ 𝒫 ((LTrn‘𝑘)‘𝑤) ↦ (((ocA‘𝑘)‘𝑤)‘((((ocA‘𝑘)‘𝑤)‘𝑥) ∩ (((ocA‘𝑘)‘𝑤)‘𝑦))))) = (𝑤𝐻 ↦ (𝑥 ∈ 𝒫 ((LTrn‘𝐾)‘𝑤), 𝑦 ∈ 𝒫 ((LTrn‘𝐾)‘𝑤) ↦ (((ocA‘𝐾)‘𝑤)‘((((ocA‘𝐾)‘𝑤)‘𝑥) ∩ (((ocA‘𝐾)‘𝑤)‘𝑦))))))
16 df-djaN 38742 . . 3 vA = (𝑘 ∈ V ↦ (𝑤 ∈ (LHyp‘𝑘) ↦ (𝑥 ∈ 𝒫 ((LTrn‘𝑘)‘𝑤), 𝑦 ∈ 𝒫 ((LTrn‘𝑘)‘𝑤) ↦ (((ocA‘𝑘)‘𝑤)‘((((ocA‘𝑘)‘𝑤)‘𝑥) ∩ (((ocA‘𝑘)‘𝑤)‘𝑦))))))
1715, 16, 3mptfvmpt 6988 . 2 (𝐾 ∈ V → (vA‘𝐾) = (𝑤𝐻 ↦ (𝑥 ∈ 𝒫 ((LTrn‘𝐾)‘𝑤), 𝑦 ∈ 𝒫 ((LTrn‘𝐾)‘𝑤) ↦ (((ocA‘𝐾)‘𝑤)‘((((ocA‘𝐾)‘𝑤)‘𝑥) ∩ (((ocA‘𝐾)‘𝑤)‘𝑦))))))
181, 17syl 17 1 (𝐾𝑉 → (vA‘𝐾) = (𝑤𝐻 ↦ (𝑥 ∈ 𝒫 ((LTrn‘𝐾)‘𝑤), 𝑦 ∈ 𝒫 ((LTrn‘𝐾)‘𝑤) ↦ (((ocA‘𝐾)‘𝑤)‘((((ocA‘𝐾)‘𝑤)‘𝑥) ∩ (((ocA‘𝐾)‘𝑤)‘𝑦))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1538  wcel 2111  Vcvv 3409  cin 3859  𝒫 cpw 4497  cmpt 5116  cfv 6340  cmpo 7158  LHypclh 37594  LTrncltrn 37711  ocAcocaN 38729  vAcdjaN 38741
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5160  ax-sep 5173  ax-nul 5180  ax-pr 5302
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-ral 3075  df-rex 3076  df-reu 3077  df-rab 3079  df-v 3411  df-sbc 3699  df-csb 3808  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-nul 4228  df-if 4424  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4802  df-iun 4888  df-br 5037  df-opab 5099  df-mpt 5117  df-id 5434  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-res 5540  df-ima 5541  df-iota 6299  df-fun 6342  df-fn 6343  df-f 6344  df-f1 6345  df-fo 6346  df-f1o 6347  df-fv 6348  df-oprab 7160  df-mpo 7161  df-djaN 38742
This theorem is referenced by:  djafvalN  38744
  Copyright terms: Public domain W3C validator