![]() |
Metamath
Proof Explorer Theorem List (p. 407 of 479) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-30158) |
![]() (30159-31681) |
![]() (31682-47805) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | mapdh6gN 40601* | Lemmma for mapdh6N 40606. Part (6) of [Baer] p. 47 line 39. (Contributed by NM, 1-May-2015.) (New usage is discouraged.) |
β’ π = (0gβπΆ) & β’ πΌ = (π₯ β V β¦ if((2nd βπ₯) = 0 , π, (β©β β π· ((πβ(πβ{(2nd βπ₯)})) = (π½β{β}) β§ (πβ(πβ{((1st β(1st βπ₯)) β (2nd βπ₯))})) = (π½β{((2nd β(1st βπ₯))π β)}))))) & β’ π» = (LHypβπΎ) & β’ π = ((mapdβπΎ)βπ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ β = (-gβπ) & β’ 0 = (0gβπ) & β’ π = (LSpanβπ) & β’ πΆ = ((LCDualβπΎ)βπ) & β’ π· = (BaseβπΆ) & β’ π = (-gβπΆ) & β’ π½ = (LSpanβπΆ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β πΉ β π·) & β’ (π β (πβ(πβ{π})) = (π½β{πΉ})) & β’ (π β π β (π β { 0 })) & β’ + = (+gβπ) & β’ β = (+gβπΆ) & β’ (π β Β¬ π β (πβ{π, π})) & β’ (π β (πβ{π}) = (πβ{π})) & β’ (π β π β (π β { 0 })) & β’ (π β π β (π β { 0 })) & β’ (π β π€ β (π β { 0 })) & β’ (π β Β¬ π€ β (πβ{π, π})) β β’ (π β ((πΌββ¨π, πΉ, π€β©) β (πΌββ¨π, πΉ, (π + π)β©)) = (((πΌββ¨π, πΉ, π€β©) β (πΌββ¨π, πΉ, πβ©)) β (πΌββ¨π, πΉ, πβ©))) | ||
Theorem | mapdh6hN 40602* | Lemmma for mapdh6N 40606. Part (6) of [Baer] p. 48 line 2. (Contributed by NM, 1-May-2015.) (New usage is discouraged.) |
β’ π = (0gβπΆ) & β’ πΌ = (π₯ β V β¦ if((2nd βπ₯) = 0 , π, (β©β β π· ((πβ(πβ{(2nd βπ₯)})) = (π½β{β}) β§ (πβ(πβ{((1st β(1st βπ₯)) β (2nd βπ₯))})) = (π½β{((2nd β(1st βπ₯))π β)}))))) & β’ π» = (LHypβπΎ) & β’ π = ((mapdβπΎ)βπ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ β = (-gβπ) & β’ 0 = (0gβπ) & β’ π = (LSpanβπ) & β’ πΆ = ((LCDualβπΎ)βπ) & β’ π· = (BaseβπΆ) & β’ π = (-gβπΆ) & β’ π½ = (LSpanβπΆ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β πΉ β π·) & β’ (π β (πβ(πβ{π})) = (π½β{πΉ})) & β’ (π β π β (π β { 0 })) & β’ + = (+gβπ) & β’ β = (+gβπΆ) & β’ (π β Β¬ π β (πβ{π, π})) & β’ (π β (πβ{π}) = (πβ{π})) & β’ (π β π β (π β { 0 })) & β’ (π β π β (π β { 0 })) & β’ (π β π€ β (π β { 0 })) & β’ (π β Β¬ π€ β (πβ{π, π})) β β’ (π β (πΌββ¨π, πΉ, (π + π)β©) = ((πΌββ¨π, πΉ, πβ©) β (πΌββ¨π, πΉ, πβ©))) | ||
Theorem | mapdh6iN 40603* | Lemmma for mapdh6N 40606. Eliminate auxiliary vector π€. (Contributed by NM, 1-May-2015.) (New usage is discouraged.) |
β’ π = (0gβπΆ) & β’ πΌ = (π₯ β V β¦ if((2nd βπ₯) = 0 , π, (β©β β π· ((πβ(πβ{(2nd βπ₯)})) = (π½β{β}) β§ (πβ(πβ{((1st β(1st βπ₯)) β (2nd βπ₯))})) = (π½β{((2nd β(1st βπ₯))π β)}))))) & β’ π» = (LHypβπΎ) & β’ π = ((mapdβπΎ)βπ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ β = (-gβπ) & β’ 0 = (0gβπ) & β’ π = (LSpanβπ) & β’ πΆ = ((LCDualβπΎ)βπ) & β’ π· = (BaseβπΆ) & β’ π = (-gβπΆ) & β’ π½ = (LSpanβπΆ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β πΉ β π·) & β’ (π β (πβ(πβ{π})) = (π½β{πΉ})) & β’ (π β π β (π β { 0 })) & β’ + = (+gβπ) & β’ β = (+gβπΆ) & β’ (π β Β¬ π β (πβ{π, π})) & β’ (π β π β (π β { 0 })) & β’ (π β π β (π β { 0 })) & β’ (π β (πβ{π}) = (πβ{π})) β β’ (π β (πΌββ¨π, πΉ, (π + π)β©) = ((πΌββ¨π, πΉ, πβ©) β (πΌββ¨π, πΉ, πβ©))) | ||
Theorem | mapdh6jN 40604* | Lemmma for mapdh6N 40606. Eliminate (πβ{π}) = (πβ{π}) hypothesis. (Contributed by NM, 1-May-2015.) (New usage is discouraged.) |
β’ π = (0gβπΆ) & β’ πΌ = (π₯ β V β¦ if((2nd βπ₯) = 0 , π, (β©β β π· ((πβ(πβ{(2nd βπ₯)})) = (π½β{β}) β§ (πβ(πβ{((1st β(1st βπ₯)) β (2nd βπ₯))})) = (π½β{((2nd β(1st βπ₯))π β)}))))) & β’ π» = (LHypβπΎ) & β’ π = ((mapdβπΎ)βπ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ β = (-gβπ) & β’ 0 = (0gβπ) & β’ π = (LSpanβπ) & β’ πΆ = ((LCDualβπΎ)βπ) & β’ π· = (BaseβπΆ) & β’ π = (-gβπΆ) & β’ π½ = (LSpanβπΆ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β πΉ β π·) & β’ (π β (πβ(πβ{π})) = (π½β{πΉ})) & β’ (π β π β (π β { 0 })) & β’ + = (+gβπ) & β’ β = (+gβπΆ) & β’ (π β Β¬ π β (πβ{π, π})) & β’ (π β π β (π β { 0 })) & β’ (π β π β (π β { 0 })) β β’ (π β (πΌββ¨π, πΉ, (π + π)β©) = ((πΌββ¨π, πΉ, πβ©) β (πΌββ¨π, πΉ, πβ©))) | ||
Theorem | mapdh6kN 40605* | Lemmma for mapdh6N 40606. Eliminate nonzero vector requirement. (Contributed by NM, 1-May-2015.) (New usage is discouraged.) |
β’ π = (0gβπΆ) & β’ πΌ = (π₯ β V β¦ if((2nd βπ₯) = 0 , π, (β©β β π· ((πβ(πβ{(2nd βπ₯)})) = (π½β{β}) β§ (πβ(πβ{((1st β(1st βπ₯)) β (2nd βπ₯))})) = (π½β{((2nd β(1st βπ₯))π β)}))))) & β’ π» = (LHypβπΎ) & β’ π = ((mapdβπΎ)βπ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ β = (-gβπ) & β’ 0 = (0gβπ) & β’ π = (LSpanβπ) & β’ πΆ = ((LCDualβπΎ)βπ) & β’ π· = (BaseβπΆ) & β’ π = (-gβπΆ) & β’ π½ = (LSpanβπΆ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β πΉ β π·) & β’ (π β (πβ(πβ{π})) = (π½β{πΉ})) & β’ (π β π β (π β { 0 })) & β’ + = (+gβπ) & β’ β = (+gβπΆ) & β’ (π β π β π) & β’ (π β π β π) & β’ (π β Β¬ π β (πβ{π, π})) β β’ (π β (πΌββ¨π, πΉ, (π + π)β©) = ((πΌββ¨π, πΉ, πβ©) β (πΌββ¨π, πΉ, πβ©))) | ||
Theorem | mapdh6N 40606* | Part (6) of [Baer] p. 47 line 6. Note that we use Β¬ π β (πβ{π, π}) which is equivalent to Baer's "Fx β© (Fy + Fz)" by lspdisjb 20731. TODO: If disjoint variable conditions with πΌ and π become a problem later, use cbv* theorems on πΌ variables here to get rid of them. Maybe reorder hypotheses in lemmas to the more consistent order of this theorem, so they can be shared with this theorem. TODO: may be deleted (with its lemmas), if not needed, in view of hdmap1l6 40680. (Contributed by NM, 1-May-2015.) (New usage is discouraged.) |
β’ π» = (LHypβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ + = (+gβπ) & β’ β = (-gβπ) & β’ 0 = (0gβπ) & β’ π = (LSpanβπ) & β’ πΆ = ((LCDualβπΎ)βπ) & β’ π· = (BaseβπΆ) & β’ β = (+gβπΆ) & β’ π = (-gβπΆ) & β’ π = (0gβπΆ) & β’ π½ = (LSpanβπΆ) & β’ π = ((mapdβπΎ)βπ) & β’ πΌ = (π₯ β V β¦ if((2nd βπ₯) = 0 , π, (β©β β π· ((πβ(πβ{(2nd βπ₯)})) = (π½β{β}) β§ (πβ(πβ{((1st β(1st βπ₯)) β (2nd βπ₯))})) = (π½β{((2nd β(1st βπ₯))π β)}))))) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β πΉ β π·) & β’ (π β π β (π β { 0 })) & β’ (π β π β π) & β’ (π β π β π) & β’ (π β Β¬ π β (πβ{π, π})) & β’ (π β (πβ(πβ{π})) = (π½β{πΉ})) β β’ (π β (πΌββ¨π, πΉ, (π + π)β©) = ((πΌββ¨π, πΉ, πβ©) β (πΌββ¨π, πΉ, πβ©))) | ||
Theorem | mapdh7eN 40607* | Part (7) of [Baer] p. 48 line 10 (5 of 6 cases). (Note: 1 of 6 and 2 of 6 are hypotheses a and b.) (Contributed by NM, 2-May-2015.) (New usage is discouraged.) |
β’ π» = (LHypβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ β = (-gβπ) & β’ 0 = (0gβπ) & β’ π = (LSpanβπ) & β’ πΆ = ((LCDualβπΎ)βπ) & β’ π· = (BaseβπΆ) & β’ π = (-gβπΆ) & β’ π = (0gβπΆ) & β’ π½ = (LSpanβπΆ) & β’ π = ((mapdβπΎ)βπ) & β’ πΌ = (π₯ β V β¦ if((2nd βπ₯) = 0 , π, (β©β β π· ((πβ(πβ{(2nd βπ₯)})) = (π½β{β}) β§ (πβ(πβ{((1st β(1st βπ₯)) β (2nd βπ₯))})) = (π½β{((2nd β(1st βπ₯))π β)}))))) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β πΉ β π·) & β’ (π β (πβ(πβ{π’})) = (π½β{πΉ})) & β’ (π β π’ β (π β { 0 })) & β’ (π β π£ β (π β { 0 })) & β’ (π β π€ β (π β { 0 })) & β’ (π β (πβ{π’}) β (πβ{π£})) & β’ (π β Β¬ π€ β (πβ{π’, π£})) & β’ (π β (πΌββ¨π’, πΉ, π€β©) = πΈ) β β’ (π β (πΌββ¨π€, πΈ, π’β©) = πΉ) | ||
Theorem | mapdh7cN 40608* | Part (7) of [Baer] p. 48 line 10 (3 of 6 cases). (Contributed by NM, 2-May-2015.) (New usage is discouraged.) |
β’ π» = (LHypβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ β = (-gβπ) & β’ 0 = (0gβπ) & β’ π = (LSpanβπ) & β’ πΆ = ((LCDualβπΎ)βπ) & β’ π· = (BaseβπΆ) & β’ π = (-gβπΆ) & β’ π = (0gβπΆ) & β’ π½ = (LSpanβπΆ) & β’ π = ((mapdβπΎ)βπ) & β’ πΌ = (π₯ β V β¦ if((2nd βπ₯) = 0 , π, (β©β β π· ((πβ(πβ{(2nd βπ₯)})) = (π½β{β}) β§ (πβ(πβ{((1st β(1st βπ₯)) β (2nd βπ₯))})) = (π½β{((2nd β(1st βπ₯))π β)}))))) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β πΉ β π·) & β’ (π β (πβ(πβ{π’})) = (π½β{πΉ})) & β’ (π β π’ β (π β { 0 })) & β’ (π β π£ β (π β { 0 })) & β’ (π β π€ β (π β { 0 })) & β’ (π β (πβ{π’}) β (πβ{π£})) & β’ (π β Β¬ π€ β (πβ{π’, π£})) & β’ (π β (πΌββ¨π’, πΉ, π£β©) = πΊ) β β’ (π β (πΌββ¨π£, πΊ, π’β©) = πΉ) | ||
Theorem | mapdh7dN 40609* | Part (7) of [Baer] p. 48 line 10 (4 of 6 cases). (Contributed by NM, 2-May-2015.) (New usage is discouraged.) |
β’ π» = (LHypβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ β = (-gβπ) & β’ 0 = (0gβπ) & β’ π = (LSpanβπ) & β’ πΆ = ((LCDualβπΎ)βπ) & β’ π· = (BaseβπΆ) & β’ π = (-gβπΆ) & β’ π = (0gβπΆ) & β’ π½ = (LSpanβπΆ) & β’ π = ((mapdβπΎ)βπ) & β’ πΌ = (π₯ β V β¦ if((2nd βπ₯) = 0 , π, (β©β β π· ((πβ(πβ{(2nd βπ₯)})) = (π½β{β}) β§ (πβ(πβ{((1st β(1st βπ₯)) β (2nd βπ₯))})) = (π½β{((2nd β(1st βπ₯))π β)}))))) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β πΉ β π·) & β’ (π β (πβ(πβ{π’})) = (π½β{πΉ})) & β’ (π β π’ β (π β { 0 })) & β’ (π β π£ β (π β { 0 })) & β’ (π β π€ β (π β { 0 })) & β’ (π β (πβ{π’}) β (πβ{π£})) & β’ (π β Β¬ π€ β (πβ{π’, π£})) & β’ (π β (πΌββ¨π’, πΉ, π£β©) = πΊ) & β’ (π β (πΌββ¨π’, πΉ, π€β©) = πΈ) β β’ (π β (πΌββ¨π£, πΊ, π€β©) = πΈ) | ||
Theorem | mapdh7fN 40610* | Part (7) of [Baer] p. 48 line 10 (6 of 6 cases). (Contributed by NM, 2-May-2015.) (New usage is discouraged.) |
β’ π» = (LHypβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ β = (-gβπ) & β’ 0 = (0gβπ) & β’ π = (LSpanβπ) & β’ πΆ = ((LCDualβπΎ)βπ) & β’ π· = (BaseβπΆ) & β’ π = (-gβπΆ) & β’ π = (0gβπΆ) & β’ π½ = (LSpanβπΆ) & β’ π = ((mapdβπΎ)βπ) & β’ πΌ = (π₯ β V β¦ if((2nd βπ₯) = 0 , π, (β©β β π· ((πβ(πβ{(2nd βπ₯)})) = (π½β{β}) β§ (πβ(πβ{((1st β(1st βπ₯)) β (2nd βπ₯))})) = (π½β{((2nd β(1st βπ₯))π β)}))))) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β πΉ β π·) & β’ (π β (πβ(πβ{π’})) = (π½β{πΉ})) & β’ (π β π’ β (π β { 0 })) & β’ (π β π£ β (π β { 0 })) & β’ (π β π€ β (π β { 0 })) & β’ (π β (πβ{π’}) β (πβ{π£})) & β’ (π β Β¬ π€ β (πβ{π’, π£})) & β’ (π β (πΌββ¨π’, πΉ, π£β©) = πΊ) & β’ (π β (πΌββ¨π’, πΉ, π€β©) = πΈ) β β’ (π β (πΌββ¨π€, πΈ, π£β©) = πΊ) | ||
Theorem | mapdh75e 40611* | Part (7) of [Baer] p. 48 line 10 (5 of 6 cases). π, π, π are Baer's u, v, w. (Note: Cases 1 of 6 and 2 of 6 are hypotheses mapdh75b here and mapdh75a in mapdh75cN 40612.) (Contributed by NM, 2-May-2015.) |
β’ π» = (LHypβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ β = (-gβπ) & β’ 0 = (0gβπ) & β’ π = (LSpanβπ) & β’ πΆ = ((LCDualβπΎ)βπ) & β’ π· = (BaseβπΆ) & β’ π = (-gβπΆ) & β’ π = (0gβπΆ) & β’ π½ = (LSpanβπΆ) & β’ π = ((mapdβπΎ)βπ) & β’ πΌ = (π₯ β V β¦ if((2nd βπ₯) = 0 , π, (β©β β π· ((πβ(πβ{(2nd βπ₯)})) = (π½β{β}) β§ (πβ(πβ{((1st β(1st βπ₯)) β (2nd βπ₯))})) = (π½β{((2nd β(1st βπ₯))π β)}))))) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β πΉ β π·) & β’ (π β (πβ(πβ{π})) = (π½β{πΉ})) & β’ (π β (πΌββ¨π, πΉ, πβ©) = πΈ) & β’ (π β (πβ{π}) β (πβ{π})) & β’ (π β π β (π β { 0 })) & β’ (π β π β (π β { 0 })) β β’ (π β (πΌββ¨π, πΈ, πβ©) = πΉ) | ||
Theorem | mapdh75cN 40612* | Part (7) of [Baer] p. 48 line 10 (3 of 6 cases). (Contributed by NM, 2-May-2015.) (New usage is discouraged.) |
β’ π» = (LHypβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ β = (-gβπ) & β’ 0 = (0gβπ) & β’ π = (LSpanβπ) & β’ πΆ = ((LCDualβπΎ)βπ) & β’ π· = (BaseβπΆ) & β’ π = (-gβπΆ) & β’ π = (0gβπΆ) & β’ π½ = (LSpanβπΆ) & β’ π = ((mapdβπΎ)βπ) & β’ πΌ = (π₯ β V β¦ if((2nd βπ₯) = 0 , π, (β©β β π· ((πβ(πβ{(2nd βπ₯)})) = (π½β{β}) β§ (πβ(πβ{((1st β(1st βπ₯)) β (2nd βπ₯))})) = (π½β{((2nd β(1st βπ₯))π β)}))))) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β πΉ β π·) & β’ (π β (πβ(πβ{π})) = (π½β{πΉ})) & β’ (π β (πΌββ¨π, πΉ, πβ©) = πΊ) & β’ (π β (πβ{π}) β (πβ{π})) & β’ (π β π β (π β { 0 })) & β’ (π β π β (π β { 0 })) β β’ (π β (πΌββ¨π, πΊ, πβ©) = πΉ) | ||
Theorem | mapdh75d 40613* | Part (7) of [Baer] p. 48 line 10 (4 of 6 cases). (Contributed by NM, 2-May-2015.) |
β’ π» = (LHypβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ β = (-gβπ) & β’ 0 = (0gβπ) & β’ π = (LSpanβπ) & β’ πΆ = ((LCDualβπΎ)βπ) & β’ π· = (BaseβπΆ) & β’ π = (-gβπΆ) & β’ π = (0gβπΆ) & β’ π½ = (LSpanβπΆ) & β’ π = ((mapdβπΎ)βπ) & β’ πΌ = (π₯ β V β¦ if((2nd βπ₯) = 0 , π, (β©β β π· ((πβ(πβ{(2nd βπ₯)})) = (π½β{β}) β§ (πβ(πβ{((1st β(1st βπ₯)) β (2nd βπ₯))})) = (π½β{((2nd β(1st βπ₯))π β)}))))) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β πΉ β π·) & β’ (π β (πβ(πβ{π})) = (π½β{πΉ})) & β’ (π β (πΌββ¨π, πΉ, πβ©) = πΊ) & β’ (π β (πΌββ¨π, πΉ, πβ©) = πΈ) & β’ (π β (πβ{π}) β (πβ{π})) & β’ (π β Β¬ π β (πβ{π, π})) & β’ (π β π β (π β { 0 })) & β’ (π β π β (π β { 0 })) & β’ (π β π β (π β { 0 })) β β’ (π β (πΌββ¨π, πΊ, πβ©) = πΈ) | ||
Theorem | mapdh75fN 40614* | Part (7) of [Baer] p. 48 line 10 (6 of 6 cases). (Contributed by NM, 2-May-2015.) (New usage is discouraged.) |
β’ π» = (LHypβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ β = (-gβπ) & β’ 0 = (0gβπ) & β’ π = (LSpanβπ) & β’ πΆ = ((LCDualβπΎ)βπ) & β’ π· = (BaseβπΆ) & β’ π = (-gβπΆ) & β’ π = (0gβπΆ) & β’ π½ = (LSpanβπΆ) & β’ π = ((mapdβπΎ)βπ) & β’ πΌ = (π₯ β V β¦ if((2nd βπ₯) = 0 , π, (β©β β π· ((πβ(πβ{(2nd βπ₯)})) = (π½β{β}) β§ (πβ(πβ{((1st β(1st βπ₯)) β (2nd βπ₯))})) = (π½β{((2nd β(1st βπ₯))π β)}))))) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β πΉ β π·) & β’ (π β (πβ(πβ{π})) = (π½β{πΉ})) & β’ (π β (πΌββ¨π, πΉ, πβ©) = πΊ) & β’ (π β (πΌββ¨π, πΉ, πβ©) = πΈ) & β’ (π β (πβ{π}) β (πβ{π})) & β’ (π β Β¬ π β (πβ{π, π})) & β’ (π β π β (π β { 0 })) & β’ (π β π β (π β { 0 })) & β’ (π β π β (π β { 0 })) β β’ (π β (πΌββ¨π, πΈ, πβ©) = πΊ) | ||
Syntax | chvm 40615 | Extend class notation with vector to dual map. |
class HVMap | ||
Definition | df-hvmap 40616* | Extend class notation with a map from each nonzero vector π₯ to a unique nonzero functional in the closed kernel dual space. (We could extend it to include the zero vector, but that is unnecessary for our purposes.) TODO: This pattern is used several times earlier, e.g., lcf1o 40410, dochfl1 40335- should we update those to use this definition? (Contributed by NM, 23-Mar-2015.) |
β’ HVMap = (π β V β¦ (π€ β (LHypβπ) β¦ (π₯ β ((Baseβ((DVecHβπ)βπ€)) β {(0gβ((DVecHβπ)βπ€))}) β¦ (π£ β (Baseβ((DVecHβπ)βπ€)) β¦ (β©π β (Baseβ(Scalarβ((DVecHβπ)βπ€)))βπ‘ β (((ocHβπ)βπ€)β{π₯})π£ = (π‘(+gβ((DVecHβπ)βπ€))(π( Β·π β((DVecHβπ)βπ€))π₯))))))) | ||
Theorem | hvmapffval 40617* | Map from nonzero vectors to nonzero functionals in the closed kernel dual space. (Contributed by NM, 23-Mar-2015.) |
β’ π» = (LHypβπΎ) β β’ (πΎ β π β (HVMapβπΎ) = (π€ β π» β¦ (π₯ β ((Baseβ((DVecHβπΎ)βπ€)) β {(0gβ((DVecHβπΎ)βπ€))}) β¦ (π£ β (Baseβ((DVecHβπΎ)βπ€)) β¦ (β©π β (Baseβ(Scalarβ((DVecHβπΎ)βπ€)))βπ‘ β (((ocHβπΎ)βπ€)β{π₯})π£ = (π‘(+gβ((DVecHβπΎ)βπ€))(π( Β·π β((DVecHβπΎ)βπ€))π₯))))))) | ||
Theorem | hvmapfval 40618* | Map from nonzero vectors to nonzero functionals in the closed kernel dual space. (Contributed by NM, 23-Mar-2015.) |
β’ π» = (LHypβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = ((ocHβπΎ)βπ) & β’ π = (Baseβπ) & β’ + = (+gβπ) & β’ Β· = ( Β·π βπ) & β’ 0 = (0gβπ) & β’ π = (Scalarβπ) & β’ π = (Baseβπ) & β’ π = ((HVMapβπΎ)βπ) & β’ (π β (πΎ β π΄ β§ π β π»)) β β’ (π β π = (π₯ β (π β { 0 }) β¦ (π£ β π β¦ (β©π β π βπ‘ β (πβ{π₯})π£ = (π‘ + (π Β· π₯)))))) | ||
Theorem | hvmapval 40619* | Value of map from nonzero vectors to nonzero functionals in the closed kernel dual space. (Contributed by NM, 23-Mar-2015.) |
β’ π» = (LHypβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = ((ocHβπΎ)βπ) & β’ π = (Baseβπ) & β’ + = (+gβπ) & β’ Β· = ( Β·π βπ) & β’ 0 = (0gβπ) & β’ π = (Scalarβπ) & β’ π = (Baseβπ) & β’ π = ((HVMapβπΎ)βπ) & β’ (π β (πΎ β π΄ β§ π β π»)) & β’ (π β π β (π β { 0 })) β β’ (π β (πβπ) = (π£ β π β¦ (β©π β π βπ‘ β (πβ{π})π£ = (π‘ + (π Β· π))))) | ||
Theorem | hvmapvalvalN 40620* | Value of value of map (i.e. functional value) from nonzero vectors to nonzero functionals in the closed kernel dual space. (Contributed by NM, 23-Mar-2015.) (New usage is discouraged.) |
β’ π» = (LHypβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = ((ocHβπΎ)βπ) & β’ π = (Baseβπ) & β’ + = (+gβπ) & β’ Β· = ( Β·π βπ) & β’ 0 = (0gβπ) & β’ π = (Scalarβπ) & β’ π = (Baseβπ) & β’ π = ((HVMapβπΎ)βπ) & β’ (π β (πΎ β π΄ β§ π β π»)) & β’ (π β π β (π β { 0 })) & β’ (π β π β π) β β’ (π β ((πβπ)βπ) = (β©π β π βπ‘ β (πβ{π})π = (π‘ + (π Β· π)))) | ||
Theorem | hvmapidN 40621 | The value of the vector to functional map, at the vector, is one. (Contributed by NM, 23-Mar-2015.) (New usage is discouraged.) |
β’ π» = (LHypβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ 0 = (0gβπ) & β’ π = (Scalarβπ) & β’ 1 = (1rβπ) & β’ π = ((HVMapβπΎ)βπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β π β (π β { 0 })) β β’ (π β ((πβπ)βπ) = 1 ) | ||
Theorem | hvmap1o 40622* | The vector to functional map provides a bijection from nonzero vectors π to nonzero functionals with closed kernels πΆ. (Contributed by NM, 27-Mar-2015.) |
β’ π» = (LHypβπΎ) & β’ π = ((ocHβπΎ)βπ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ 0 = (0gβπ) & β’ πΉ = (LFnlβπ) & β’ πΏ = (LKerβπ) & β’ π· = (LDualβπ) & β’ π = (0gβπ·) & β’ πΆ = {π β πΉ β£ (πβ(πβ(πΏβπ))) = (πΏβπ)} & β’ π = ((HVMapβπΎ)βπ) & β’ (π β (πΎ β HL β§ π β π»)) β β’ (π β π:(π β { 0 })β1-1-ontoβ(πΆ β {π})) | ||
Theorem | hvmapclN 40623* | Closure of the vector to functional map. (Contributed by NM, 27-Mar-2015.) (New usage is discouraged.) |
β’ π» = (LHypβπΎ) & β’ π = ((ocHβπΎ)βπ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ 0 = (0gβπ) & β’ πΉ = (LFnlβπ) & β’ πΏ = (LKerβπ) & β’ π· = (LDualβπ) & β’ π = (0gβπ·) & β’ πΆ = {π β πΉ β£ (πβ(πβ(πΏβπ))) = (πΏβπ)} & β’ π = ((HVMapβπΎ)βπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β π β (π β { 0 })) β β’ (π β (πβπ) β (πΆ β {π})) | ||
Theorem | hvmap1o2 40624 | The vector to functional map provides a bijection from nonzero vectors π to nonzero functionals with closed kernels πΆ. (Contributed by NM, 27-Mar-2015.) |
β’ π» = (LHypβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ 0 = (0gβπ) & β’ πΆ = ((LCDualβπΎ)βπ) & β’ πΉ = (BaseβπΆ) & β’ π = (0gβπΆ) & β’ π = ((HVMapβπΎ)βπ) & β’ (π β (πΎ β HL β§ π β π»)) β β’ (π β π:(π β { 0 })β1-1-ontoβ(πΉ β {π})) | ||
Theorem | hvmapcl2 40625 | Closure of the vector to functional map. (Contributed by NM, 27-Mar-2015.) |
β’ π» = (LHypβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ 0 = (0gβπ) & β’ πΆ = ((LCDualβπΎ)βπ) & β’ πΉ = (BaseβπΆ) & β’ π = (0gβπΆ) & β’ π = ((HVMapβπΎ)βπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β π β (π β { 0 })) β β’ (π β (πβπ) β (πΉ β {π})) | ||
Theorem | hvmaplfl 40626 | The vector to functional map value is a functional. (Contributed by NM, 28-Mar-2015.) |
β’ π» = (LHypβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ 0 = (0gβπ) & β’ πΉ = (LFnlβπ) & β’ π = ((HVMapβπΎ)βπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β π β (π β { 0 })) β β’ (π β (πβπ) β πΉ) | ||
Theorem | hvmaplkr 40627 | Kernel of the vector to functional map. TODO: make this become lcfrlem11 40412. (Contributed by NM, 29-Mar-2015.) |
β’ π» = (LHypβπΎ) & β’ π = ((ocHβπΎ)βπ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ 0 = (0gβπ) & β’ πΏ = (LKerβπ) & β’ π = ((HVMapβπΎ)βπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β π β (π β { 0 })) β β’ (π β (πΏβ(πβπ)) = (πβ{π})) | ||
Theorem | mapdhvmap 40628 | Relationship between mapd and HVMap, which can be used to satisfy the last hypothesis of mapdpg 40565. Equation 10 of [Baer] p. 48. (Contributed by NM, 29-Mar-2015.) |
β’ π» = (LHypβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ 0 = (0gβπ) & β’ π = (LSpanβπ) & β’ πΆ = ((LCDualβπΎ)βπ) & β’ π½ = (LSpanβπΆ) & β’ π = ((mapdβπΎ)βπ) & β’ π = ((HVMapβπΎ)βπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β π β (π β { 0 })) β β’ (π β (πβ(πβ{π})) = (π½β{(πβπ)})) | ||
Theorem | lspindp5 40629 | Obtain an independent vector set π, π, π from a vector π dependent on π and π and another independent set π, π, π. (Here we don't show the (πβ{π}) β (πβ{π}) part of the independence, which passes straight through. We also don't show nonzero vector requirements that are redundant for this theorem. Different orderings can be obtained using lspexch 20734 and prcom 4735.) (Contributed by NM, 4-May-2015.) |
β’ π = (Baseβπ) & β’ π = (LSpanβπ) & β’ (π β π β LVec) & β’ (π β π β π) & β’ (π β π β π) & β’ (π β π β π) & β’ (π β π β (πβ{π, π})) & β’ (π β Β¬ π β (πβ{π, π})) β β’ (π β Β¬ π β (πβ{π, π})) | ||
Theorem | hdmaplem1 40630 | Lemma to convert a frequently-used union condition. TODO: see if this can be applied to other hdmap* theorems. (Contributed by NM, 17-May-2015.) |
β’ π = (Baseβπ) & β’ π = (LSpanβπ) & β’ (π β π β LMod) & β’ (π β π β π) & β’ (π β Β¬ π β ((πβ{π}) βͺ (πβ{π}))) & β’ (π β π β π) β β’ (π β (πβ{π}) β (πβ{π})) | ||
Theorem | hdmaplem2N 40631 | Lemma to convert a frequently-used union condition. TODO: see if this can be applied to other hdmap* theorems. (Contributed by NM, 17-May-2015.) (New usage is discouraged.) |
β’ π = (Baseβπ) & β’ π = (LSpanβπ) & β’ (π β π β LMod) & β’ (π β π β π) & β’ (π β Β¬ π β ((πβ{π}) βͺ (πβ{π}))) & β’ (π β π β π) β β’ (π β (πβ{π}) β (πβ{π})) | ||
Theorem | hdmaplem3 40632 | Lemma to convert a frequently-used union condition. TODO: see if this can be applied to other hdmap* theorems. (Contributed by NM, 17-May-2015.) |
β’ π = (Baseβπ) & β’ π = (LSpanβπ) & β’ (π β π β LMod) & β’ (π β π β π) & β’ (π β Β¬ π β ((πβ{π}) βͺ (πβ{π}))) & β’ (π β π β π) & β’ 0 = (0gβπ) β β’ (π β π β (π β { 0 })) | ||
Theorem | hdmaplem4 40633 | Lemma to convert a frequently-used union condition. TODO: see if this can be applied to other hdmap* theorems. (Contributed by NM, 17-May-2015.) |
β’ π = (Baseβπ) & β’ π = (LSpanβπ) & β’ 0 = (0gβπ) & β’ (π β π β LVec) & β’ (π β π β π) & β’ (π β π β π) & β’ (π β π β (π β { 0 })) & β’ (π β (πβ{π}) β (πβ{π})) & β’ (π β (πβ{π}) β (πβ{π})) β β’ (π β Β¬ π β ((πβ{π}) βͺ (πβ{π}))) | ||
Theorem | mapdh8a 40634* | Part of Part (8) in [Baer] p. 48. (Contributed by NM, 5-May-2015.) |
β’ π» = (LHypβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ β = (-gβπ) & β’ 0 = (0gβπ) & β’ π = (LSpanβπ) & β’ πΆ = ((LCDualβπΎ)βπ) & β’ π· = (BaseβπΆ) & β’ π = (-gβπΆ) & β’ π = (0gβπΆ) & β’ π½ = (LSpanβπΆ) & β’ π = ((mapdβπΎ)βπ) & β’ πΌ = (π₯ β V β¦ if((2nd βπ₯) = 0 , π, (β©β β π· ((πβ(πβ{(2nd βπ₯)})) = (π½β{β}) β§ (πβ(πβ{((1st β(1st βπ₯)) β (2nd βπ₯))})) = (π½β{((2nd β(1st βπ₯))π β)}))))) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β πΉ β π·) & β’ (π β (πβ(πβ{π})) = (π½β{πΉ})) & β’ (π β (πΌββ¨π, πΉ, πβ©) = πΊ) & β’ (π β π β (π β { 0 })) & β’ (π β π β (π β { 0 })) & β’ (π β (πβ{π}) β (πβ{π})) & β’ (π β π β (π β { 0 })) & β’ (π β Β¬ π β (πβ{π, π})) β β’ (π β (πΌββ¨π, πΊ, πβ©) = (πΌββ¨π, πΉ, πβ©)) | ||
Theorem | mapdh8aa 40635* | Part of Part (8) in [Baer] p. 48. (Contributed by NM, 12-May-2015.) |
β’ π» = (LHypβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ β = (-gβπ) & β’ 0 = (0gβπ) & β’ π = (LSpanβπ) & β’ πΆ = ((LCDualβπΎ)βπ) & β’ π· = (BaseβπΆ) & β’ π = (-gβπΆ) & β’ π = (0gβπΆ) & β’ π½ = (LSpanβπΆ) & β’ π = ((mapdβπΎ)βπ) & β’ πΌ = (π₯ β V β¦ if((2nd βπ₯) = 0 , π, (β©β β π· ((πβ(πβ{(2nd βπ₯)})) = (π½β{β}) β§ (πβ(πβ{((1st β(1st βπ₯)) β (2nd βπ₯))})) = (π½β{((2nd β(1st βπ₯))π β)}))))) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β πΉ β π·) & β’ (π β (πβ(πβ{π})) = (π½β{πΉ})) & β’ (π β (πΌββ¨π, πΉ, πβ©) = πΊ) & β’ (π β (πΌββ¨π, πΉ, πβ©) = πΈ) & β’ (π β π β (π β { 0 })) & β’ (π β π β (π β { 0 })) & β’ (π β π β (π β { 0 })) & β’ (π β (πβ{π}) β (πβ{π})) & β’ (π β π β (π β { 0 })) & β’ (π β Β¬ π β (πβ{π, π})) & β’ (π β Β¬ π β (πβ{π, π})) β β’ (π β (πΌββ¨π, πΊ, πβ©) = (πΌββ¨π, πΈ, πβ©)) | ||
Theorem | mapdh8ab 40636* | Part of Part (8) in [Baer] p. 48. (Contributed by NM, 13-May-2015.) |
β’ π» = (LHypβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ β = (-gβπ) & β’ 0 = (0gβπ) & β’ π = (LSpanβπ) & β’ πΆ = ((LCDualβπΎ)βπ) & β’ π· = (BaseβπΆ) & β’ π = (-gβπΆ) & β’ π = (0gβπΆ) & β’ π½ = (LSpanβπΆ) & β’ π = ((mapdβπΎ)βπ) & β’ πΌ = (π₯ β V β¦ if((2nd βπ₯) = 0 , π, (β©β β π· ((πβ(πβ{(2nd βπ₯)})) = (π½β{β}) β§ (πβ(πβ{((1st β(1st βπ₯)) β (2nd βπ₯))})) = (π½β{((2nd β(1st βπ₯))π β)}))))) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β πΉ β π·) & β’ (π β (πβ(πβ{π})) = (π½β{πΉ})) & β’ (π β (πΌββ¨π, πΉ, πβ©) = πΊ) & β’ (π β (πΌββ¨π, πΉ, πβ©) = πΈ) & β’ (π β π β (π β { 0 })) & β’ (π β π β (π β { 0 })) & β’ (π β π β (π β { 0 })) & β’ (π β π β (π β { 0 })) & β’ (π β (πβ{π}) β (πβ{π})) & β’ (π β Β¬ π β (πβ{π, π})) & β’ (π β (πβ{π}) = (πβ{π})) β β’ (π β (πΌββ¨π, πΊ, πβ©) = (πΌββ¨π, πΈ, πβ©)) | ||
Theorem | mapdh8ac 40637* | Part of Part (8) in [Baer] p. 48. (Contributed by NM, 13-May-2015.) |
β’ π» = (LHypβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ β = (-gβπ) & β’ 0 = (0gβπ) & β’ π = (LSpanβπ) & β’ πΆ = ((LCDualβπΎ)βπ) & β’ π· = (BaseβπΆ) & β’ π = (-gβπΆ) & β’ π = (0gβπΆ) & β’ π½ = (LSpanβπΆ) & β’ π = ((mapdβπΎ)βπ) & β’ πΌ = (π₯ β V β¦ if((2nd βπ₯) = 0 , π, (β©β β π· ((πβ(πβ{(2nd βπ₯)})) = (π½β{β}) β§ (πβ(πβ{((1st β(1st βπ₯)) β (2nd βπ₯))})) = (π½β{((2nd β(1st βπ₯))π β)}))))) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β πΉ β π·) & β’ (π β (πβ(πβ{π})) = (π½β{πΉ})) & β’ (π β (πΌββ¨π, πΉ, πβ©) = πΊ) & β’ (π β (πΌββ¨π, πΉ, πβ©) = πΈ) & β’ (π β π β (π β { 0 })) & β’ (π β π β (π β { 0 })) & β’ (π β π β (π β { 0 })) & β’ (π β π β (π β { 0 })) & β’ (π β (πβ{π}) = (πβ{π})) & β’ (π β (πΌββ¨π, πΉ, π€β©) = π΅) & β’ (π β π€ β (π β { 0 })) & β’ (π β (πβ{π}) β (πβ{π€})) & β’ (π β Β¬ π β (πβ{π, π€})) & β’ (π β (πβ{π€}) β (πβ{π})) & β’ (π β Β¬ π β (πβ{π€, π})) β β’ (π β (πΌββ¨π, πΊ, πβ©) = (πΌββ¨π, πΈ, πβ©)) | ||
Theorem | mapdh8ad 40638* | Part of Part (8) in [Baer] p. 48. (Contributed by NM, 13-May-2015.) |
β’ π» = (LHypβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ β = (-gβπ) & β’ 0 = (0gβπ) & β’ π = (LSpanβπ) & β’ πΆ = ((LCDualβπΎ)βπ) & β’ π· = (BaseβπΆ) & β’ π = (-gβπΆ) & β’ π = (0gβπΆ) & β’ π½ = (LSpanβπΆ) & β’ π = ((mapdβπΎ)βπ) & β’ πΌ = (π₯ β V β¦ if((2nd βπ₯) = 0 , π, (β©β β π· ((πβ(πβ{(2nd βπ₯)})) = (π½β{β}) β§ (πβ(πβ{((1st β(1st βπ₯)) β (2nd βπ₯))})) = (π½β{((2nd β(1st βπ₯))π β)}))))) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β πΉ β π·) & β’ (π β (πβ(πβ{π})) = (π½β{πΉ})) & β’ (π β (πΌββ¨π, πΉ, πβ©) = πΊ) & β’ (π β (πΌββ¨π, πΉ, πβ©) = πΈ) & β’ (π β π β (π β { 0 })) & β’ (π β π β (π β { 0 })) & β’ (π β π β (π β { 0 })) & β’ (π β π β (π β { 0 })) & β’ (π β (πβ{π}) = (πβ{π})) & β’ (π β (πβ{π}) β (πβ{π})) & β’ (π β (πβ{π}) β (πβ{π})) β β’ (π β (πΌββ¨π, πΊ, πβ©) = (πΌββ¨π, πΈ, πβ©)) | ||
Theorem | mapdh8b 40639* | Part of Part (8) in [Baer] p. 48. (Contributed by NM, 6-May-2015.) |
β’ π» = (LHypβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ β = (-gβπ) & β’ 0 = (0gβπ) & β’ π = (LSpanβπ) & β’ πΆ = ((LCDualβπΎ)βπ) & β’ π· = (BaseβπΆ) & β’ π = (-gβπΆ) & β’ π = (0gβπΆ) & β’ π½ = (LSpanβπΆ) & β’ π = ((mapdβπΎ)βπ) & β’ πΌ = (π₯ β V β¦ if((2nd βπ₯) = 0 , π, (β©β β π· ((πβ(πβ{(2nd βπ₯)})) = (π½β{β}) β§ (πβ(πβ{((1st β(1st βπ₯)) β (2nd βπ₯))})) = (π½β{((2nd β(1st βπ₯))π β)}))))) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β πΊ β π·) & β’ (π β (πβ(πβ{π})) = (π½β{πΊ})) & β’ (π β (πΌββ¨π, πΊ, π€β©) = πΈ) & β’ (π β π β (π β { 0 })) & β’ (π β π€ β (π β { 0 })) & β’ (π β (πβ{π€}) β (πβ{π})) & β’ (π β π β (π β { 0 })) & β’ (π β (πβ{π}) β (πβ{π€})) & β’ (π β π β (πβ{π, π})) & β’ (π β Β¬ π β (πβ{π, π€})) β β’ (π β (πΌββ¨π€, πΈ, πβ©) = (πΌββ¨π, πΊ, πβ©)) | ||
Theorem | mapdh8c 40640* | Part of Part (8) in [Baer] p. 48. (Contributed by NM, 6-May-2015.) |
β’ π» = (LHypβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ β = (-gβπ) & β’ 0 = (0gβπ) & β’ π = (LSpanβπ) & β’ πΆ = ((LCDualβπΎ)βπ) & β’ π· = (BaseβπΆ) & β’ π = (-gβπΆ) & β’ π = (0gβπΆ) & β’ π½ = (LSpanβπΆ) & β’ π = ((mapdβπΎ)βπ) & β’ πΌ = (π₯ β V β¦ if((2nd βπ₯) = 0 , π, (β©β β π· ((πβ(πβ{(2nd βπ₯)})) = (π½β{β}) β§ (πβ(πβ{((1st β(1st βπ₯)) β (2nd βπ₯))})) = (π½β{((2nd β(1st βπ₯))π β)}))))) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β πΉ β π·) & β’ (π β (πβ(πβ{π})) = (π½β{πΉ})) & β’ (π β (πΌββ¨π, πΉ, π€β©) = πΈ) & β’ (π β π β (π β { 0 })) & β’ (π β π β (π β { 0 })) & β’ (π β π β (π β { 0 })) & β’ (π β (πβ{π}) β (πβ{π})) & β’ (π β π€ β (π β { 0 })) & β’ (π β (πβ{π€}) β (πβ{π})) & β’ (π β (πβ{π}) β (πβ{π})) & β’ (π β (πβ{π}) β (πβ{π€})) & β’ (π β π β (πβ{π, π})) & β’ (π β Β¬ π β (πβ{π, π€})) β β’ (π β (πΌββ¨π€, πΈ, πβ©) = (πΌββ¨π, πΉ, πβ©)) | ||
Theorem | mapdh8d0N 40641* | Part of Part (8) in [Baer] p. 48. (Contributed by NM, 10-May-2015.) (New usage is discouraged.) |
β’ π» = (LHypβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ β = (-gβπ) & β’ 0 = (0gβπ) & β’ π = (LSpanβπ) & β’ πΆ = ((LCDualβπΎ)βπ) & β’ π· = (BaseβπΆ) & β’ π = (-gβπΆ) & β’ π = (0gβπΆ) & β’ π½ = (LSpanβπΆ) & β’ π = ((mapdβπΎ)βπ) & β’ πΌ = (π₯ β V β¦ if((2nd βπ₯) = 0 , π, (β©β β π· ((πβ(πβ{(2nd βπ₯)})) = (π½β{β}) β§ (πβ(πβ{((1st β(1st βπ₯)) β (2nd βπ₯))})) = (π½β{((2nd β(1st βπ₯))π β)}))))) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β πΉ β π·) & β’ (π β (πβ(πβ{π})) = (π½β{πΉ})) & β’ (π β (πΌββ¨π, πΉ, πβ©) = πΊ) & β’ (π β π β (π β { 0 })) & β’ (π β π β (π β { 0 })) & β’ (π β π β (π β { 0 })) & β’ (π β (πβ{π}) β (πβ{π})) & β’ (π β π€ β (π β { 0 })) & β’ (π β (πβ{π€}) β (πβ{π})) & β’ (π β (πβ{π}) β (πβ{π})) & β’ (π β (πβ{π}) β (πβ{π€})) & β’ (π β Β¬ π β (πβ{π, π€})) & β’ (π β π β (πβ{π, π})) β β’ (π β (πΌββ¨π, πΊ, πβ©) = (πΌββ¨π, πΉ, πβ©)) | ||
Theorem | mapdh8d 40642* | Part of Part (8) in [Baer] p. 48. (Contributed by NM, 6-May-2015.) |
β’ π» = (LHypβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ β = (-gβπ) & β’ 0 = (0gβπ) & β’ π = (LSpanβπ) & β’ πΆ = ((LCDualβπΎ)βπ) & β’ π· = (BaseβπΆ) & β’ π = (-gβπΆ) & β’ π = (0gβπΆ) & β’ π½ = (LSpanβπΆ) & β’ π = ((mapdβπΎ)βπ) & β’ πΌ = (π₯ β V β¦ if((2nd βπ₯) = 0 , π, (β©β β π· ((πβ(πβ{(2nd βπ₯)})) = (π½β{β}) β§ (πβ(πβ{((1st β(1st βπ₯)) β (2nd βπ₯))})) = (π½β{((2nd β(1st βπ₯))π β)}))))) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β πΉ β π·) & β’ (π β (πβ(πβ{π})) = (π½β{πΉ})) & β’ (π β (πΌββ¨π, πΉ, πβ©) = πΊ) & β’ (π β π β (π β { 0 })) & β’ (π β π β (π β { 0 })) & β’ (π β π β (π β { 0 })) & β’ (π β (πβ{π}) β (πβ{π})) & β’ (π β π€ β (π β { 0 })) & β’ (π β (πβ{π€}) β (πβ{π})) & β’ (π β (πβ{π}) β (πβ{π})) & β’ (π β (πβ{π}) β (πβ{π€})) & β’ (π β Β¬ π β (πβ{π, π€})) β β’ (π β (πΌββ¨π, πΊ, πβ©) = (πΌββ¨π, πΉ, πβ©)) | ||
Theorem | mapdh8e 40643* | Part of Part (8) in [Baer] p. 48. Eliminate π€. (Contributed by NM, 10-May-2015.) |
β’ π» = (LHypβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ β = (-gβπ) & β’ 0 = (0gβπ) & β’ π = (LSpanβπ) & β’ πΆ = ((LCDualβπΎ)βπ) & β’ π· = (BaseβπΆ) & β’ π = (-gβπΆ) & β’ π = (0gβπΆ) & β’ π½ = (LSpanβπΆ) & β’ π = ((mapdβπΎ)βπ) & β’ πΌ = (π₯ β V β¦ if((2nd βπ₯) = 0 , π, (β©β β π· ((πβ(πβ{(2nd βπ₯)})) = (π½β{β}) β§ (πβ(πβ{((1st β(1st βπ₯)) β (2nd βπ₯))})) = (π½β{((2nd β(1st βπ₯))π β)}))))) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β πΉ β π·) & β’ (π β (πβ(πβ{π})) = (π½β{πΉ})) & β’ (π β (πΌββ¨π, πΉ, πβ©) = πΊ) & β’ (π β π β (π β { 0 })) & β’ (π β π β (π β { 0 })) & β’ (π β π β (π β { 0 })) & β’ (π β (πβ{π}) β (πβ{π})) & β’ (π β (πβ{π}) β (πβ{π})) & β’ (π β (πβ{π}) β (πβ{π})) & β’ (π β π β (πβ{π, π})) β β’ (π β (πΌββ¨π, πΊ, πβ©) = (πΌββ¨π, πΉ, πβ©)) | ||
Theorem | mapdh8g 40644* | Part of Part (8) in [Baer] p. 48. Eliminate π β (πβ{π, π}). TODO: break out π β 0 in mapdh8e 40643 so we can share hypotheses. Also, look at hypothesis sharing for earlier mapdh8* and mapdh75* stuff. (Contributed by NM, 10-May-2015.) |
β’ π» = (LHypβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ β = (-gβπ) & β’ 0 = (0gβπ) & β’ π = (LSpanβπ) & β’ πΆ = ((LCDualβπΎ)βπ) & β’ π· = (BaseβπΆ) & β’ π = (-gβπΆ) & β’ π = (0gβπΆ) & β’ π½ = (LSpanβπΆ) & β’ π = ((mapdβπΎ)βπ) & β’ πΌ = (π₯ β V β¦ if((2nd βπ₯) = 0 , π, (β©β β π· ((πβ(πβ{(2nd βπ₯)})) = (π½β{β}) β§ (πβ(πβ{((1st β(1st βπ₯)) β (2nd βπ₯))})) = (π½β{((2nd β(1st βπ₯))π β)}))))) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β πΉ β π·) & β’ (π β (πβ(πβ{π})) = (π½β{πΉ})) & β’ (π β (πΌββ¨π, πΉ, πβ©) = πΊ) & β’ (π β π β (π β { 0 })) & β’ (π β π β (π β { 0 })) & β’ (π β π β (π β { 0 })) & β’ (π β (πβ{π}) β (πβ{π})) & β’ (π β (πβ{π}) β (πβ{π})) & β’ (π β (πβ{π}) β (πβ{π})) β β’ (π β (πΌββ¨π, πΊ, πβ©) = (πΌββ¨π, πΉ, πβ©)) | ||
Theorem | mapdh8i 40645* | Part of Part (8) in [Baer] p. 48. (Contributed by NM, 11-May-2015.) |
β’ π» = (LHypβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ β = (-gβπ) & β’ 0 = (0gβπ) & β’ π = (LSpanβπ) & β’ πΆ = ((LCDualβπΎ)βπ) & β’ π· = (BaseβπΆ) & β’ π = (-gβπΆ) & β’ π = (0gβπΆ) & β’ π½ = (LSpanβπΆ) & β’ π = ((mapdβπΎ)βπ) & β’ πΌ = (π₯ β V β¦ if((2nd βπ₯) = 0 , π, (β©β β π· ((πβ(πβ{(2nd βπ₯)})) = (π½β{β}) β§ (πβ(πβ{((1st β(1st βπ₯)) β (2nd βπ₯))})) = (π½β{((2nd β(1st βπ₯))π β)}))))) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β πΉ β π·) & β’ (π β (πβ(πβ{π})) = (π½β{πΉ})) & β’ (π β π β (π β { 0 })) & β’ (π β π β (π β { 0 })) & β’ (π β π β (π β { 0 })) & β’ (π β (πβ{π}) β (πβ{π})) & β’ (π β (πβ{π}) β (πβ{π})) & β’ (π β (πβ{π}) β (πβ{π})) & β’ (π β (πβ{π}) β (πβ{π})) & β’ (π β π β (π β { 0 })) & β’ (π β (πβ{π}) β (πβ{π})) β β’ (π β (πΌββ¨π, (πΌββ¨π, πΉ, πβ©), πβ©) = (πΌββ¨π, (πΌββ¨π, πΉ, πβ©), πβ©)) | ||
Theorem | mapdh8j 40646* | Part of Part (8) in [Baer] p. 48. (Contributed by NM, 13-May-2015.) |
β’ π» = (LHypβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ β = (-gβπ) & β’ 0 = (0gβπ) & β’ π = (LSpanβπ) & β’ πΆ = ((LCDualβπΎ)βπ) & β’ π· = (BaseβπΆ) & β’ π = (-gβπΆ) & β’ π = (0gβπΆ) & β’ π½ = (LSpanβπΆ) & β’ π = ((mapdβπΎ)βπ) & β’ πΌ = (π₯ β V β¦ if((2nd βπ₯) = 0 , π, (β©β β π· ((πβ(πβ{(2nd βπ₯)})) = (π½β{β}) β§ (πβ(πβ{((1st β(1st βπ₯)) β (2nd βπ₯))})) = (π½β{((2nd β(1st βπ₯))π β)}))))) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β πΉ β π·) & β’ (π β (πβ(πβ{π})) = (π½β{πΉ})) & β’ (π β π β (π β { 0 })) & β’ (π β π β (π β { 0 })) & β’ (π β π β (π β { 0 })) & β’ (π β (πβ{π}) β (πβ{π})) & β’ (π β (πβ{π}) β (πβ{π})) & β’ (π β (πβ{π}) β (πβ{π})) & β’ (π β (πβ{π}) β (πβ{π})) & β’ (π β π β (π β { 0 })) β β’ (π β (πΌββ¨π, (πΌββ¨π, πΉ, πβ©), πβ©) = (πΌββ¨π, (πΌββ¨π, πΉ, πβ©), πβ©)) | ||
Theorem | mapdh8 40647* | Part (8) in [Baer] p. 48. Given a reference vector π, the value of function πΌ at a vector π is independent of the choice of auxiliary vectors π and π. Unlike Baer's, our version does not require π, π, and π to be independent, and also is defined for all π and π that are not colinear with π or π. We do this to make the definition of Baer's sigma function more straightforward. (This part eliminates π β 0.) (Contributed by NM, 13-May-2015.) |
β’ π» = (LHypβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ β = (-gβπ) & β’ 0 = (0gβπ) & β’ π = (LSpanβπ) & β’ πΆ = ((LCDualβπΎ)βπ) & β’ π· = (BaseβπΆ) & β’ π = (-gβπΆ) & β’ π = (0gβπΆ) & β’ π½ = (LSpanβπΆ) & β’ π = ((mapdβπΎ)βπ) & β’ πΌ = (π₯ β V β¦ if((2nd βπ₯) = 0 , π, (β©β β π· ((πβ(πβ{(2nd βπ₯)})) = (π½β{β}) β§ (πβ(πβ{((1st β(1st βπ₯)) β (2nd βπ₯))})) = (π½β{((2nd β(1st βπ₯))π β)}))))) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β πΉ β π·) & β’ (π β (πβ(πβ{π})) = (π½β{πΉ})) & β’ (π β π β (π β { 0 })) & β’ (π β π β (π β { 0 })) & β’ (π β π β (π β { 0 })) & β’ (π β (πβ{π}) β (πβ{π})) & β’ (π β (πβ{π}) β (πβ{π})) & β’ (π β (πβ{π}) β (πβ{π})) & β’ (π β (πβ{π}) β (πβ{π})) & β’ (π β π β π) β β’ (π β (πΌββ¨π, (πΌββ¨π, πΉ, πβ©), πβ©) = (πΌββ¨π, (πΌββ¨π, πΉ, πβ©), πβ©)) | ||
Theorem | mapdh9a 40648* | Lemma for part (9) in [Baer] p. 48. TODO: why is this 50% larger than mapdh9aOLDN 40649? (Contributed by NM, 14-May-2015.) |
β’ π» = (LHypβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ β = (-gβπ) & β’ 0 = (0gβπ) & β’ π = (LSpanβπ) & β’ πΆ = ((LCDualβπΎ)βπ) & β’ π· = (BaseβπΆ) & β’ π = (-gβπΆ) & β’ π = (0gβπΆ) & β’ π½ = (LSpanβπΆ) & β’ π = ((mapdβπΎ)βπ) & β’ πΌ = (π₯ β V β¦ if((2nd βπ₯) = 0 , π, (β©β β π· ((πβ(πβ{(2nd βπ₯)})) = (π½β{β}) β§ (πβ(πβ{((1st β(1st βπ₯)) β (2nd βπ₯))})) = (π½β{((2nd β(1st βπ₯))π β)}))))) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β πΉ β π·) & β’ (π β (πβ(πβ{π})) = (π½β{πΉ})) & β’ (π β π β (π β { 0 })) & β’ (π β π β π) β β’ (π β β!π¦ β π· βπ§ β π (Β¬ π§ β ((πβ{π}) βͺ (πβ{π})) β π¦ = (πΌββ¨π§, (πΌββ¨π, πΉ, π§β©), πβ©))) | ||
Theorem | mapdh9aOLDN 40649* | Lemma for part (9) in [Baer] p. 48. (Contributed by NM, 14-May-2015.) (New usage is discouraged.) |
β’ π» = (LHypβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ β = (-gβπ) & β’ 0 = (0gβπ) & β’ π = (LSpanβπ) & β’ πΆ = ((LCDualβπΎ)βπ) & β’ π· = (BaseβπΆ) & β’ π = (-gβπΆ) & β’ π = (0gβπΆ) & β’ π½ = (LSpanβπΆ) & β’ π = ((mapdβπΎ)βπ) & β’ πΌ = (π₯ β V β¦ if((2nd βπ₯) = 0 , π, (β©β β π· ((πβ(πβ{(2nd βπ₯)})) = (π½β{β}) β§ (πβ(πβ{((1st β(1st βπ₯)) β (2nd βπ₯))})) = (π½β{((2nd β(1st βπ₯))π β)}))))) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β πΉ β π·) & β’ (π β (πβ(πβ{π})) = (π½β{πΉ})) & β’ (π β π β (π β { 0 })) & β’ (π β π β π) β β’ (π β β!π¦ β π· βπ§ β π (Β¬ π§ β (πβ{π, π}) β π¦ = (πΌββ¨π§, (πΌββ¨π, πΉ, π§β©), πβ©))) | ||
Syntax | chdma1 40650 | Extend class notation with preliminary map from vectors to functionals in the closed kernel dual space. |
class HDMap1 | ||
Syntax | chdma 40651 | Extend class notation with map from vectors to functionals in the closed kernel dual space. |
class HDMap | ||
Definition | df-hdmap1 40652* | Define preliminary map from vectors to functionals in the closed kernel dual space. See hdmap1fval 40655 description for more details. (Contributed by NM, 14-May-2015.) |
β’ HDMap1 = (π β V β¦ (π€ β (LHypβπ) β¦ {π β£ [((DVecHβπ)βπ€) / π’][(Baseβπ’) / π£][(LSpanβπ’) / π][((LCDualβπ)βπ€) / π][(Baseβπ) / π][(LSpanβπ) / π][((mapdβπ)βπ€) / π]π β (π₯ β ((π£ Γ π) Γ π£) β¦ if((2nd βπ₯) = (0gβπ’), (0gβπ), (β©β β π ((πβ(πβ{(2nd βπ₯)})) = (πβ{β}) β§ (πβ(πβ{((1st β(1st βπ₯))(-gβπ’)(2nd βπ₯))})) = (πβ{((2nd β(1st βπ₯))(-gβπ)β)})))))})) | ||
Definition | df-hdmap 40653* | Define map from vectors to functionals in the closed kernel dual space. See hdmapfval 40686 description for more details. (Contributed by NM, 15-May-2015.) |
β’ HDMap = (π β V β¦ (π€ β (LHypβπ) β¦ {π β£ [β¨( I βΎ (Baseβπ)), ( I βΎ ((LTrnβπ)βπ€))β© / π][((DVecHβπ)βπ€) / π’][(Baseβπ’) / π£][((HDMap1βπ)βπ€) / π]π β (π‘ β π£ β¦ (β©π¦ β (Baseβ((LCDualβπ)βπ€))βπ§ β π£ (Β¬ π§ β (((LSpanβπ’)β{π}) βͺ ((LSpanβπ’)β{π‘})) β π¦ = (πββ¨π§, (πββ¨π, (((HVMapβπ)βπ€)βπ), π§β©), π‘β©))))})) | ||
Theorem | hdmap1ffval 40654* | Preliminary map from vectors to functionals in the closed kernel dual space. (Contributed by NM, 14-May-2015.) |
β’ π» = (LHypβπΎ) β β’ (πΎ β π β (HDMap1βπΎ) = (π€ β π» β¦ {π β£ [((DVecHβπΎ)βπ€) / π’][(Baseβπ’) / π£][(LSpanβπ’) / π][((LCDualβπΎ)βπ€) / π][(Baseβπ) / π][(LSpanβπ) / π][((mapdβπΎ)βπ€) / π]π β (π₯ β ((π£ Γ π) Γ π£) β¦ if((2nd βπ₯) = (0gβπ’), (0gβπ), (β©β β π ((πβ(πβ{(2nd βπ₯)})) = (πβ{β}) β§ (πβ(πβ{((1st β(1st βπ₯))(-gβπ’)(2nd βπ₯))})) = (πβ{((2nd β(1st βπ₯))(-gβπ)β)})))))})) | ||
Theorem | hdmap1fval 40655* | Preliminary map from vectors to functionals in the closed kernel dual space. TODO: change span π½ to the convention πΏ for this section. (Contributed by NM, 15-May-2015.) |
β’ π» = (LHypβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ β = (-gβπ) & β’ 0 = (0gβπ) & β’ π = (LSpanβπ) & β’ πΆ = ((LCDualβπΎ)βπ) & β’ π· = (BaseβπΆ) & β’ π = (-gβπΆ) & β’ π = (0gβπΆ) & β’ π½ = (LSpanβπΆ) & β’ π = ((mapdβπΎ)βπ) & β’ πΌ = ((HDMap1βπΎ)βπ) & β’ (π β (πΎ β π΄ β§ π β π»)) β β’ (π β πΌ = (π₯ β ((π Γ π·) Γ π) β¦ if((2nd βπ₯) = 0 , π, (β©β β π· ((πβ(πβ{(2nd βπ₯)})) = (π½β{β}) β§ (πβ(πβ{((1st β(1st βπ₯)) β (2nd βπ₯))})) = (π½β{((2nd β(1st βπ₯))π β)})))))) | ||
Theorem | hdmap1vallem 40656* | Value of preliminary map from vectors to functionals in the closed kernel dual space. (Contributed by NM, 15-May-2015.) |
β’ π» = (LHypβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ β = (-gβπ) & β’ 0 = (0gβπ) & β’ π = (LSpanβπ) & β’ πΆ = ((LCDualβπΎ)βπ) & β’ π· = (BaseβπΆ) & β’ π = (-gβπΆ) & β’ π = (0gβπΆ) & β’ π½ = (LSpanβπΆ) & β’ π = ((mapdβπΎ)βπ) & β’ πΌ = ((HDMap1βπΎ)βπ) & β’ (π β (πΎ β π΄ β§ π β π»)) & β’ (π β π β ((π Γ π·) Γ π)) β β’ (π β (πΌβπ) = if((2nd βπ) = 0 , π, (β©β β π· ((πβ(πβ{(2nd βπ)})) = (π½β{β}) β§ (πβ(πβ{((1st β(1st βπ)) β (2nd βπ))})) = (π½β{((2nd β(1st βπ))π β)}))))) | ||
Theorem | hdmap1val 40657* | Value of preliminary map from vectors to functionals in the closed kernel dual space. (Restatement of mapdhval 40583.) TODO: change πΌ = (π₯ β V β¦... to (π β (πΌββ¨π, πΉ, π > ) =... in e.g. mapdh8 40647 to shorten proofs with no $d on π₯. (Contributed by NM, 15-May-2015.) |
β’ π» = (LHypβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ β = (-gβπ) & β’ 0 = (0gβπ) & β’ π = (LSpanβπ) & β’ πΆ = ((LCDualβπΎ)βπ) & β’ π· = (BaseβπΆ) & β’ π = (-gβπΆ) & β’ π = (0gβπΆ) & β’ π½ = (LSpanβπΆ) & β’ π = ((mapdβπΎ)βπ) & β’ πΌ = ((HDMap1βπΎ)βπ) & β’ (π β (πΎ β π΄ β§ π β π»)) & β’ (π β π β π) & β’ (π β πΉ β π·) & β’ (π β π β π) β β’ (π β (πΌββ¨π, πΉ, πβ©) = if(π = 0 , π, (β©β β π· ((πβ(πβ{π})) = (π½β{β}) β§ (πβ(πβ{(π β π)})) = (π½β{(πΉπ β)}))))) | ||
Theorem | hdmap1val0 40658 | Value of preliminary map from vectors to functionals at zero. (Restated mapdhval0 40584.) (Contributed by NM, 17-May-2015.) |
β’ π» = (LHypβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ 0 = (0gβπ) & β’ πΆ = ((LCDualβπΎ)βπ) & β’ π· = (BaseβπΆ) & β’ π = (0gβπΆ) & β’ πΌ = ((HDMap1βπΎ)βπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β πΉ β π·) & β’ (π β π β π) β β’ (π β (πΌββ¨π, πΉ, 0 β©) = π) | ||
Theorem | hdmap1val2 40659* | Value of preliminary map from vectors to functionals in the closed kernel dual space, for nonzero π. (Contributed by NM, 16-May-2015.) |
β’ π» = (LHypβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ β = (-gβπ) & β’ 0 = (0gβπ) & β’ π = (LSpanβπ) & β’ πΆ = ((LCDualβπΎ)βπ) & β’ π· = (BaseβπΆ) & β’ π = (-gβπΆ) & β’ πΏ = (LSpanβπΆ) & β’ π = ((mapdβπΎ)βπ) & β’ πΌ = ((HDMap1βπΎ)βπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β π β π) & β’ (π β πΉ β π·) & β’ (π β π β (π β { 0 })) β β’ (π β (πΌββ¨π, πΉ, πβ©) = (β©β β π· ((πβ(πβ{π})) = (πΏβ{β}) β§ (πβ(πβ{(π β π)})) = (πΏβ{(πΉπ β)})))) | ||
Theorem | hdmap1eq 40660 | The defining equation for h(x,x',y)=y' in part (2) in [Baer] p. 45 line 24. (Contributed by NM, 16-May-2015.) |
β’ π» = (LHypβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ β = (-gβπ) & β’ 0 = (0gβπ) & β’ π = (LSpanβπ) & β’ πΆ = ((LCDualβπΎ)βπ) & β’ π· = (BaseβπΆ) & β’ π = (-gβπΆ) & β’ πΏ = (LSpanβπΆ) & β’ π = ((mapdβπΎ)βπ) & β’ πΌ = ((HDMap1βπΎ)βπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β π β (π β { 0 })) & β’ (π β πΉ β π·) & β’ (π β π β (π β { 0 })) & β’ (π β πΊ β π·) & β’ (π β (πβ{π}) β (πβ{π})) & β’ (π β (πβ(πβ{π})) = (πΏβ{πΉ})) β β’ (π β ((πΌββ¨π, πΉ, πβ©) = πΊ β ((πβ(πβ{π})) = (πΏβ{πΊ}) β§ (πβ(πβ{(π β π)})) = (πΏβ{(πΉπ πΊ)})))) | ||
Theorem | hdmap1cbv 40661* | Frequently used lemma to change bound variables in πΏ hypothesis. (Contributed by NM, 15-May-2015.) |
β’ πΏ = (π₯ β V β¦ if((2nd βπ₯) = 0 , π, (β©β β π· ((πβ(πβ{(2nd βπ₯)})) = (π½β{β}) β§ (πβ(πβ{((1st β(1st βπ₯)) β (2nd βπ₯))})) = (π½β{((2nd β(1st βπ₯))π β)}))))) β β’ πΏ = (π¦ β V β¦ if((2nd βπ¦) = 0 , π, (β©π β π· ((πβ(πβ{(2nd βπ¦)})) = (π½β{π}) β§ (πβ(πβ{((1st β(1st βπ¦)) β (2nd βπ¦))})) = (π½β{((2nd β(1st βπ¦))π π)}))))) | ||
Theorem | hdmap1valc 40662* | Connect the value of the preliminary map from vectors to functionals πΌ to the hypothesis πΏ used by earlier theorems. Note: the π β (π β { 0 }) hypothesis could be the more general π β π but the former will be easier to use. TODO: use the πΌ function directly in those theorems, so this theorem becomes unnecessary? TODO: The hdmap1cbv 40661 is probably unnecessary, but it would mean different $d's later on. (Contributed by NM, 15-May-2015.) |
β’ π» = (LHypβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ β = (-gβπ) & β’ 0 = (0gβπ) & β’ π = (LSpanβπ) & β’ πΆ = ((LCDualβπΎ)βπ) & β’ π· = (BaseβπΆ) & β’ π = (-gβπΆ) & β’ π = (0gβπΆ) & β’ π½ = (LSpanβπΆ) & β’ π = ((mapdβπΎ)βπ) & β’ πΌ = ((HDMap1βπΎ)βπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β π β (π β { 0 })) & β’ (π β πΉ β π·) & β’ (π β π β π) & β’ πΏ = (π₯ β V β¦ if((2nd βπ₯) = 0 , π, (β©β β π· ((πβ(πβ{(2nd βπ₯)})) = (π½β{β}) β§ (πβ(πβ{((1st β(1st βπ₯)) β (2nd βπ₯))})) = (π½β{((2nd β(1st βπ₯))π β)}))))) β β’ (π β (πΌββ¨π, πΉ, πβ©) = (πΏββ¨π, πΉ, πβ©)) | ||
Theorem | hdmap1cl 40663 | Convert closure theorem mapdhcl 40586 to use HDMap1 function. (Contributed by NM, 15-May-2015.) |
β’ π» = (LHypβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ 0 = (0gβπ) & β’ π = (LSpanβπ) & β’ πΆ = ((LCDualβπΎ)βπ) & β’ π· = (BaseβπΆ) & β’ πΏ = (LSpanβπΆ) & β’ π = ((mapdβπΎ)βπ) & β’ πΌ = ((HDMap1βπΎ)βπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β πΉ β π·) & β’ (π β (πβ(πβ{π})) = (πΏβ{πΉ})) & β’ (π β (πβ{π}) β (πβ{π})) & β’ (π β π β (π β { 0 })) & β’ (π β π β π) β β’ (π β (πΌββ¨π, πΉ, πβ©) β π·) | ||
Theorem | hdmap1eq2 40664 | Convert mapdheq2 40588 to use HDMap1 function. (Contributed by NM, 16-May-2015.) |
β’ π» = (LHypβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ 0 = (0gβπ) & β’ π = (LSpanβπ) & β’ πΆ = ((LCDualβπΎ)βπ) & β’ π· = (BaseβπΆ) & β’ πΏ = (LSpanβπΆ) & β’ π = ((mapdβπΎ)βπ) & β’ πΌ = ((HDMap1βπΎ)βπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β πΉ β π·) & β’ (π β (πβ(πβ{π})) = (πΏβ{πΉ})) & β’ (π β (πβ{π}) β (πβ{π})) & β’ (π β π β (π β { 0 })) & β’ (π β π β (π β { 0 })) & β’ (π β (πΌββ¨π, πΉ, πβ©) = πΊ) β β’ (π β (πΌββ¨π, πΊ, πβ©) = πΉ) | ||
Theorem | hdmap1eq4N 40665 | Convert mapdheq4 40591 to use HDMap1 function. (Contributed by NM, 17-May-2015.) (New usage is discouraged.) |
β’ π» = (LHypβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ 0 = (0gβπ) & β’ π = (LSpanβπ) & β’ πΆ = ((LCDualβπΎ)βπ) & β’ π· = (BaseβπΆ) & β’ πΏ = (LSpanβπΆ) & β’ π = ((mapdβπΎ)βπ) & β’ πΌ = ((HDMap1βπΎ)βπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β πΉ β π·) & β’ (π β (πβ(πβ{π})) = (πΏβ{πΉ})) & β’ (π β π β (π β { 0 })) & β’ (π β π β (π β { 0 })) & β’ (π β π β (π β { 0 })) & β’ (π β (πβ{π}) β (πβ{π})) & β’ (π β Β¬ π β (πβ{π, π})) & β’ (π β (πΌββ¨π, πΉ, πβ©) = πΊ) & β’ (π β (πΌββ¨π, πΉ, πβ©) = π΅) β β’ (π β (πΌββ¨π, πΊ, πβ©) = π΅) | ||
Theorem | hdmap1l6lem1 40666 | Lemma for hdmap1l6 40680. Part (6) in [Baer] p. 47, lines 16-18. (Contributed by NM, 13-Apr-2015.) |
β’ π» = (LHypβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ + = (+gβπ) & β’ β = (-gβπ) & β’ 0 = (0gβπ) & β’ π = (LSpanβπ) & β’ πΆ = ((LCDualβπΎ)βπ) & β’ π· = (BaseβπΆ) & β’ β = (+gβπΆ) & β’ π = (-gβπΆ) & β’ π = (0gβπΆ) & β’ πΏ = (LSpanβπΆ) & β’ π = ((mapdβπΎ)βπ) & β’ πΌ = ((HDMap1βπΎ)βπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β πΉ β π·) & β’ (π β π β (π β { 0 })) & β’ (π β (πβ(πβ{π})) = (πΏβ{πΉ})) & β’ (π β π β (π β { 0 })) & β’ (π β π β (π β { 0 })) & β’ (π β Β¬ π β (πβ{π, π})) & β’ (π β (πβ{π}) β (πβ{π})) & β’ (π β (πΌββ¨π, πΉ, πβ©) = πΊ) & β’ (π β (πΌββ¨π, πΉ, πβ©) = πΈ) β β’ (π β (πβ(πβ{(π β (π + π))})) = (πΏβ{(πΉπ (πΊ β πΈ))})) | ||
Theorem | hdmap1l6lem2 40667 | Lemma for hdmap1l6 40680. Part (6) in [Baer] p. 47, lines 20-22. (Contributed by NM, 13-Apr-2015.) |
β’ π» = (LHypβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ + = (+gβπ) & β’ β = (-gβπ) & β’ 0 = (0gβπ) & β’ π = (LSpanβπ) & β’ πΆ = ((LCDualβπΎ)βπ) & β’ π· = (BaseβπΆ) & β’ β = (+gβπΆ) & β’ π = (-gβπΆ) & β’ π = (0gβπΆ) & β’ πΏ = (LSpanβπΆ) & β’ π = ((mapdβπΎ)βπ) & β’ πΌ = ((HDMap1βπΎ)βπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β πΉ β π·) & β’ (π β π β (π β { 0 })) & β’ (π β (πβ(πβ{π})) = (πΏβ{πΉ})) & β’ (π β π β (π β { 0 })) & β’ (π β π β (π β { 0 })) & β’ (π β Β¬ π β (πβ{π, π})) & β’ (π β (πβ{π}) β (πβ{π})) & β’ (π β (πΌββ¨π, πΉ, πβ©) = πΊ) & β’ (π β (πΌββ¨π, πΉ, πβ©) = πΈ) β β’ (π β (πβ(πβ{(π + π)})) = (πΏβ{(πΊ β πΈ)})) | ||
Theorem | hdmap1l6a 40668 | Lemma for hdmap1l6 40680. Part (6) in [Baer] p. 47, case 1. (Contributed by NM, 23-Apr-2015.) |
β’ π» = (LHypβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ + = (+gβπ) & β’ β = (-gβπ) & β’ 0 = (0gβπ) & β’ π = (LSpanβπ) & β’ πΆ = ((LCDualβπΎ)βπ) & β’ π· = (BaseβπΆ) & β’ β = (+gβπΆ) & β’ π = (-gβπΆ) & β’ π = (0gβπΆ) & β’ πΏ = (LSpanβπΆ) & β’ π = ((mapdβπΎ)βπ) & β’ πΌ = ((HDMap1βπΎ)βπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β πΉ β π·) & β’ (π β π β (π β { 0 })) & β’ (π β (πβ(πβ{π})) = (πΏβ{πΉ})) & β’ (π β π β (π β { 0 })) & β’ (π β π β (π β { 0 })) & β’ (π β Β¬ π β (πβ{π, π})) & β’ (π β (πβ{π}) β (πβ{π})) & β’ (π β (πΌββ¨π, πΉ, πβ©) = πΊ) & β’ (π β (πΌββ¨π, πΉ, πβ©) = πΈ) β β’ (π β (πΌββ¨π, πΉ, (π + π)β©) = ((πΌββ¨π, πΉ, πβ©) β (πΌββ¨π, πΉ, πβ©))) | ||
Theorem | hdmap1l6b0N 40669 | Lemmma for hdmap1l6 40680. (Contributed by NM, 23-Apr-2015.) (New usage is discouraged.) |
β’ π» = (LHypβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ + = (+gβπ) & β’ β = (-gβπ) & β’ 0 = (0gβπ) & β’ π = (LSpanβπ) & β’ πΆ = ((LCDualβπΎ)βπ) & β’ π· = (BaseβπΆ) & β’ β = (+gβπΆ) & β’ π = (-gβπΆ) & β’ π = (0gβπΆ) & β’ πΏ = (LSpanβπΆ) & β’ π = ((mapdβπΎ)βπ) & β’ πΌ = ((HDMap1βπΎ)βπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β πΉ β π·) & β’ (π β π β (π β { 0 })) & β’ (π β (πβ(πβ{π})) = (πΏβ{πΉ})) & β’ (π β π β π) & β’ (π β π β π) & β’ (π β ((πβ{π}) β© (πβ{π, π})) = { 0 }) β β’ (π β Β¬ π β (πβ{π, π})) | ||
Theorem | hdmap1l6b 40670 | Lemmma for hdmap1l6 40680. (Contributed by NM, 24-Apr-2015.) |
β’ π» = (LHypβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ + = (+gβπ) & β’ β = (-gβπ) & β’ 0 = (0gβπ) & β’ π = (LSpanβπ) & β’ πΆ = ((LCDualβπΎ)βπ) & β’ π· = (BaseβπΆ) & β’ β = (+gβπΆ) & β’ π = (-gβπΆ) & β’ π = (0gβπΆ) & β’ πΏ = (LSpanβπΆ) & β’ π = ((mapdβπΎ)βπ) & β’ πΌ = ((HDMap1βπΎ)βπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β πΉ β π·) & β’ (π β π β (π β { 0 })) & β’ (π β (πβ(πβ{π})) = (πΏβ{πΉ})) & β’ (π β π = 0 ) & β’ (π β π β π) & β’ (π β Β¬ π β (πβ{π, π})) β β’ (π β (πΌββ¨π, πΉ, (π + π)β©) = ((πΌββ¨π, πΉ, πβ©) β (πΌββ¨π, πΉ, πβ©))) | ||
Theorem | hdmap1l6c 40671 | Lemmma for hdmap1l6 40680. (Contributed by NM, 24-Apr-2015.) |
β’ π» = (LHypβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ + = (+gβπ) & β’ β = (-gβπ) & β’ 0 = (0gβπ) & β’ π = (LSpanβπ) & β’ πΆ = ((LCDualβπΎ)βπ) & β’ π· = (BaseβπΆ) & β’ β = (+gβπΆ) & β’ π = (-gβπΆ) & β’ π = (0gβπΆ) & β’ πΏ = (LSpanβπΆ) & β’ π = ((mapdβπΎ)βπ) & β’ πΌ = ((HDMap1βπΎ)βπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β πΉ β π·) & β’ (π β π β (π β { 0 })) & β’ (π β (πβ(πβ{π})) = (πΏβ{πΉ})) & β’ (π β π β π) & β’ (π β π = 0 ) & β’ (π β Β¬ π β (πβ{π, π})) β β’ (π β (πΌββ¨π, πΉ, (π + π)β©) = ((πΌββ¨π, πΉ, πβ©) β (πΌββ¨π, πΉ, πβ©))) | ||
Theorem | hdmap1l6d 40672 | Lemmma for hdmap1l6 40680. (Contributed by NM, 1-May-2015.) |
β’ π» = (LHypβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ + = (+gβπ) & β’ β = (-gβπ) & β’ 0 = (0gβπ) & β’ π = (LSpanβπ) & β’ πΆ = ((LCDualβπΎ)βπ) & β’ π· = (BaseβπΆ) & β’ β = (+gβπΆ) & β’ π = (-gβπΆ) & β’ π = (0gβπΆ) & β’ πΏ = (LSpanβπΆ) & β’ π = ((mapdβπΎ)βπ) & β’ πΌ = ((HDMap1βπΎ)βπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β πΉ β π·) & β’ (π β π β (π β { 0 })) & β’ (π β (πβ(πβ{π})) = (πΏβ{πΉ})) & β’ (π β Β¬ π β (πβ{π, π})) & β’ (π β (πβ{π}) = (πβ{π})) & β’ (π β π β (π β { 0 })) & β’ (π β π β (π β { 0 })) & β’ (π β π€ β (π β { 0 })) & β’ (π β Β¬ π€ β (πβ{π, π})) β β’ (π β (πΌββ¨π, πΉ, (π€ + (π + π))β©) = ((πΌββ¨π, πΉ, π€β©) β (πΌββ¨π, πΉ, (π + π)β©))) | ||
Theorem | hdmap1l6e 40673 | Lemmma for hdmap1l6 40680. Part (6) in [Baer] p. 47 line 38. (Contributed by NM, 1-May-2015.) |
β’ π» = (LHypβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ + = (+gβπ) & β’ β = (-gβπ) & β’ 0 = (0gβπ) & β’ π = (LSpanβπ) & β’ πΆ = ((LCDualβπΎ)βπ) & β’ π· = (BaseβπΆ) & β’ β = (+gβπΆ) & β’ π = (-gβπΆ) & β’ π = (0gβπΆ) & β’ πΏ = (LSpanβπΆ) & β’ π = ((mapdβπΎ)βπ) & β’ πΌ = ((HDMap1βπΎ)βπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β πΉ β π·) & β’ (π β π β (π β { 0 })) & β’ (π β (πβ(πβ{π})) = (πΏβ{πΉ})) & β’ (π β Β¬ π β (πβ{π, π})) & β’ (π β (πβ{π}) = (πβ{π})) & β’ (π β π β (π β { 0 })) & β’ (π β π β (π β { 0 })) & β’ (π β π€ β (π β { 0 })) & β’ (π β Β¬ π€ β (πβ{π, π})) β β’ (π β (πΌββ¨π, πΉ, ((π€ + π) + π)β©) = ((πΌββ¨π, πΉ, (π€ + π)β©) β (πΌββ¨π, πΉ, πβ©))) | ||
Theorem | hdmap1l6f 40674 | Lemmma for hdmap1l6 40680. Part (6) in [Baer] p. 47 line 38. (Contributed by NM, 1-May-2015.) |
β’ π» = (LHypβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ + = (+gβπ) & β’ β = (-gβπ) & β’ 0 = (0gβπ) & β’ π = (LSpanβπ) & β’ πΆ = ((LCDualβπΎ)βπ) & β’ π· = (BaseβπΆ) & β’ β = (+gβπΆ) & β’ π = (-gβπΆ) & β’ π = (0gβπΆ) & β’ πΏ = (LSpanβπΆ) & β’ π = ((mapdβπΎ)βπ) & β’ πΌ = ((HDMap1βπΎ)βπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β πΉ β π·) & β’ (π β π β (π β { 0 })) & β’ (π β (πβ(πβ{π})) = (πΏβ{πΉ})) & β’ (π β Β¬ π β (πβ{π, π})) & β’ (π β (πβ{π}) = (πβ{π})) & β’ (π β π β (π β { 0 })) & β’ (π β π β (π β { 0 })) & β’ (π β π€ β (π β { 0 })) & β’ (π β Β¬ π€ β (πβ{π, π})) β β’ (π β (πΌββ¨π, πΉ, (π€ + π)β©) = ((πΌββ¨π, πΉ, π€β©) β (πΌββ¨π, πΉ, πβ©))) | ||
Theorem | hdmap1l6g 40675 | Lemmma for hdmap1l6 40680. Part (6) of [Baer] p. 47 line 39. (Contributed by NM, 1-May-2015.) |
β’ π» = (LHypβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ + = (+gβπ) & β’ β = (-gβπ) & β’ 0 = (0gβπ) & β’ π = (LSpanβπ) & β’ πΆ = ((LCDualβπΎ)βπ) & β’ π· = (BaseβπΆ) & β’ β = (+gβπΆ) & β’ π = (-gβπΆ) & β’ π = (0gβπΆ) & β’ πΏ = (LSpanβπΆ) & β’ π = ((mapdβπΎ)βπ) & β’ πΌ = ((HDMap1βπΎ)βπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β πΉ β π·) & β’ (π β π β (π β { 0 })) & β’ (π β (πβ(πβ{π})) = (πΏβ{πΉ})) & β’ (π β Β¬ π β (πβ{π, π})) & β’ (π β (πβ{π}) = (πβ{π})) & β’ (π β π β (π β { 0 })) & β’ (π β π β (π β { 0 })) & β’ (π β π€ β (π β { 0 })) & β’ (π β Β¬ π€ β (πβ{π, π})) β β’ (π β ((πΌββ¨π, πΉ, π€β©) β (πΌββ¨π, πΉ, (π + π)β©)) = (((πΌββ¨π, πΉ, π€β©) β (πΌββ¨π, πΉ, πβ©)) β (πΌββ¨π, πΉ, πβ©))) | ||
Theorem | hdmap1l6h 40676 | Lemmma for hdmap1l6 40680. Part (6) of [Baer] p. 48 line 2. (Contributed by NM, 1-May-2015.) |
β’ π» = (LHypβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ + = (+gβπ) & β’ β = (-gβπ) & β’ 0 = (0gβπ) & β’ π = (LSpanβπ) & β’ πΆ = ((LCDualβπΎ)βπ) & β’ π· = (BaseβπΆ) & β’ β = (+gβπΆ) & β’ π = (-gβπΆ) & β’ π = (0gβπΆ) & β’ πΏ = (LSpanβπΆ) & β’ π = ((mapdβπΎ)βπ) & β’ πΌ = ((HDMap1βπΎ)βπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β πΉ β π·) & β’ (π β π β (π β { 0 })) & β’ (π β (πβ(πβ{π})) = (πΏβ{πΉ})) & β’ (π β Β¬ π β (πβ{π, π})) & β’ (π β (πβ{π}) = (πβ{π})) & β’ (π β π β (π β { 0 })) & β’ (π β π β (π β { 0 })) & β’ (π β π€ β (π β { 0 })) & β’ (π β Β¬ π€ β (πβ{π, π})) β β’ (π β (πΌββ¨π, πΉ, (π + π)β©) = ((πΌββ¨π, πΉ, πβ©) β (πΌββ¨π, πΉ, πβ©))) | ||
Theorem | hdmap1l6i 40677 | Lemmma for hdmap1l6 40680. Eliminate auxiliary vector π€. (Contributed by NM, 1-May-2015.) |
β’ π» = (LHypβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ + = (+gβπ) & β’ β = (-gβπ) & β’ 0 = (0gβπ) & β’ π = (LSpanβπ) & β’ πΆ = ((LCDualβπΎ)βπ) & β’ π· = (BaseβπΆ) & β’ β = (+gβπΆ) & β’ π = (-gβπΆ) & β’ π = (0gβπΆ) & β’ πΏ = (LSpanβπΆ) & β’ π = ((mapdβπΎ)βπ) & β’ πΌ = ((HDMap1βπΎ)βπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β πΉ β π·) & β’ (π β π β (π β { 0 })) & β’ (π β (πβ(πβ{π})) = (πΏβ{πΉ})) & β’ (π β Β¬ π β (πβ{π, π})) & β’ (π β π β (π β { 0 })) & β’ (π β π β (π β { 0 })) & β’ (π β (πβ{π}) = (πβ{π})) β β’ (π β (πΌββ¨π, πΉ, (π + π)β©) = ((πΌββ¨π, πΉ, πβ©) β (πΌββ¨π, πΉ, πβ©))) | ||
Theorem | hdmap1l6j 40678 | Lemmma for hdmap1l6 40680. Eliminate (π { Y } ) = ( N {π}) hypothesis. (Contributed by NM, 1-May-2015.) |
β’ π» = (LHypβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ + = (+gβπ) & β’ β = (-gβπ) & β’ 0 = (0gβπ) & β’ π = (LSpanβπ) & β’ πΆ = ((LCDualβπΎ)βπ) & β’ π· = (BaseβπΆ) & β’ β = (+gβπΆ) & β’ π = (-gβπΆ) & β’ π = (0gβπΆ) & β’ πΏ = (LSpanβπΆ) & β’ π = ((mapdβπΎ)βπ) & β’ πΌ = ((HDMap1βπΎ)βπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β πΉ β π·) & β’ (π β π β (π β { 0 })) & β’ (π β (πβ(πβ{π})) = (πΏβ{πΉ})) & β’ (π β Β¬ π β (πβ{π, π})) & β’ (π β π β (π β { 0 })) & β’ (π β π β (π β { 0 })) β β’ (π β (πΌββ¨π, πΉ, (π + π)β©) = ((πΌββ¨π, πΉ, πβ©) β (πΌββ¨π, πΉ, πβ©))) | ||
Theorem | hdmap1l6k 40679 | Lemmma for hdmap1l6 40680. Eliminate nonzero vector requirement. (Contributed by NM, 1-May-2015.) |
β’ π» = (LHypβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ + = (+gβπ) & β’ β = (-gβπ) & β’ 0 = (0gβπ) & β’ π = (LSpanβπ) & β’ πΆ = ((LCDualβπΎ)βπ) & β’ π· = (BaseβπΆ) & β’ β = (+gβπΆ) & β’ π = (-gβπΆ) & β’ π = (0gβπΆ) & β’ πΏ = (LSpanβπΆ) & β’ π = ((mapdβπΎ)βπ) & β’ πΌ = ((HDMap1βπΎ)βπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β πΉ β π·) & β’ (π β π β (π β { 0 })) & β’ (π β (πβ(πβ{π})) = (πΏβ{πΉ})) & β’ (π β π β π) & β’ (π β π β π) & β’ (π β Β¬ π β (πβ{π, π})) β β’ (π β (πΌββ¨π, πΉ, (π + π)β©) = ((πΌββ¨π, πΉ, πβ©) β (πΌββ¨π, πΉ, πβ©))) | ||
Theorem | hdmap1l6 40680 | Part (6) of [Baer] p. 47 line 6. Note that we use Β¬ π β (πβ{π, π}) which is equivalent to Baer's "Fx β© (Fy + Fz)" by lspdisjb 20731. (Convert mapdh6N 40606 to use the function HDMap1.) (Contributed by NM, 17-May-2015.) |
β’ π» = (LHypβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ + = (+gβπ) & β’ 0 = (0gβπ) & β’ π = (LSpanβπ) & β’ πΆ = ((LCDualβπΎ)βπ) & β’ π· = (BaseβπΆ) & β’ β = (+gβπΆ) & β’ πΏ = (LSpanβπΆ) & β’ π = ((mapdβπΎ)βπ) & β’ πΌ = ((HDMap1βπΎ)βπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β πΉ β π·) & β’ (π β π β (π β { 0 })) & β’ (π β π β π) & β’ (π β π β π) & β’ (π β Β¬ π β (πβ{π, π})) & β’ (π β (πβ(πβ{π})) = (πΏβ{πΉ})) β β’ (π β (πΌββ¨π, πΉ, (π + π)β©) = ((πΌββ¨π, πΉ, πβ©) β (πΌββ¨π, πΉ, πβ©))) | ||
Theorem | hdmap1eulem 40681* | Lemma for hdmap1eu 40683. TODO: combine with hdmap1eu 40683 or at least share some hypotheses. (Contributed by NM, 15-May-2015.) |
β’ π» = (LHypβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ β = (-gβπ) & β’ 0 = (0gβπ) & β’ π = (LSpanβπ) & β’ πΆ = ((LCDualβπΎ)βπ) & β’ π· = (BaseβπΆ) & β’ π = (-gβπΆ) & β’ π = (0gβπΆ) & β’ π½ = (LSpanβπΆ) & β’ π = ((mapdβπΎ)βπ) & β’ πΌ = ((HDMap1βπΎ)βπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β (πβ(πβ{π})) = (π½β{πΉ})) & β’ (π β π β (π β { 0 })) & β’ (π β πΉ β π·) & β’ (π β π β π) & β’ πΏ = (π₯ β V β¦ if((2nd βπ₯) = 0 , π, (β©β β π· ((πβ(πβ{(2nd βπ₯)})) = (π½β{β}) β§ (πβ(πβ{((1st β(1st βπ₯)) β (2nd βπ₯))})) = (π½β{((2nd β(1st βπ₯))π β)}))))) β β’ (π β β!π¦ β π· βπ§ β π (Β¬ π§ β ((πβ{π}) βͺ (πβ{π})) β π¦ = (πΌββ¨π§, (πΌββ¨π, πΉ, π§β©), πβ©))) | ||
Theorem | hdmap1eulemOLDN 40682* | Lemma for hdmap1euOLDN 40684. TODO: combine with hdmap1euOLDN 40684 or at least share some hypotheses. (Contributed by NM, 15-May-2015.) (New usage is discouraged.) |
β’ π» = (LHypβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ β = (-gβπ) & β’ 0 = (0gβπ) & β’ π = (LSpanβπ) & β’ πΆ = ((LCDualβπΎ)βπ) & β’ π· = (BaseβπΆ) & β’ π = (-gβπΆ) & β’ π = (0gβπΆ) & β’ π½ = (LSpanβπΆ) & β’ π = ((mapdβπΎ)βπ) & β’ πΌ = ((HDMap1βπΎ)βπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β (πβ(πβ{π})) = (π½β{πΉ})) & β’ (π β π β (π β { 0 })) & β’ (π β πΉ β π·) & β’ (π β π β π) & β’ πΏ = (π₯ β V β¦ if((2nd βπ₯) = 0 , π, (β©β β π· ((πβ(πβ{(2nd βπ₯)})) = (π½β{β}) β§ (πβ(πβ{((1st β(1st βπ₯)) β (2nd βπ₯))})) = (π½β{((2nd β(1st βπ₯))π β)}))))) β β’ (π β β!π¦ β π· βπ§ β π (Β¬ π§ β (πβ{π, π}) β π¦ = (πΌββ¨π§, (πΌββ¨π, πΉ, π§β©), πβ©))) | ||
Theorem | hdmap1eu 40683* | Convert mapdh9a 40648 to use the HDMap1 notation. (Contributed by NM, 15-May-2015.) |
β’ π» = (LHypβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ 0 = (0gβπ) & β’ π = (LSpanβπ) & β’ πΆ = ((LCDualβπΎ)βπ) & β’ π· = (BaseβπΆ) & β’ πΏ = (LSpanβπΆ) & β’ π = ((mapdβπΎ)βπ) & β’ πΌ = ((HDMap1βπΎ)βπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β (πβ(πβ{π})) = (πΏβ{πΉ})) & β’ (π β π β (π β { 0 })) & β’ (π β πΉ β π·) & β’ (π β π β π) β β’ (π β β!π¦ β π· βπ§ β π (Β¬ π§ β ((πβ{π}) βͺ (πβ{π})) β π¦ = (πΌββ¨π§, (πΌββ¨π, πΉ, π§β©), πβ©))) | ||
Theorem | hdmap1euOLDN 40684* | Convert mapdh9aOLDN 40649 to use the HDMap1 notation. (Contributed by NM, 15-May-2015.) (New usage is discouraged.) |
β’ π» = (LHypβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ 0 = (0gβπ) & β’ π = (LSpanβπ) & β’ πΆ = ((LCDualβπΎ)βπ) & β’ π· = (BaseβπΆ) & β’ πΏ = (LSpanβπΆ) & β’ π = ((mapdβπΎ)βπ) & β’ πΌ = ((HDMap1βπΎ)βπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β (πβ(πβ{π})) = (πΏβ{πΉ})) & β’ (π β π β (π β { 0 })) & β’ (π β πΉ β π·) & β’ (π β π β π) β β’ (π β β!π¦ β π· βπ§ β π (Β¬ π§ β (πβ{π, π}) β π¦ = (πΌββ¨π§, (πΌββ¨π, πΉ, π§β©), πβ©))) | ||
Theorem | hdmapffval 40685* | Map from vectors to functionals in the closed kernel dual space. (Contributed by NM, 15-May-2015.) |
β’ π» = (LHypβπΎ) β β’ (πΎ β π β (HDMapβπΎ) = (π€ β π» β¦ {π β£ [β¨( I βΎ (BaseβπΎ)), ( I βΎ ((LTrnβπΎ)βπ€))β© / π][((DVecHβπΎ)βπ€) / π’][(Baseβπ’) / π£][((HDMap1βπΎ)βπ€) / π]π β (π‘ β π£ β¦ (β©π¦ β (Baseβ((LCDualβπΎ)βπ€))βπ§ β π£ (Β¬ π§ β (((LSpanβπ’)β{π}) βͺ ((LSpanβπ’)β{π‘})) β π¦ = (πββ¨π§, (πββ¨π, (((HVMapβπΎ)βπ€)βπ), π§β©), π‘β©))))})) | ||
Theorem | hdmapfval 40686* | Map from vectors to functionals in the closed kernel dual space. (Contributed by NM, 15-May-2015.) |
β’ π» = (LHypβπΎ) & β’ πΈ = β¨( I βΎ (BaseβπΎ)), ( I βΎ ((LTrnβπΎ)βπ))β© & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ π = (LSpanβπ) & β’ πΆ = ((LCDualβπΎ)βπ) & β’ π· = (BaseβπΆ) & β’ π½ = ((HVMapβπΎ)βπ) & β’ πΌ = ((HDMap1βπΎ)βπ) & β’ π = ((HDMapβπΎ)βπ) & β’ (π β (πΎ β π΄ β§ π β π»)) β β’ (π β π = (π‘ β π β¦ (β©π¦ β π· βπ§ β π (Β¬ π§ β ((πβ{πΈ}) βͺ (πβ{π‘})) β π¦ = (πΌββ¨π§, (πΌββ¨πΈ, (π½βπΈ), π§β©), π‘β©))))) | ||
Theorem | hdmapval 40687* | Value of map from vectors to functionals in the closed kernel dual space. This is the function sigma on line 27 above part 9 in [Baer] p. 48. We select a convenient fixed reference vector πΈ to be β¨0, 1β© (corresponding to vector u on p. 48 line 7) whose span is the lattice isomorphism map of the fiducial atom π = ((ocβπΎ)βπ) (see dvheveccl 39971). (π½βπΈ) is a fixed reference functional determined by this vector (corresponding to u' on line 8; mapdhvmap 40628 shows in Baer's notation (Fu)* = Gu'). Baer's independent vectors v and w on line 7 correspond to our π§ that the βπ§ β π ranges over. The middle term (πΌββ¨πΈ, (π½βπΈ), π§β©) provides isolation to allow πΈ and π to assume the same value without conflict. Closure is shown by hdmapcl 40689. If a separate auxiliary vector is known, hdmapval2 40691 provides a version without quantification. (Contributed by NM, 15-May-2015.) |
β’ π» = (LHypβπΎ) & β’ πΈ = β¨( I βΎ (BaseβπΎ)), ( I βΎ ((LTrnβπΎ)βπ))β© & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ π = (LSpanβπ) & β’ πΆ = ((LCDualβπΎ)βπ) & β’ π· = (BaseβπΆ) & β’ π½ = ((HVMapβπΎ)βπ) & β’ πΌ = ((HDMap1βπΎ)βπ) & β’ π = ((HDMapβπΎ)βπ) & β’ (π β (πΎ β π΄ β§ π β π»)) & β’ (π β π β π) β β’ (π β (πβπ) = (β©π¦ β π· βπ§ β π (Β¬ π§ β ((πβ{πΈ}) βͺ (πβ{π})) β π¦ = (πΌββ¨π§, (πΌββ¨πΈ, (π½βπΈ), π§β©), πβ©)))) | ||
Theorem | hdmapfnN 40688 | Functionality of map from vectors to functionals with closed kernels. (Contributed by NM, 30-May-2015.) (New usage is discouraged.) |
β’ π» = (LHypβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ π = ((HDMapβπΎ)βπ) & β’ (π β (πΎ β HL β§ π β π»)) β β’ (π β π Fn π) | ||
Theorem | hdmapcl 40689 | Closure of map from vectors to functionals with closed kernels. (Contributed by NM, 15-May-2015.) |
β’ π» = (LHypβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ πΆ = ((LCDualβπΎ)βπ) & β’ π· = (BaseβπΆ) & β’ π = ((HDMapβπΎ)βπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β π β π) β β’ (π β (πβπ) β π·) | ||
Theorem | hdmapval2lem 40690* | Lemma for hdmapval2 40691. (Contributed by NM, 15-May-2015.) |
β’ π» = (LHypβπΎ) & β’ πΈ = β¨( I βΎ (BaseβπΎ)), ( I βΎ ((LTrnβπΎ)βπ))β© & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ π = (LSpanβπ) & β’ πΆ = ((LCDualβπΎ)βπ) & β’ π· = (BaseβπΆ) & β’ π½ = ((HVMapβπΎ)βπ) & β’ πΌ = ((HDMap1βπΎ)βπ) & β’ π = ((HDMapβπΎ)βπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β π β π) & β’ (π β πΉ β π·) β β’ (π β ((πβπ) = πΉ β βπ§ β π (Β¬ π§ β ((πβ{πΈ}) βͺ (πβ{π})) β πΉ = (πΌββ¨π§, (πΌββ¨πΈ, (π½βπΈ), π§β©), πβ©)))) | ||
Theorem | hdmapval2 40691 | Value of map from vectors to functionals with a specific auxiliary vector. TODO: Would shorter proofs result if the .ne hypothesis were changed to two β hypothesis? Consider hdmaplem1 40630 through hdmaplem4 40633, which would become obsolete. (Contributed by NM, 15-May-2015.) |
β’ π» = (LHypβπΎ) & β’ πΈ = β¨( I βΎ (BaseβπΎ)), ( I βΎ ((LTrnβπΎ)βπ))β© & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ π = (LSpanβπ) & β’ πΆ = ((LCDualβπΎ)βπ) & β’ π· = (BaseβπΆ) & β’ π½ = ((HVMapβπΎ)βπ) & β’ πΌ = ((HDMap1βπΎ)βπ) & β’ π = ((HDMapβπΎ)βπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β π β π) & β’ (π β π β π) & β’ (π β Β¬ π β ((πβ{πΈ}) βͺ (πβ{π}))) β β’ (π β (πβπ) = (πΌββ¨π, (πΌββ¨πΈ, (π½βπΈ), πβ©), πβ©)) | ||
Theorem | hdmapval0 40692 | Value of map from vectors to functionals at zero. Note: we use dvh3dim 40305 for convenience, even though 3 dimensions aren't necessary at this point. TODO: I think either this or hdmapeq0 40703 could be derived from the other to shorten proof. (Contributed by NM, 17-May-2015.) |
β’ π» = (LHypβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ 0 = (0gβπ) & β’ πΆ = ((LCDualβπΎ)βπ) & β’ π = (0gβπΆ) & β’ π = ((HDMapβπΎ)βπ) & β’ (π β (πΎ β HL β§ π β π»)) β β’ (π β (πβ 0 ) = π) | ||
Theorem | hdmapeveclem 40693 | Lemma for hdmapevec 40694. TODO: combine with hdmapevec 40694 if it shortens overall. (Contributed by NM, 16-May-2015.) |
β’ π» = (LHypβπΎ) & β’ πΈ = β¨( I βΎ (BaseβπΎ)), ( I βΎ ((LTrnβπΎ)βπ))β© & β’ π½ = ((HVMapβπΎ)βπ) & β’ π = ((HDMapβπΎ)βπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ π = (LSpanβπ) & β’ πΆ = ((LCDualβπΎ)βπ) & β’ π· = (BaseβπΆ) & β’ πΌ = ((HDMap1βπΎ)βπ) & β’ (π β π β π) & β’ (π β Β¬ π β ((πβ{πΈ}) βͺ (πβ{πΈ}))) β β’ (π β (πβπΈ) = (π½βπΈ)) | ||
Theorem | hdmapevec 40694 | Value of map from vectors to functionals at the reference vector πΈ. (Contributed by NM, 16-May-2015.) |
β’ π» = (LHypβπΎ) & β’ πΈ = β¨( I βΎ (BaseβπΎ)), ( I βΎ ((LTrnβπΎ)βπ))β© & β’ π½ = ((HVMapβπΎ)βπ) & β’ π = ((HDMapβπΎ)βπ) & β’ (π β (πΎ β HL β§ π β π»)) β β’ (π β (πβπΈ) = (π½βπΈ)) | ||
Theorem | hdmapevec2 40695 | The inner product of the reference vector πΈ with itself is nonzero. This shows the inner product condition in the proof of Theorem 3.6 of [Holland95] p. 14 line 32, [ e , e ] β 0 is satisfied. TODO: remove redundant hypothesis hdmapevec.j. (Contributed by NM, 1-Jun-2015.) |
β’ π» = (LHypβπΎ) & β’ πΈ = β¨( I βΎ (BaseβπΎ)), ( I βΎ ((LTrnβπΎ)βπ))β© & β’ π½ = ((HVMapβπΎ)βπ) & β’ π = ((HDMapβπΎ)βπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Scalarβπ) & β’ 1 = (1rβπ ) β β’ (π β ((πβπΈ)βπΈ) = 1 ) | ||
Theorem | hdmapval3lemN 40696 | Value of map from vectors to functionals at arguments not colinear with the reference vector πΈ. (Contributed by NM, 17-May-2015.) (New usage is discouraged.) |
β’ π» = (LHypβπΎ) & β’ πΈ = β¨( I βΎ (BaseβπΎ)), ( I βΎ ((LTrnβπΎ)βπ))β© & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ π = (LSpanβπ) & β’ πΆ = ((LCDualβπΎ)βπ) & β’ π· = (BaseβπΆ) & β’ π½ = ((HVMapβπΎ)βπ) & β’ πΌ = ((HDMap1βπΎ)βπ) & β’ π = ((HDMapβπΎ)βπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β (πβ{π}) β (πβ{πΈ})) & β’ (π β π β (π β {(0gβπ)})) & β’ (π β π₯ β π) & β’ (π β Β¬ π₯ β (πβ{πΈ, π})) β β’ (π β (πβπ) = (πΌββ¨πΈ, (π½βπΈ), πβ©)) | ||
Theorem | hdmapval3N 40697 | Value of map from vectors to functionals at arguments not colinear with the reference vector πΈ. (Contributed by NM, 17-May-2015.) (New usage is discouraged.) |
β’ π» = (LHypβπΎ) & β’ πΈ = β¨( I βΎ (BaseβπΎ)), ( I βΎ ((LTrnβπΎ)βπ))β© & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ π = (LSpanβπ) & β’ πΆ = ((LCDualβπΎ)βπ) & β’ π· = (BaseβπΆ) & β’ π½ = ((HVMapβπΎ)βπ) & β’ πΌ = ((HDMap1βπΎ)βπ) & β’ π = ((HDMapβπΎ)βπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β (πβ{π}) β (πβ{πΈ})) & β’ (π β π β π) β β’ (π β (πβπ) = (πΌββ¨πΈ, (π½βπΈ), πβ©)) | ||
Theorem | hdmap10lem 40698 | Lemma for hdmap10 40699. (Contributed by NM, 17-May-2015.) |
β’ π» = (LHypβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ π = (LSpanβπ) & β’ πΆ = ((LCDualβπΎ)βπ) & β’ πΏ = (LSpanβπΆ) & β’ π = ((mapdβπΎ)βπ) & β’ π = ((HDMapβπΎ)βπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ πΈ = β¨( I βΎ (BaseβπΎ)), ( I βΎ ((LTrnβπΎ)βπ))β© & β’ 0 = (0gβπ) & β’ π· = (BaseβπΆ) & β’ π½ = ((HVMapβπΎ)βπ) & β’ πΌ = ((HDMap1βπΎ)βπ) & β’ (π β π β (π β { 0 })) β β’ (π β (πβ(πβ{π})) = (πΏβ{(πβπ)})) | ||
Theorem | hdmap10 40699 | Part 10 in [Baer] p. 48 line 33, (Ft)* = G(tS) in their notation (S = sigma). (Contributed by NM, 17-May-2015.) |
β’ π» = (LHypβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ π = (LSpanβπ) & β’ πΆ = ((LCDualβπΎ)βπ) & β’ πΏ = (LSpanβπΆ) & β’ π = ((mapdβπΎ)βπ) & β’ π = ((HDMapβπΎ)βπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β π β π) β β’ (π β (πβ(πβ{π})) = (πΏβ{(πβπ)})) | ||
Theorem | hdmap11lem1 40700 | Lemma for hdmapadd 40702. (Contributed by NM, 26-May-2015.) |
β’ π» = (LHypβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ + = (+gβπ) & β’ πΆ = ((LCDualβπΎ)βπ) & β’ β = (+gβπΆ) & β’ π = ((HDMapβπΎ)βπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β π β π) & β’ (π β π β π) & β’ πΈ = β¨( I βΎ (BaseβπΎ)), ( I βΎ ((LTrnβπΎ)βπ))β© & β’ 0 = (0gβπ) & β’ π = (LSpanβπ) & β’ π· = (BaseβπΆ) & β’ πΏ = (LSpanβπΆ) & β’ π = ((mapdβπΎ)βπ) & β’ π½ = ((HVMapβπΎ)βπ) & β’ πΌ = ((HDMap1βπΎ)βπ) & β’ (π β π§ β π) & β’ (π β Β¬ π§ β (πβ{π, π})) & β’ (π β (πβ{π§}) β (πβ{πΈ})) β β’ (π β (πβ(π + π)) = ((πβπ) β (πβπ))) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |