Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > df-dmn | Structured version Visualization version GIF version |
Description: Define the class of (integral) domains. A domain is a commutative prime ring. (Contributed by Jeff Madsen, 10-Jun-2010.) |
Ref | Expression |
---|---|
df-dmn | ⊢ Dmn = (PrRing ∩ Com2) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cdmn 36205 | . 2 class Dmn | |
2 | cprrng 36204 | . . 3 class PrRing | |
3 | ccm2 36147 | . . 3 class Com2 | |
4 | 2, 3 | cin 3886 | . 2 class (PrRing ∩ Com2) |
5 | 1, 4 | wceq 1539 | 1 wff Dmn = (PrRing ∩ Com2) |
Colors of variables: wff setvar class |
This definition is referenced by: isdmn 36212 |
Copyright terms: Public domain | W3C validator |