| Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > df-dmn | Structured version Visualization version GIF version | ||
| Description: Define the class of (integral) domains. A domain is a commutative prime ring. (Contributed by Jeff Madsen, 10-Jun-2010.) |
| Ref | Expression |
|---|---|
| df-dmn | ⊢ Dmn = (PrRing ∩ Com2) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cdmn 38054 | . 2 class Dmn | |
| 2 | cprrng 38053 | . . 3 class PrRing | |
| 3 | ccm2 37996 | . . 3 class Com2 | |
| 4 | 2, 3 | cin 3950 | . 2 class (PrRing ∩ Com2) |
| 5 | 1, 4 | wceq 1540 | 1 wff Dmn = (PrRing ∩ Com2) |
| Colors of variables: wff setvar class |
| This definition is referenced by: isdmn 38061 |
| Copyright terms: Public domain | W3C validator |