Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-dmn Structured version   Visualization version   GIF version

Definition df-dmn 36134
Description: Define the class of (integral) domains. A domain is a commutative prime ring. (Contributed by Jeff Madsen, 10-Jun-2010.)
Assertion
Ref Expression
df-dmn Dmn = (PrRing ∩ Com2)

Detailed syntax breakdown of Definition df-dmn
StepHypRef Expression
1 cdmn 36132 . 2 class Dmn
2 cprrng 36131 . . 3 class PrRing
3 ccm2 36074 . . 3 class Com2
42, 3cin 3882 . 2 class (PrRing ∩ Com2)
51, 4wceq 1539 1 wff Dmn = (PrRing ∩ Com2)
Colors of variables: wff setvar class
This definition is referenced by:  isdmn  36139
  Copyright terms: Public domain W3C validator