HomeHome Metamath Proof Explorer
Theorem List (p. 376 of 498)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-30854)
  Hilbert Space Explorer  Hilbert Space Explorer
(30855-32377)
  Users' Mathboxes  Users' Mathboxes
(32378-49798)
 

Theorem List for Metamath Proof Explorer - 37501-37600   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremwl-ax12v2cl 37501* The class version of ax12v2 2180, where the set variable 𝑦 is replaced with the class variable 𝐴. This is possible if 𝐴 is known to be a set, expressed by the antecedent.

Theorem ax12v 2179 is a specialization of ax12v2 2180. So any proof using ax12v 2179 will still hold if ax12v2 2180 is used instead.

Theorem ax12v2 2180 expresses that two equal set variables cannot be distinguished by whatever complicated formula 𝜑 if one is replaced with the other in it. This theorem states a similar result for a class variable known to be a set: All sets equal to the class variable behave the same if they replace the class variable in 𝜑.

Most axioms in FOL containing an equation correspond to a theorem where a class variable known to be a set replaces a set variable in the formula. Some exceptions cannot be avoided: The set variable must nowhere be bound. And it is not possible to state a distinct variable condition where a class 𝐴 is different from another, or distinct from a variable with type wff. So ax-12 2178 proper is out of reach: you cannot replace 𝑦 in 𝑦𝜑 with a class variable.

But where such limitations are not violated, the proof of the FOL theorem should carry over to a version where a class variable, known to be set, appears instead of a set variable. (Contributed by Wolf Lammen, 8-Aug-2020.)

(∃𝑦 𝑦 = 𝐴 → (𝑥 = 𝐴 → (𝜑 → ∀𝑥(𝑥 = 𝐴𝜑))))
 
21.22.7  Other stuff
 
Theoremwl-mps 37502 Replacing a nested consequent. A sort of modus ponens in antecedent position. (Contributed by Wolf Lammen, 20-Sep-2013.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝜑 → (𝜓𝜒))    &   ((𝜑𝜒) → 𝜃)       ((𝜑𝜓) → 𝜃)
 
Theoremwl-syls1 37503 Replacing a nested consequent. A sort of syllogism in antecedent position. (Contributed by Wolf Lammen, 20-Sep-2013.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝜓𝜒)    &   ((𝜑𝜒) → 𝜃)       ((𝜑𝜓) → 𝜃)
 
Theoremwl-syls2 37504 Replacing a nested antecedent. A sort of syllogism in antecedent position. (Contributed by Wolf Lammen, 20-Sep-2013.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝜑𝜓)    &   ((𝜑𝜒) → 𝜃)       ((𝜓𝜒) → 𝜃)
 
Theoremwl-embant 37505 A true wff can always be added as a nested antecedent to an antecedent. Note: this theorem is intuitionistically valid. (Contributed by Wolf Lammen, 4-Oct-2013.) (Proof modification is discouraged.) (New usage is discouraged.)
𝜑    &   (𝜓𝜒)       ((𝜑𝜓) → 𝜒)
 
Theoremwl-orel12 37506 In a conjunctive normal form a pair of nodes like (𝜑𝜓) ∧ (¬ 𝜑𝜒) eliminates the need of a node (𝜓𝜒). This theorem allows simplifications in that respect. (Contributed by Wolf Lammen, 20-Jun-2020.)
(((𝜑𝜓) ∧ (¬ 𝜑𝜒)) → (𝜓𝜒))
 
Theoremwl-cases2-dnf 37507 A particular instance of orddi 1011 and anddi 1012 converting between disjunctive and conjunctive normal forms, when both 𝜑 and ¬ 𝜑 appear. This theorem in fact rephrases cases2 1047, and is related to consensus 1052. I restate it here in DNF and CNF. The proof deliberately does not use df-ifp 1063 and dfifp4 1066, by which it can be shortened. (Contributed by Wolf Lammen, 21-Jun-2020.) (Proof modification is discouraged.)
(((𝜑𝜓) ∨ (¬ 𝜑𝜒)) ↔ ((¬ 𝜑𝜓) ∧ (𝜑𝜒)))
 
Theoremwl-cbvmotv 37508* Change bound variable. Uses only Tarski's FOL axiom schemes. Part of Lemma 7 of [KalishMontague] p. 86. (Contributed by Wolf Lammen, 5-Mar-2023.)
(∃*𝑥⊤ → ∃*𝑦⊤)
 
Theoremwl-moteq 37509 Change bound variable. Uses only Tarski's FOL axiom schemes. Part of Lemma 7 of [KalishMontague] p. 86. (Contributed by Wolf Lammen, 5-Mar-2023.)
(∃*𝑥⊤ → 𝑦 = 𝑧)
 
Theoremwl-motae 37510 Change bound variable. Uses only Tarski's FOL axiom schemes. Part of Lemma 7 of [KalishMontague] p. 86. (Contributed by Wolf Lammen, 5-Mar-2023.)
(∃*𝑢⊤ → ∀𝑥 𝑦 = 𝑧)
 
Theoremwl-moae 37511* Two ways to express "at most one thing exists" or, in this context equivalently, "exactly one thing exists" . The equivalence results from the presence of ax-6 1967 in the proof, that ensures "at least one thing exists". For other equivalences see wl-euae 37512 and exists1 2655. Gerard Lang pointed out, that 𝑦𝑥𝑥 = 𝑦 with disjoint 𝑥 and 𝑦 (df-mo 2534, trut 1546) also means "exactly one thing exists" . (Contributed by NM, 5-Apr-2004.) State the theorem using truth constant . (Revised by BJ, 7-Oct-2022.) Reduce axiom dependencies, and use ∃*. (Revised by Wolf Lammen, 7-Mar-2023.)
(∃*𝑥⊤ ↔ ∀𝑥 𝑥 = 𝑦)
 
Theoremwl-euae 37512* Two ways to express "exactly one thing exists" . (Contributed by Wolf Lammen, 5-Mar-2023.)
(∃!𝑥⊤ ↔ ∀𝑥 𝑥 = 𝑦)
 
Theoremwl-nax6im 37513* The following series of theorems are centered around the empty domain, where no set exists. As a consequence, a set variable like 𝑥 has no instance to assign to. An expression like 𝑥 = 𝑦 is not really meaningful then. What does it evaluate to, true or false? In fact, the grammar extension weq 1962 requires us to formally assign a boolean value to an equation, say always false, unless you want to give up on exmid 894, for example. Whatever it is, we start out with the contraposition of ax-6 1967, that guarantees the existence of at least one set. Our hypothesis here expresses tentatively it might not hold. We can simplify the antecedent then, to the point where we do not need equation any more. This suggests what a decent characterization of the empty domain of discourse could be. (Contributed by Wolf Lammen, 12-Mar-2023.)
(¬ ∃𝑥 𝑥 = 𝑦𝜑)       (¬ ∃𝑥⊤ → 𝜑)
 
Theoremwl-hbae1 37514 This specialization of hbae 2430 does not depend on ax-11 2158. (Contributed by Wolf Lammen, 8-Aug-2021.)
(∀𝑥 𝑥 = 𝑦 → ∀𝑦𝑥 𝑥 = 𝑦)
 
Theoremwl-naevhba1v 37515* An instance of hbn1w 2047 applied to equality. (Contributed by Wolf Lammen, 7-Apr-2021.)
(¬ ∀𝑥 𝑥 = 𝑦 → ∀𝑥 ¬ ∀𝑥 𝑥 = 𝑦)
 
Theoremwl-spae 37516 Prove an instance of sp 2184 from ax-13 2371 and Tarski's FOL only, without distinct variable conditions. The antecedent 𝑥𝑥 = 𝑦 holds in a multi-object universe only if 𝑦 is substituted for 𝑥, or vice versa, i.e. both variables are effectively the same. The converse ¬ ∀𝑥𝑥 = 𝑦 indicates that both variables are distinct, and it so provides a simple translation of a distinct variable condition to a logical term. In case studies 𝑥𝑥 = 𝑦 and ¬ ∀𝑥𝑥 = 𝑦 can help eliminating distinct variable conditions.

The antecedent 𝑥𝑥 = 𝑦 is expressed in the theorem's name by the abbreviation ae standing for 'all equal'.

Note that we cannot provide a logical predicate telling us directly whether a logical expression contains a particular variable, as such a construct would usually contradict ax-12 2178.

Note that this theorem is also provable from ax-12 2178 alone, so you can pick the axiom it is based on.

Compare this result to 19.3v 1982 and spaev 2053 having distinct variable conditions, but a smaller footprint on axiom usage. (Contributed by Wolf Lammen, 5-Apr-2021.)

(∀𝑥 𝑥 = 𝑦𝑥 = 𝑦)
 
Theoremwl-speqv 37517* Under the assumption ¬ 𝑥 = 𝑦 a specialized version of sp 2184 is provable from Tarski's FOL and ax13v 2372 only. Note that this reverts the implication in ax13lem1 2373, so in fact 𝑥 = 𝑦 → (∀𝑥𝑧 = 𝑦𝑧 = 𝑦)) holds. (Contributed by Wolf Lammen, 17-Apr-2021.)
𝑥 = 𝑦 → (∀𝑥 𝑧 = 𝑦𝑧 = 𝑦))
 
Theoremwl-19.8eqv 37518* Under the assumption ¬ 𝑥 = 𝑦 a specialized version of 19.8a 2182 is provable from Tarski's FOL and ax13v 2372 only. Note that this reverts the implication in ax13lem2 2375, so in fact 𝑥 = 𝑦 → (∃𝑥𝑧 = 𝑦𝑧 = 𝑦)) holds. (Contributed by Wolf Lammen, 17-Apr-2021.)
𝑥 = 𝑦 → (𝑧 = 𝑦 → ∃𝑥 𝑧 = 𝑦))
 
Theoremwl-19.2reqv 37519* Under the assumption ¬ 𝑥 = 𝑦 the reverse direction of 19.2 1976 is provable from Tarski's FOL and ax13v 2372 only. Note that in conjunction with 19.2 1976 in fact 𝑥 = 𝑦 → (∀𝑥𝑧 = 𝑦 ↔ ∃𝑥𝑧 = 𝑦)) holds. (Contributed by Wolf Lammen, 17-Apr-2021.)
𝑥 = 𝑦 → (∃𝑥 𝑧 = 𝑦 → ∀𝑥 𝑧 = 𝑦))
 
Theoremwl-nfalv 37520* If 𝑥 is not present in 𝜑, it is not free in 𝑦𝜑. (Contributed by Wolf Lammen, 11-Jan-2020.)
𝑥𝑦𝜑
 
Theoremwl-nfimf1 37521 An antecedent is irrelevant to a not-free property, if it always holds. I used this variant of nfim 1896 in dvelimdf 2448 to simplify the proof. (Contributed by Wolf Lammen, 14-Oct-2018.)
(∀𝑥𝜑 → (Ⅎ𝑥(𝜑𝜓) ↔ Ⅎ𝑥𝜓))
 
Theoremwl-nfae1 37522 Unlike nfae 2432, this specialized theorem avoids ax-11 2158. (Contributed by Wolf Lammen, 26-Jun-2019.)
𝑥𝑦 𝑦 = 𝑥
 
Theoremwl-nfnae1 37523 Unlike nfnae 2433, this specialized theorem avoids ax-11 2158. (Contributed by Wolf Lammen, 27-Jun-2019.)
𝑥 ¬ ∀𝑦 𝑦 = 𝑥
 
Theoremwl-aetr 37524 A transitive law for variable identifying expressions. (Contributed by Wolf Lammen, 30-Jun-2019.)
(∀𝑥 𝑥 = 𝑦 → (∀𝑥 𝑥 = 𝑧 → ∀𝑦 𝑦 = 𝑧))
 
Theoremwl-axc11r 37525 Same as axc11r 2367, but using ax12 2422 instead of ax-12 2178 directly. This better reflects axiom usage in theorems dependent on it. (Contributed by NM, 25-Jul-2015.) Avoid direct use of ax-12 2178. (Revised by Wolf Lammen, 30-Mar-2024.)
(∀𝑦 𝑦 = 𝑥 → (∀𝑥𝜑 → ∀𝑦𝜑))
 
Theoremwl-dral1d 37526 A version of dral1 2438 with a context. Note: At first glance one might be tempted to generalize this (or a similar) theorem by weakening the first two hypotheses adding a 𝑥 = 𝑦, 𝑥𝑥 = 𝑦 or 𝜑 antecedent. wl-equsal1i 37539 and nf5di 2285 show that this is in fact pointless. (Contributed by Wolf Lammen, 28-Jul-2019.)
𝑥𝜑    &   𝑦𝜑    &   (𝜑 → (𝑥 = 𝑦 → (𝜓𝜒)))       (𝜑 → (∀𝑥 𝑥 = 𝑦 → (∀𝑥𝜓 ↔ ∀𝑦𝜒)))
 
Theoremwl-cbvalnaed 37527 wl-cbvalnae 37528 with a context. (Contributed by Wolf Lammen, 28-Jul-2019.)
𝑥𝜑    &   𝑦𝜑    &   (𝜑 → (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑦𝜓))    &   (𝜑 → (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥𝜒))    &   (𝜑 → (𝑥 = 𝑦 → (𝜓𝜒)))       (𝜑 → (∀𝑥𝜓 ↔ ∀𝑦𝜒))
 
Theoremwl-cbvalnae 37528 A more general version of cbval 2397 when nonfree properties depend on a distinctor. Such expressions arise in proofs aiming at the elimination of distinct variable constraints, specifically in application of dvelimf 2447, nfsb2 2482 or dveeq1 2379. (Contributed by Wolf Lammen, 4-Jun-2019.)
(¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑦𝜑)    &   (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥𝜓)    &   (𝑥 = 𝑦 → (𝜑𝜓))       (∀𝑥𝜑 ↔ ∀𝑦𝜓)
 
Theoremwl-exeq 37529 The semantics of 𝑥𝑦 = 𝑧. (Contributed by Wolf Lammen, 27-Apr-2018.)
(∃𝑥 𝑦 = 𝑧 ↔ (𝑦 = 𝑧 ∨ ∀𝑥 𝑥 = 𝑦 ∨ ∀𝑥 𝑥 = 𝑧))
 
Theoremwl-aleq 37530 The semantics of 𝑥𝑦 = 𝑧. (Contributed by Wolf Lammen, 27-Apr-2018.)
(∀𝑥 𝑦 = 𝑧 ↔ (𝑦 = 𝑧 ∧ (∀𝑥 𝑥 = 𝑦 ↔ ∀𝑥 𝑥 = 𝑧)))
 
Theoremwl-nfeqfb 37531 Extend nfeqf 2380 to an equivalence. (Contributed by Wolf Lammen, 31-Jul-2019.)
(Ⅎ𝑥 𝑦 = 𝑧 ↔ (∀𝑥 𝑥 = 𝑦 ↔ ∀𝑥 𝑥 = 𝑧))
 
Theoremwl-nfs1t 37532 If 𝑦 is not free in 𝜑, 𝑥 is not free in [𝑦 / 𝑥]𝜑. Closed form of nfs1 2487. (Contributed by Wolf Lammen, 27-Jul-2019.)
(Ⅎ𝑦𝜑 → Ⅎ𝑥[𝑦 / 𝑥]𝜑)
 
Theoremwl-equsalvw 37533* Version of equsalv 2268 with a disjoint variable condition, and of equsal 2416 with two disjoint variable conditions, which requires fewer axioms. See also the dual form equsexvw 2005.

This theorem lays the foundation to a transformation of expressions called substitution of set variables in a wff. Only in this particular context we additionally assume 𝜑 and 𝑦 disjoint, stated here as 𝜑(𝑥). Similarly the disjointness of 𝜓 and 𝑥 is expressed by 𝜓(𝑦). Both 𝜑 and 𝜓 may still depend on other set variables, but that is irrelevant here.

We want to transform 𝜑(𝑥) into 𝜓(𝑦) such that 𝜓 depends on 𝑦 the same way as 𝜑 depends on 𝑥. This dependency is expressed in our hypothesis (called implicit substitution): (𝑥 = 𝑦 → (𝜑𝜓)). For primitive enough 𝜑 a sort of textual substitution of 𝑥 by 𝑦 is sufficient for such transformation. But note: 𝜑 must not contain wff variables, and the substitution is no proper textual substitution either. We still need grammar information to not accidently replace the x in a token 'x.' denoting multiplication, but only catch set variables 𝑥. Our current stage of development allows only equations and quantifiers make up such primitives. Thanks to equequ1 2025 and cbvalvw 2036 we can then prove in a mechanical way that in fact the implicit substitution holds for each instance.

If 𝜑 contains wff variables we cannot use textual transformation any longer, since we don't know how to replace 𝑦 for 𝑥 in placeholders of unknown structure. Our theorem now states, that the generic expression 𝑥(𝑥 = 𝑦𝜑) formally behaves as if such a substitution was possible and made.

(Contributed by BJ, 31-May-2019.)

(𝑥 = 𝑦 → (𝜑𝜓))       (∀𝑥(𝑥 = 𝑦𝜑) ↔ 𝜓)
 
Theoremwl-equsald 37534 Deduction version of equsal 2416. (Contributed by Wolf Lammen, 27-Jul-2019.)
𝑥𝜑    &   (𝜑 → Ⅎ𝑥𝜒)    &   (𝜑 → (𝑥 = 𝑦 → (𝜓𝜒)))       (𝜑 → (∀𝑥(𝑥 = 𝑦𝜓) ↔ 𝜒))
 
Theoremwl-equsaldv 37535* Deduction version of equsal 2416. (Contributed by Wolf Lammen, 27-Jul-2019.)
𝑥𝜑    &   (𝜑 → Ⅎ𝑥𝜒)    &   (𝜑 → (𝑥 = 𝑦 → (𝜓𝜒)))       (𝜑 → (∀𝑥(𝑥 = 𝑦𝜓) ↔ 𝜒))
 
Theoremwl-equsal 37536 A useful equivalence related to substitution. (Contributed by NM, 2-Jun-1993.) (Proof shortened by Andrew Salmon, 12-Aug-2011.) (Revised by Mario Carneiro, 3-Oct-2016.) It seems proving wl-equsald 37534 first, and then deriving more specialized versions wl-equsal 37536 and wl-equsal1t 37537 then is more efficient than the other way round, which is possible, too. See also equsal 2416. (Revised by Wolf Lammen, 27-Jul-2019.) (Proof modification is discouraged.)
𝑥𝜓    &   (𝑥 = 𝑦 → (𝜑𝜓))       (∀𝑥(𝑥 = 𝑦𝜑) ↔ 𝜓)
 
Theoremwl-equsal1t 37537 The expression 𝑥 = 𝑦 in antecedent position plays an important role in predicate logic, namely in implicit substitution. However, occasionally it is irrelevant, and can safely be dropped. A sufficient condition for this is when 𝑥 (or 𝑦 or both) is not free in 𝜑.

This theorem is more fundamental than equsal 2416, spimt 2385 or sbft 2270, to which it is related. (Contributed by Wolf Lammen, 19-Aug-2018.)

(Ⅎ𝑥𝜑 → (∀𝑥(𝑥 = 𝑦𝜑) ↔ 𝜑))
 
Theoremwl-equsalcom 37538 This simple equivalence eases substitution of one expression for the other. (Contributed by Wolf Lammen, 1-Sep-2018.)
(∀𝑥(𝑥 = 𝑦𝜑) ↔ ∀𝑥(𝑦 = 𝑥𝜑))
 
Theoremwl-equsal1i 37539 The antecedent 𝑥 = 𝑦 is irrelevant, if one or both setvar variables are not free in 𝜑. (Contributed by Wolf Lammen, 1-Sep-2018.)
(Ⅎ𝑥𝜑 ∨ Ⅎ𝑦𝜑)    &   (𝑥 = 𝑦𝜑)       𝜑
 
Theoremwl-sbid2ft 37540* A more general version of sbid2vw 2260. (Contributed by Wolf Lammen, 14-May-2019.)
(Ⅎ𝑥𝜑 → ([𝑦 / 𝑥][𝑥 / 𝑦]𝜑𝜑))
 
Theoremwl-cbvalsbi 37541* Change bounded variables in a special case. The reverse direction seems to involve ax-11 2158. My hope is that I will in some future be able to prove mo3 2558 with reversed quantifiers not using ax-11 2158. See also the remark in mo4 2560, which lead me to this effort. (Contributed by Wolf Lammen, 5-Mar-2024.)
(∀𝑥𝜑 → ∀𝑦[𝑦 / 𝑥]𝜑)
 
Theoremwl-sbrimt 37542 Substitution with a variable not free in antecedent affects only the consequent. Closed form of sbrim 2304. (Contributed by Wolf Lammen, 26-Jul-2019.)
(Ⅎ𝑥𝜑 → ([𝑦 / 𝑥](𝜑𝜓) ↔ (𝜑 → [𝑦 / 𝑥]𝜓)))
 
Theoremwl-sblimt 37543 Substitution with a variable not free in antecedent affects only the consequent. Closed form of sbrim 2304. (Contributed by Wolf Lammen, 26-Jul-2019.)
(Ⅎ𝑥𝜓 → ([𝑦 / 𝑥](𝜑𝜓) ↔ ([𝑦 / 𝑥]𝜑𝜓)))
 
Theoremwl-sb9v 37544* Commutation of quantification and substitution variables based on fewer axioms than sb9 2518. (Contributed by Wolf Lammen, 27-Apr-2025.)
(∀𝑥[𝑥 / 𝑦]𝜑 ↔ ∀𝑦[𝑦 / 𝑥]𝜑)
 
Theoremwl-sb8ft 37545* Substitution of variable in universal quantifier. Closed form of sb8f 2352. (Contributed by Wolf Lammen, 27-Apr-2025.)
(∀𝑥𝑦𝜑 → (∀𝑥𝜑 ↔ ∀𝑦[𝑦 / 𝑥]𝜑))
 
Theoremwl-sb8eft 37546* Substitution of variable in existentialal quantifier. Closed form of sb8ef 2354. (Contributed by Wolf Lammen, 27-Apr-2025.)
(∀𝑥𝑦𝜑 → (∃𝑥𝜑 ↔ ∃𝑦[𝑦 / 𝑥]𝜑))
 
Theoremwl-sb8t 37547 Substitution of variable in universal quantifier. Closed form of sb8 2516. (Contributed by Wolf Lammen, 27-Jul-2019.)
(∀𝑥𝑦𝜑 → (∀𝑥𝜑 ↔ ∀𝑦[𝑦 / 𝑥]𝜑))
 
Theoremwl-sb8et 37548 Substitution of variable in universal quantifier. Closed form of sb8e 2517. (Contributed by Wolf Lammen, 27-Jul-2019.)
(∀𝑥𝑦𝜑 → (∃𝑥𝜑 ↔ ∃𝑦[𝑦 / 𝑥]𝜑))
 
Theoremwl-sbhbt 37549 Closed form of sbhb 2520. Characterizing the expression 𝜑 → ∀𝑥𝜑 using a substitution expression. (Contributed by Wolf Lammen, 28-Jul-2019.)
(∀𝑥𝑦𝜑 → ((𝜑 → ∀𝑥𝜑) ↔ ∀𝑦(𝜑 → [𝑦 / 𝑥]𝜑)))
 
Theoremwl-sbnf1 37550 Two ways expressing that 𝑥 is effectively not free in 𝜑. Simplified version of sbnf2 2357. Note: This theorem shows that sbnf2 2357 has unnecessary distinct variable constraints. (Contributed by Wolf Lammen, 28-Jul-2019.)
(∀𝑥𝑦𝜑 → (Ⅎ𝑥𝜑 ↔ ∀𝑥𝑦(𝜑 → [𝑦 / 𝑥]𝜑)))
 
Theoremwl-equsb3 37551 equsb3 2104 with a distinctor. (Contributed by Wolf Lammen, 27-Jun-2019.)
(¬ ∀𝑦 𝑦 = 𝑧 → ([𝑥 / 𝑦]𝑦 = 𝑧𝑥 = 𝑧))
 
Theoremwl-equsb4 37552 Substitution applied to an atomic wff. The distinctor antecedent is more general than a distinct variable condition. (Contributed by Wolf Lammen, 26-Jun-2019.)
(¬ ∀𝑥 𝑥 = 𝑧 → ([𝑦 / 𝑥]𝑦 = 𝑧𝑦 = 𝑧))
 
Theoremwl-2sb6d 37553 Version of 2sb6 2087 with a context, and distinct variable conditions replaced with distinctors. (Contributed by Wolf Lammen, 4-Aug-2019.)
(𝜑 → ¬ ∀𝑦 𝑦 = 𝑥)    &   (𝜑 → ¬ ∀𝑦 𝑦 = 𝑤)    &   (𝜑 → ¬ ∀𝑦 𝑦 = 𝑧)    &   (𝜑 → ¬ ∀𝑥 𝑥 = 𝑧)       (𝜑 → ([𝑧 / 𝑥][𝑤 / 𝑦]𝜓 ↔ ∀𝑥𝑦((𝑥 = 𝑧𝑦 = 𝑤) → 𝜓)))
 
Theoremwl-sbcom2d-lem1 37554* Lemma used to prove wl-sbcom2d 37556. (Contributed by Wolf Lammen, 10-Aug-2019.) (New usage is discouraged.)
((𝑢 = 𝑦𝑣 = 𝑤) → (¬ ∀𝑥 𝑥 = 𝑤 → ([𝑢 / 𝑥][𝑣 / 𝑧]𝜑 ↔ [𝑦 / 𝑥][𝑤 / 𝑧]𝜑)))
 
Theoremwl-sbcom2d-lem2 37555* Lemma used to prove wl-sbcom2d 37556. (Contributed by Wolf Lammen, 10-Aug-2019.) (New usage is discouraged.)
(¬ ∀𝑦 𝑦 = 𝑥 → ([𝑢 / 𝑥][𝑣 / 𝑦]𝜑 ↔ ∀𝑥𝑦((𝑥 = 𝑢𝑦 = 𝑣) → 𝜑)))
 
Theoremwl-sbcom2d 37556 Version of sbcom2 2174 with a context, and distinct variable conditions replaced with distinctors. (Contributed by Wolf Lammen, 4-Aug-2019.)
(𝜑 → ¬ ∀𝑥 𝑥 = 𝑤)    &   (𝜑 → ¬ ∀𝑥 𝑥 = 𝑧)    &   (𝜑 → ¬ ∀𝑧 𝑧 = 𝑦)       (𝜑 → ([𝑤 / 𝑧][𝑦 / 𝑥]𝜓 ↔ [𝑦 / 𝑥][𝑤 / 𝑧]𝜓))
 
Theoremwl-sbalnae 37557 A theorem used in elimination of disjoint variable restrictions by replacing them with distinctors. (Contributed by Wolf Lammen, 25-Jul-2019.)
((¬ ∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) → ([𝑧 / 𝑦]∀𝑥𝜑 ↔ ∀𝑥[𝑧 / 𝑦]𝜑))
 
Theoremwl-sbal1 37558* A theorem used in elimination of disjoint variable restriction on 𝑥 and 𝑦 by replacing it with a distinctor ¬ ∀𝑥𝑥 = 𝑧. (Contributed by NM, 15-May-1993.) Proof is based on wl-sbalnae 37557 now. See also sbal1 2527. (Revised by Wolf Lammen, 25-Jul-2019.) (Proof modification is discouraged.) (New usage is discouraged.)
(¬ ∀𝑥 𝑥 = 𝑧 → ([𝑧 / 𝑦]∀𝑥𝜑 ↔ ∀𝑥[𝑧 / 𝑦]𝜑))
 
Theoremwl-sbal2 37559* Move quantifier in and out of substitution. Revised to remove a distinct variable constraint. (Contributed by NM, 2-Jan-2002.) Proof is based on wl-sbalnae 37557 now. See also sbal2 2528. (Revised by Wolf Lammen, 25-Jul-2019.) (Proof modification is discouraged.) (New usage is discouraged.)
(¬ ∀𝑥 𝑥 = 𝑦 → ([𝑧 / 𝑦]∀𝑥𝜑 ↔ ∀𝑥[𝑧 / 𝑦]𝜑))
 
Theoremwl-2spsbbi 37560 spsbbi 2074 applied twice. (Contributed by Wolf Lammen, 5-Aug-2023.)
(∀𝑎𝑏(𝜑𝜓) → ([𝑦 / 𝑏][𝑥 / 𝑎]𝜑 ↔ [𝑦 / 𝑏][𝑥 / 𝑎]𝜓))
 
Theoremwl-lem-exsb 37561* This theorem provides a basic working step in proving theorems about ∃* or ∃!. (Contributed by Wolf Lammen, 3-Oct-2019.)
(𝑥 = 𝑦 → (𝜑 ↔ ∀𝑥(𝑥 = 𝑦𝜑)))
 
Theoremwl-lem-nexmo 37562 This theorem provides a basic working step in proving theorems about ∃* or ∃!. (Contributed by Wolf Lammen, 3-Oct-2019.)
(¬ ∃𝑥𝜑 → ∀𝑥(𝜑𝑥 = 𝑧))
 
Theoremwl-lem-moexsb 37563* The antecedent 𝑥(𝜑𝑥 = 𝑧) relates to ∃*𝑥𝜑, but is better suited for usage in proofs. Note that no distinct variable restriction is placed on 𝜑.

This theorem provides a basic working step in proving theorems about ∃* or ∃!. (Contributed by Wolf Lammen, 3-Oct-2019.)

(∀𝑥(𝜑𝑥 = 𝑧) → (∃𝑥𝜑 ↔ [𝑧 / 𝑥]𝜑))
 
Theoremwl-alanbii 37564 This theorem extends alanimi 1816 to a biconditional. Recurrent usage stacks up more quantifiers. (Contributed by Wolf Lammen, 4-Oct-2019.)
(𝜑 ↔ (𝜓𝜒))       (∀𝑥𝜑 ↔ (∀𝑥𝜓 ∧ ∀𝑥𝜒))
 
Theoremwl-mo2df 37565 Version of mof 2557 with a context and a distinctor replacing a distinct variable condition. This version should be used only to eliminate disjoint variable conditions. (Contributed by Wolf Lammen, 11-Aug-2019.)
𝑥𝜑    &   𝑦𝜑    &   (𝜑 → ¬ ∀𝑥 𝑥 = 𝑦)    &   (𝜑 → Ⅎ𝑦𝜓)       (𝜑 → (∃*𝑥𝜓 ↔ ∃𝑦𝑥(𝜓𝑥 = 𝑦)))
 
Theoremwl-mo2tf 37566 Closed form of mof 2557 with a distinctor avoiding distinct variable conditions. (Contributed by Wolf Lammen, 20-Sep-2020.)
((¬ ∀𝑥 𝑥 = 𝑦 ∧ ∀𝑥𝑦𝜑) → (∃*𝑥𝜑 ↔ ∃𝑦𝑥(𝜑𝑥 = 𝑦)))
 
Theoremwl-eudf 37567 Version of eu6 2568 with a context and a distinctor replacing a distinct variable condition. This version should be used only to eliminate disjoint variable conditions. (Contributed by Wolf Lammen, 23-Sep-2020.)
𝑥𝜑    &   𝑦𝜑    &   (𝜑 → ¬ ∀𝑥 𝑥 = 𝑦)    &   (𝜑 → Ⅎ𝑦𝜓)       (𝜑 → (∃!𝑥𝜓 ↔ ∃𝑦𝑥(𝜓𝑥 = 𝑦)))
 
Theoremwl-eutf 37568 Closed form of eu6 2568 with a distinctor avoiding distinct variable conditions. (Contributed by Wolf Lammen, 23-Sep-2020.)
((¬ ∀𝑥 𝑥 = 𝑦 ∧ ∀𝑥𝑦𝜑) → (∃!𝑥𝜑 ↔ ∃𝑦𝑥(𝜑𝑥 = 𝑦)))
 
Theoremwl-euequf 37569 euequ 2591 proved with a distinctor. (Contributed by Wolf Lammen, 23-Sep-2020.)
(¬ ∀𝑥 𝑥 = 𝑦 → ∃!𝑥 𝑥 = 𝑦)
 
Theoremwl-mo2t 37570* Closed form of mof 2557. (Contributed by Wolf Lammen, 18-Aug-2019.)
(∀𝑥𝑦𝜑 → (∃*𝑥𝜑 ↔ ∃𝑦𝑥(𝜑𝑥 = 𝑦)))
 
Theoremwl-mo3t 37571* Closed form of mo3 2558. (Contributed by Wolf Lammen, 18-Aug-2019.)
(∀𝑥𝑦𝜑 → (∃*𝑥𝜑 ↔ ∀𝑥𝑦((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦)))
 
Theoremwl-nfsbtv 37572* Closed form of nfsbv 2329. (Contributed by Wolf Lammen, 2-May-2025.)
(∀𝑥𝑧𝜑 → Ⅎ𝑧[𝑦 / 𝑥]𝜑)
 
Theoremwl-sb8eut 37573 Substitution of variable in universal quantifier. Closed form of sb8eu 2594. (Contributed by Wolf Lammen, 11-Aug-2019.)
(∀𝑥𝑦𝜑 → (∃!𝑥𝜑 ↔ ∃!𝑦[𝑦 / 𝑥]𝜑))
 
Theoremwl-sb8eutv 37574* Substitution of variable in universal quantifier. Closed form of sb8euv 2593. (Contributed by Wolf Lammen, 3-May-2025.)
(∀𝑥𝑦𝜑 → (∃!𝑥𝜑 ↔ ∃!𝑦[𝑦 / 𝑥]𝜑))
 
Theoremwl-sb8mot 37575 Substitution of variable in universal quantifier. Closed form of sb8mo 2595. (Contributed by Wolf Lammen, 11-Aug-2019.)
(∀𝑥𝑦𝜑 → (∃*𝑥𝜑 ↔ ∃*𝑦[𝑦 / 𝑥]𝜑))
 
Theoremwl-sb8motv 37576* Substitution of variable in universal quantifier. Closed form of sb8mo 2595 without ax-13 2371, but requiring 𝑥 and 𝑦 being disjoint.

This theorem relates to wl-mo3t 37571, since replacing 𝜑 with [𝑦 / 𝑥]𝜑 in the latter yields subexpressions like [𝑥 / 𝑦][𝑦 / 𝑥]𝜑, which can be reduced to 𝜑 via sbft 2270 and sbco 2506. So ∃*𝑥𝜑 ↔ ∃*𝑦[𝑦 / 𝑥]𝜑 is provable from wl-mo3t 37571 in a simple fashion. From an educational standpoint, one would assume wl-mo3t 37571 to be more fundamental, as it hints how the "at most one" objects on both sides of the biconditional correlate (they are the same), if they exist at all, and then prove this theorem from it. (Contributed by Wolf Lammen, 3-May-2025.)

(∀𝑥𝑦𝜑 → (∃*𝑥𝜑 ↔ ∃*𝑦[𝑦 / 𝑥]𝜑))
 
Theoremwl-issetft 37577 A closed form of issetf 3467. The proof here is a modification of a subproof in vtoclgft 3521, where it could be used to shorten the proof. (Contributed by Wolf Lammen, 25-Jan-2025.)
(𝑥𝐴 → (𝐴 ∈ V ↔ ∃𝑥 𝑥 = 𝐴))
 
Theoremwl-axc11rc11 37578 Proving axc11r 2367 from axc11 2429. The hypotheses are two instances of axc11 2429 used in the proof here. Some systems introduce axc11 2429 as an axiom, see for example System S2 in https://us.metamath.org/downloads/finiteaxiom.pdf 2429.

By contrast, this database sees the variant axc11r 2367, directly derived from ax-12 2178, as foundational. Later axc11 2429 is proven somewhat trickily, requiring ax-10 2142 and ax-13 2371, see its proof. (Contributed by Wolf Lammen, 18-Jul-2023.)

(∀𝑦 𝑦 = 𝑥 → (∀𝑦 𝑦 = 𝑥 → ∀𝑥 𝑦 = 𝑥))    &   (∀𝑥 𝑥 = 𝑦 → (∀𝑥𝜑 → ∀𝑦𝜑))       (∀𝑦 𝑦 = 𝑥 → (∀𝑥𝜑 → ∀𝑦𝜑))
 
Axiomax-wl-11v 37579* Version of ax-11 2158 with distinct variable conditions. Currently implemented as an axiom to detect unintended references to the foundational axiom ax-11 2158. It will later be converted into a theorem directly based on ax-11 2158. (Contributed by Wolf Lammen, 28-Jun-2019.)
(∀𝑥𝑦𝜑 → ∀𝑦𝑥𝜑)
 
Theoremwl-ax11-lem1 37580 A transitive law for variable identifying expressions. (Contributed by Wolf Lammen, 30-Jun-2019.)
(∀𝑥 𝑥 = 𝑦 → (∀𝑥 𝑥 = 𝑧 ↔ ∀𝑦 𝑦 = 𝑧))
 
Theoremwl-ax11-lem2 37581* Lemma. (Contributed by Wolf Lammen, 30-Jun-2019.)
((∀𝑢 𝑢 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → ∀𝑥 𝑢 = 𝑦)
 
Theoremwl-ax11-lem3 37582* Lemma. (Contributed by Wolf Lammen, 30-Jun-2019.)
(¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥𝑢 𝑢 = 𝑦)
 
Theoremwl-ax11-lem4 37583* Lemma. (Contributed by Wolf Lammen, 30-Jun-2019.)
𝑥(∀𝑢 𝑢 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑦)
 
Theoremwl-ax11-lem5 37584 Lemma. (Contributed by Wolf Lammen, 30-Jun-2019.)
(∀𝑢 𝑢 = 𝑦 → (∀𝑢[𝑢 / 𝑦]𝜑 ↔ ∀𝑦𝜑))
 
Theoremwl-ax11-lem6 37585* Lemma. (Contributed by Wolf Lammen, 30-Jun-2019.)
((∀𝑢 𝑢 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → (∀𝑢𝑥[𝑢 / 𝑦]𝜑 ↔ ∀𝑥𝑦𝜑))
 
Theoremwl-ax11-lem7 37586 Lemma. (Contributed by Wolf Lammen, 30-Jun-2019.)
(∀𝑥(¬ ∀𝑥 𝑥 = 𝑦𝜑) ↔ (¬ ∀𝑥 𝑥 = 𝑦 ∧ ∀𝑥𝜑))
 
Theoremwl-ax11-lem8 37587* Lemma. (Contributed by Wolf Lammen, 30-Jun-2019.)
((∀𝑢 𝑢 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → (∀𝑢𝑥[𝑢 / 𝑦]𝜑 ↔ ∀𝑦𝑥𝜑))
 
Theoremwl-ax11-lem9 37588 The easy part when 𝑥 coincides with 𝑦. (Contributed by Wolf Lammen, 30-Jun-2019.)
(∀𝑥 𝑥 = 𝑦 → (∀𝑦𝑥𝜑 ↔ ∀𝑥𝑦𝜑))
 
Theoremwl-ax11-lem10 37589* We now have prepared everything. The unwanted variable 𝑢 is just in one place left. pm2.61 192 can be used in conjunction with wl-ax11-lem9 37588 to eliminate the second antecedent. Missing is something along the lines of ax-6 1967, so we could remove the first antecedent. But the Metamath axioms cannot accomplish this. Such a rule must reside one abstraction level higher than all others: It says that a distinctor implies a distinct variable condition on its contained setvar. This is only needed if such conditions are required, as ax-11v does. The result of this study is for me, that you cannot introduce a setvar capturing this condition, and hope to eliminate it later. (Contributed by Wolf Lammen, 30-Jun-2019.)
(∀𝑦 𝑦 = 𝑢 → (¬ ∀𝑥 𝑥 = 𝑦 → (∀𝑦𝑥𝜑 → ∀𝑥𝑦𝜑)))
 
Theoremwl-clabv 37590* Variant of df-clab 2709, where the element 𝑥 is required to be disjoint from the class it is taken from. This restriction meets similar ones found in other definitions and axioms like ax-ext 2702, df-clel 2804 and df-cleq 2722. 𝑥𝐴 with 𝐴 depending on 𝑥 can be the source of side effects, that you rather want to be aware of. So here we eliminate one possible way of letting this slip in instead.

An expression 𝑥𝐴 with 𝑥, 𝐴 not disjoint, is now only introduced either via ax-8 2111, ax-9 2119, or df-clel 2804. Theorem cleljust 2118 shows that a possible choice does not matter.

The original df-clab 2709 can be rederived, see wl-dfclab 37591. In an implementation this theorem is the only user of df-clab. (Contributed by NM, 26-May-1993.) Element and class are disjoint. (Revised by Wolf Lammen, 31-May-2023.)

(𝑥 ∈ {𝑦𝜑} ↔ [𝑥 / 𝑦]𝜑)
 
Theoremwl-dfclab 37591 Rederive df-clab 2709 from wl-clabv 37590. (Contributed by Wolf Lammen, 31-May-2023.) (Proof modification is discouraged.)
(𝑥 ∈ {𝑦𝜑} ↔ [𝑥 / 𝑦]𝜑)
 
Theoremwl-clabtv 37592* Using class abstraction in a context, requiring 𝑥 and 𝜑 disjoint, but based on fewer axioms than wl-clabt 37593. (Contributed by Wolf Lammen, 29-May-2023.)
(𝜑 → {𝑥𝜓} = {𝑥 ∣ (𝜑𝜓)})
 
Theoremwl-clabt 37593 Using class abstraction in a context. For a version based on fewer axioms see wl-clabtv 37592. (Contributed by Wolf Lammen, 29-May-2023.)
𝑥𝜑       (𝜑 → {𝑥𝜓} = {𝑥 ∣ (𝜑𝜓)})
 
21.23  Mathbox for Brendan Leahy
 
Theoremrabiun 37594* Abstraction restricted to an indexed union. (Contributed by Brendan Leahy, 26-Oct-2017.)
{𝑥 𝑦𝐴 𝐵𝜑} = 𝑦𝐴 {𝑥𝐵𝜑}
 
Theoremiundif1 37595* Indexed union of class difference with the subtrahend held constant. (Contributed by Brendan Leahy, 6-Aug-2018.)
𝑥𝐴 (𝐵𝐶) = ( 𝑥𝐴 𝐵𝐶)
 
Theoremimadifss 37596 The difference of images is a subset of the image of the difference. (Contributed by Brendan Leahy, 21-Aug-2020.)
((𝐹𝐴) ∖ (𝐹𝐵)) ⊆ (𝐹 “ (𝐴𝐵))
 
Theoremcureq 37597 Equality theorem for currying. (Contributed by Brendan Leahy, 2-Jun-2021.)
(𝐴 = 𝐵 → curry 𝐴 = curry 𝐵)
 
Theoremunceq 37598 Equality theorem for uncurrying. (Contributed by Brendan Leahy, 2-Jun-2021.)
(𝐴 = 𝐵 → uncurry 𝐴 = uncurry 𝐵)
 
Theoremcurf 37599 Functional property of currying. (Contributed by Brendan Leahy, 2-Jun-2021.)
((𝐹:(𝐴 × 𝐵)⟶𝐶𝐵 ∈ (𝑉 ∖ {∅}) ∧ 𝐶𝑊) → curry 𝐹:𝐴⟶(𝐶m 𝐵))
 
Theoremuncf 37600 Functional property of uncurrying. (Contributed by Brendan Leahy, 2-Jun-2021.)
(𝐹:𝐴⟶(𝐶m 𝐵) → uncurry 𝐹:(𝐴 × 𝐵)⟶𝐶)
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42600 427 42601-42700 428 42701-42800 429 42801-42900 430 42901-43000 431 43001-43100 432 43101-43200 433 43201-43300 434 43301-43400 435 43401-43500 436 43501-43600 437 43601-43700 438 43701-43800 439 43801-43900 440 43901-44000 441 44001-44100 442 44101-44200 443 44201-44300 444 44301-44400 445 44401-44500 446 44501-44600 447 44601-44700 448 44701-44800 449 44801-44900 450 44901-45000 451 45001-45100 452 45101-45200 453 45201-45300 454 45301-45400 455 45401-45500 456 45501-45600 457 45601-45700 458 45701-45800 459 45801-45900 460 45901-46000 461 46001-46100 462 46101-46200 463 46201-46300 464 46301-46400 465 46401-46500 466 46501-46600 467 46601-46700 468 46701-46800 469 46801-46900 470 46901-47000 471 47001-47100 472 47101-47200 473 47201-47300 474 47301-47400 475 47401-47500 476 47501-47600 477 47601-47700 478 47701-47800 479 47801-47900 480 47901-48000 481 48001-48100 482 48101-48200 483 48201-48300 484 48301-48400 485 48401-48500 486 48501-48600 487 48601-48700 488 48701-48800 489 48801-48900 490 48901-49000 491 49001-49100 492 49101-49200 493 49201-49300 494 49301-49400 495 49401-49500 496 49501-49600 497 49601-49700 498 49701-49798
  Copyright terms: Public domain < Previous  Next >