| Metamath
Proof Explorer Theorem List (p. 376 of 497) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30845) |
(30846-32368) |
(32369-49617) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | wl-nfs1t 37501 | If 𝑦 is not free in 𝜑, 𝑥 is not free in [𝑦 / 𝑥]𝜑. Closed form of nfs1 2492. (Contributed by Wolf Lammen, 27-Jul-2019.) |
| ⊢ (Ⅎ𝑦𝜑 → Ⅎ𝑥[𝑦 / 𝑥]𝜑) | ||
| Theorem | wl-equsalvw 37502* |
Version of equsalv 2267 with a disjoint variable condition, and of equsal 2421
with two disjoint variable conditions, which requires fewer axioms. See
also the dual form equsexvw 2004.
This theorem lays the foundation to a transformation of expressions called substitution of set variables in a wff. Only in this particular context we additionally assume 𝜑 and 𝑦 disjoint, stated here as 𝜑(𝑥). Similarly the disjointness of 𝜓 and 𝑥 is expressed by 𝜓(𝑦). Both 𝜑 and 𝜓 may still depend on other set variables, but that is irrelevant here. We want to transform 𝜑(𝑥) into 𝜓(𝑦) such that 𝜓 depends on 𝑦 the same way as 𝜑 depends on 𝑥. This dependency is expressed in our hypothesis (called implicit substitution): (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)). For primitive enough 𝜑 a sort of textual substitution of 𝑥 by 𝑦 is sufficient for such transformation. But note: 𝜑 must not contain wff variables, and the substitution is no proper textual substitution either. We still need grammar information to not accidently replace the x in a token 'x.' denoting multiplication, but only catch set variables 𝑥. Our current stage of development allows only equations and quantifiers make up such primitives. Thanks to equequ1 2024 and cbvalvw 2035 we can then prove in a mechanical way that in fact the implicit substitution holds for each instance. If 𝜑 contains wff variables we cannot use textual transformation any longer, since we don't know how to replace 𝑦 for 𝑥 in placeholders of unknown structure. Our theorem now states, that the generic expression ∀𝑥(𝑥 = 𝑦 → 𝜑) formally behaves as if such a substitution was possible and made. (Contributed by BJ, 31-May-2019.) |
| ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∀𝑥(𝑥 = 𝑦 → 𝜑) ↔ 𝜓) | ||
| Theorem | wl-equsald 37503 | Deduction version of equsal 2421. (Contributed by Wolf Lammen, 27-Jul-2019.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → Ⅎ𝑥𝜒) & ⊢ (𝜑 → (𝑥 = 𝑦 → (𝜓 ↔ 𝜒))) ⇒ ⊢ (𝜑 → (∀𝑥(𝑥 = 𝑦 → 𝜓) ↔ 𝜒)) | ||
| Theorem | wl-equsaldv 37504* | Deduction version of equsal 2421. (Contributed by Wolf Lammen, 27-Jul-2019.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → Ⅎ𝑥𝜒) & ⊢ (𝜑 → (𝑥 = 𝑦 → (𝜓 ↔ 𝜒))) ⇒ ⊢ (𝜑 → (∀𝑥(𝑥 = 𝑦 → 𝜓) ↔ 𝜒)) | ||
| Theorem | wl-equsal 37505 | A useful equivalence related to substitution. (Contributed by NM, 2-Jun-1993.) (Proof shortened by Andrew Salmon, 12-Aug-2011.) (Revised by Mario Carneiro, 3-Oct-2016.) It seems proving wl-equsald 37503 first, and then deriving more specialized versions wl-equsal 37505 and wl-equsal1t 37506 then is more efficient than the other way round, which is possible, too. See also equsal 2421. (Revised by Wolf Lammen, 27-Jul-2019.) (Proof modification is discouraged.) |
| ⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∀𝑥(𝑥 = 𝑦 → 𝜑) ↔ 𝜓) | ||
| Theorem | wl-equsal1t 37506 |
The expression 𝑥 = 𝑦 in antecedent position plays an
important role in
predicate logic, namely in implicit substitution. However, occasionally
it is irrelevant, and can safely be dropped. A sufficient condition for
this is when 𝑥 (or 𝑦 or both) is not free in
𝜑.
This theorem is more fundamental than equsal 2421, spimt 2390 or sbft 2270, to which it is related. (Contributed by Wolf Lammen, 19-Aug-2018.) |
| ⊢ (Ⅎ𝑥𝜑 → (∀𝑥(𝑥 = 𝑦 → 𝜑) ↔ 𝜑)) | ||
| Theorem | wl-equsalcom 37507 | This simple equivalence eases substitution of one expression for the other. (Contributed by Wolf Lammen, 1-Sep-2018.) |
| ⊢ (∀𝑥(𝑥 = 𝑦 → 𝜑) ↔ ∀𝑥(𝑦 = 𝑥 → 𝜑)) | ||
| Theorem | wl-equsal1i 37508 | The antecedent 𝑥 = 𝑦 is irrelevant, if one or both setvar variables are not free in 𝜑. (Contributed by Wolf Lammen, 1-Sep-2018.) |
| ⊢ (Ⅎ𝑥𝜑 ∨ Ⅎ𝑦𝜑) & ⊢ (𝑥 = 𝑦 → 𝜑) ⇒ ⊢ 𝜑 | ||
| Theorem | wl-sbid2ft 37509* | A more general version of sbid2vw 2259. (Contributed by Wolf Lammen, 14-May-2019.) |
| ⊢ (Ⅎ𝑥𝜑 → ([𝑦 / 𝑥][𝑥 / 𝑦]𝜑 ↔ 𝜑)) | ||
| Theorem | wl-cbvalsbi 37510* | Change bounded variables in a special case. The reverse direction seems to involve ax-11 2157. My hope is that I will in some future be able to prove mo3 2563 with reversed quantifiers not using ax-11 2157. See also the remark in mo4 2565, which lead me to this effort. (Contributed by Wolf Lammen, 5-Mar-2024.) |
| ⊢ (∀𝑥𝜑 → ∀𝑦[𝑦 / 𝑥]𝜑) | ||
| Theorem | wl-sbrimt 37511 | Substitution with a variable not free in antecedent affects only the consequent. Closed form of sbrim 2304. (Contributed by Wolf Lammen, 26-Jul-2019.) |
| ⊢ (Ⅎ𝑥𝜑 → ([𝑦 / 𝑥](𝜑 → 𝜓) ↔ (𝜑 → [𝑦 / 𝑥]𝜓))) | ||
| Theorem | wl-sblimt 37512 | Substitution with a variable not free in antecedent affects only the consequent. Closed form of sbrim 2304. (Contributed by Wolf Lammen, 26-Jul-2019.) |
| ⊢ (Ⅎ𝑥𝜓 → ([𝑦 / 𝑥](𝜑 → 𝜓) ↔ ([𝑦 / 𝑥]𝜑 → 𝜓))) | ||
| Theorem | wl-sb9v 37513* | Commutation of quantification and substitution variables based on fewer axioms than sb9 2523. (Contributed by Wolf Lammen, 27-Apr-2025.) |
| ⊢ (∀𝑥[𝑥 / 𝑦]𝜑 ↔ ∀𝑦[𝑦 / 𝑥]𝜑) | ||
| Theorem | wl-sb8ft 37514* | Substitution of variable in universal quantifier. Closed form of sb8f 2355. (Contributed by Wolf Lammen, 27-Apr-2025.) |
| ⊢ (∀𝑥Ⅎ𝑦𝜑 → (∀𝑥𝜑 ↔ ∀𝑦[𝑦 / 𝑥]𝜑)) | ||
| Theorem | wl-sb8eft 37515* | Substitution of variable in existentialal quantifier. Closed form of sb8ef 2357. (Contributed by Wolf Lammen, 27-Apr-2025.) |
| ⊢ (∀𝑥Ⅎ𝑦𝜑 → (∃𝑥𝜑 ↔ ∃𝑦[𝑦 / 𝑥]𝜑)) | ||
| Theorem | wl-sb8t 37516 | Substitution of variable in universal quantifier. Closed form of sb8 2521. (Contributed by Wolf Lammen, 27-Jul-2019.) |
| ⊢ (∀𝑥Ⅎ𝑦𝜑 → (∀𝑥𝜑 ↔ ∀𝑦[𝑦 / 𝑥]𝜑)) | ||
| Theorem | wl-sb8et 37517 | Substitution of variable in universal quantifier. Closed form of sb8e 2522. (Contributed by Wolf Lammen, 27-Jul-2019.) |
| ⊢ (∀𝑥Ⅎ𝑦𝜑 → (∃𝑥𝜑 ↔ ∃𝑦[𝑦 / 𝑥]𝜑)) | ||
| Theorem | wl-sbhbt 37518 | Closed form of sbhb 2525. Characterizing the expression 𝜑 → ∀𝑥𝜑 using a substitution expression. (Contributed by Wolf Lammen, 28-Jul-2019.) |
| ⊢ (∀𝑥Ⅎ𝑦𝜑 → ((𝜑 → ∀𝑥𝜑) ↔ ∀𝑦(𝜑 → [𝑦 / 𝑥]𝜑))) | ||
| Theorem | wl-sbnf1 37519 | Two ways expressing that 𝑥 is effectively not free in 𝜑. Simplified version of sbnf2 2360. Note: This theorem shows that sbnf2 2360 has unnecessary distinct variable constraints. (Contributed by Wolf Lammen, 28-Jul-2019.) |
| ⊢ (∀𝑥Ⅎ𝑦𝜑 → (Ⅎ𝑥𝜑 ↔ ∀𝑥∀𝑦(𝜑 → [𝑦 / 𝑥]𝜑))) | ||
| Theorem | wl-equsb3 37520 | equsb3 2103 with a distinctor. (Contributed by Wolf Lammen, 27-Jun-2019.) |
| ⊢ (¬ ∀𝑦 𝑦 = 𝑧 → ([𝑥 / 𝑦]𝑦 = 𝑧 ↔ 𝑥 = 𝑧)) | ||
| Theorem | wl-equsb4 37521 | Substitution applied to an atomic wff. The distinctor antecedent is more general than a distinct variable condition. (Contributed by Wolf Lammen, 26-Jun-2019.) |
| ⊢ (¬ ∀𝑥 𝑥 = 𝑧 → ([𝑦 / 𝑥]𝑦 = 𝑧 ↔ 𝑦 = 𝑧)) | ||
| Theorem | wl-2sb6d 37522 | Version of 2sb6 2086 with a context, and distinct variable conditions replaced with distinctors. (Contributed by Wolf Lammen, 4-Aug-2019.) |
| ⊢ (𝜑 → ¬ ∀𝑦 𝑦 = 𝑥) & ⊢ (𝜑 → ¬ ∀𝑦 𝑦 = 𝑤) & ⊢ (𝜑 → ¬ ∀𝑦 𝑦 = 𝑧) & ⊢ (𝜑 → ¬ ∀𝑥 𝑥 = 𝑧) ⇒ ⊢ (𝜑 → ([𝑧 / 𝑥][𝑤 / 𝑦]𝜓 ↔ ∀𝑥∀𝑦((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → 𝜓))) | ||
| Theorem | wl-sbcom2d-lem1 37523* | Lemma used to prove wl-sbcom2d 37525. (Contributed by Wolf Lammen, 10-Aug-2019.) (New usage is discouraged.) |
| ⊢ ((𝑢 = 𝑦 ∧ 𝑣 = 𝑤) → (¬ ∀𝑥 𝑥 = 𝑤 → ([𝑢 / 𝑥][𝑣 / 𝑧]𝜑 ↔ [𝑦 / 𝑥][𝑤 / 𝑧]𝜑))) | ||
| Theorem | wl-sbcom2d-lem2 37524* | Lemma used to prove wl-sbcom2d 37525. (Contributed by Wolf Lammen, 10-Aug-2019.) (New usage is discouraged.) |
| ⊢ (¬ ∀𝑦 𝑦 = 𝑥 → ([𝑢 / 𝑥][𝑣 / 𝑦]𝜑 ↔ ∀𝑥∀𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) → 𝜑))) | ||
| Theorem | wl-sbcom2d 37525 | Version of sbcom2 2173 with a context, and distinct variable conditions replaced with distinctors. (Contributed by Wolf Lammen, 4-Aug-2019.) |
| ⊢ (𝜑 → ¬ ∀𝑥 𝑥 = 𝑤) & ⊢ (𝜑 → ¬ ∀𝑥 𝑥 = 𝑧) & ⊢ (𝜑 → ¬ ∀𝑧 𝑧 = 𝑦) ⇒ ⊢ (𝜑 → ([𝑤 / 𝑧][𝑦 / 𝑥]𝜓 ↔ [𝑦 / 𝑥][𝑤 / 𝑧]𝜓)) | ||
| Theorem | wl-sbalnae 37526 | A theorem used in elimination of disjoint variable restrictions by replacing them with distinctors. (Contributed by Wolf Lammen, 25-Jul-2019.) |
| ⊢ ((¬ ∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) → ([𝑧 / 𝑦]∀𝑥𝜑 ↔ ∀𝑥[𝑧 / 𝑦]𝜑)) | ||
| Theorem | wl-sbal1 37527* | A theorem used in elimination of disjoint variable restriction on 𝑥 and 𝑦 by replacing it with a distinctor ¬ ∀𝑥𝑥 = 𝑧. (Contributed by NM, 15-May-1993.) Proof is based on wl-sbalnae 37526 now. See also sbal1 2532. (Revised by Wolf Lammen, 25-Jul-2019.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (¬ ∀𝑥 𝑥 = 𝑧 → ([𝑧 / 𝑦]∀𝑥𝜑 ↔ ∀𝑥[𝑧 / 𝑦]𝜑)) | ||
| Theorem | wl-sbal2 37528* | Move quantifier in and out of substitution. Revised to remove a distinct variable constraint. (Contributed by NM, 2-Jan-2002.) Proof is based on wl-sbalnae 37526 now. See also sbal2 2533. (Revised by Wolf Lammen, 25-Jul-2019.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → ([𝑧 / 𝑦]∀𝑥𝜑 ↔ ∀𝑥[𝑧 / 𝑦]𝜑)) | ||
| Theorem | wl-2spsbbi 37529 | spsbbi 2073 applied twice. (Contributed by Wolf Lammen, 5-Aug-2023.) |
| ⊢ (∀𝑎∀𝑏(𝜑 ↔ 𝜓) → ([𝑦 / 𝑏][𝑥 / 𝑎]𝜑 ↔ [𝑦 / 𝑏][𝑥 / 𝑎]𝜓)) | ||
| Theorem | wl-lem-exsb 37530* | This theorem provides a basic working step in proving theorems about ∃* or ∃!. (Contributed by Wolf Lammen, 3-Oct-2019.) |
| ⊢ (𝑥 = 𝑦 → (𝜑 ↔ ∀𝑥(𝑥 = 𝑦 → 𝜑))) | ||
| Theorem | wl-lem-nexmo 37531 | This theorem provides a basic working step in proving theorems about ∃* or ∃!. (Contributed by Wolf Lammen, 3-Oct-2019.) |
| ⊢ (¬ ∃𝑥𝜑 → ∀𝑥(𝜑 → 𝑥 = 𝑧)) | ||
| Theorem | wl-lem-moexsb 37532* |
The antecedent ∀𝑥(𝜑 → 𝑥 = 𝑧) relates to ∃*𝑥𝜑, but is
better suited for usage in proofs. Note that no distinct variable
restriction is placed on 𝜑.
This theorem provides a basic working step in proving theorems about ∃* or ∃!. (Contributed by Wolf Lammen, 3-Oct-2019.) |
| ⊢ (∀𝑥(𝜑 → 𝑥 = 𝑧) → (∃𝑥𝜑 ↔ [𝑧 / 𝑥]𝜑)) | ||
| Theorem | wl-alanbii 37533 | This theorem extends alanimi 1816 to a biconditional. Recurrent usage stacks up more quantifiers. (Contributed by Wolf Lammen, 4-Oct-2019.) |
| ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) ⇒ ⊢ (∀𝑥𝜑 ↔ (∀𝑥𝜓 ∧ ∀𝑥𝜒)) | ||
| Theorem | wl-mo2df 37534 | Version of mof 2562 with a context and a distinctor replacing a distinct variable condition. This version should be used only to eliminate disjoint variable conditions. (Contributed by Wolf Lammen, 11-Aug-2019.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑦𝜑 & ⊢ (𝜑 → ¬ ∀𝑥 𝑥 = 𝑦) & ⊢ (𝜑 → Ⅎ𝑦𝜓) ⇒ ⊢ (𝜑 → (∃*𝑥𝜓 ↔ ∃𝑦∀𝑥(𝜓 → 𝑥 = 𝑦))) | ||
| Theorem | wl-mo2tf 37535 | Closed form of mof 2562 with a distinctor avoiding distinct variable conditions. (Contributed by Wolf Lammen, 20-Sep-2020.) |
| ⊢ ((¬ ∀𝑥 𝑥 = 𝑦 ∧ ∀𝑥Ⅎ𝑦𝜑) → (∃*𝑥𝜑 ↔ ∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦))) | ||
| Theorem | wl-eudf 37536 | Version of eu6 2573 with a context and a distinctor replacing a distinct variable condition. This version should be used only to eliminate disjoint variable conditions. (Contributed by Wolf Lammen, 23-Sep-2020.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑦𝜑 & ⊢ (𝜑 → ¬ ∀𝑥 𝑥 = 𝑦) & ⊢ (𝜑 → Ⅎ𝑦𝜓) ⇒ ⊢ (𝜑 → (∃!𝑥𝜓 ↔ ∃𝑦∀𝑥(𝜓 ↔ 𝑥 = 𝑦))) | ||
| Theorem | wl-eutf 37537 | Closed form of eu6 2573 with a distinctor avoiding distinct variable conditions. (Contributed by Wolf Lammen, 23-Sep-2020.) |
| ⊢ ((¬ ∀𝑥 𝑥 = 𝑦 ∧ ∀𝑥Ⅎ𝑦𝜑) → (∃!𝑥𝜑 ↔ ∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦))) | ||
| Theorem | wl-euequf 37538 | euequ 2596 proved with a distinctor. (Contributed by Wolf Lammen, 23-Sep-2020.) |
| ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → ∃!𝑥 𝑥 = 𝑦) | ||
| Theorem | wl-mo2t 37539* | Closed form of mof 2562. (Contributed by Wolf Lammen, 18-Aug-2019.) |
| ⊢ (∀𝑥Ⅎ𝑦𝜑 → (∃*𝑥𝜑 ↔ ∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦))) | ||
| Theorem | wl-mo3t 37540* | Closed form of mo3 2563. (Contributed by Wolf Lammen, 18-Aug-2019.) |
| ⊢ (∀𝑥Ⅎ𝑦𝜑 → (∃*𝑥𝜑 ↔ ∀𝑥∀𝑦((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦))) | ||
| Theorem | wl-nfsbtv 37541* | Closed form of nfsbv 2330. (Contributed by Wolf Lammen, 2-May-2025.) |
| ⊢ (∀𝑥Ⅎ𝑧𝜑 → Ⅎ𝑧[𝑦 / 𝑥]𝜑) | ||
| Theorem | wl-sb8eut 37542 | Substitution of variable in universal quantifier. Closed form of sb8eu 2599. (Contributed by Wolf Lammen, 11-Aug-2019.) |
| ⊢ (∀𝑥Ⅎ𝑦𝜑 → (∃!𝑥𝜑 ↔ ∃!𝑦[𝑦 / 𝑥]𝜑)) | ||
| Theorem | wl-sb8eutv 37543* | Substitution of variable in universal quantifier. Closed form of sb8euv 2598. (Contributed by Wolf Lammen, 3-May-2025.) |
| ⊢ (∀𝑥Ⅎ𝑦𝜑 → (∃!𝑥𝜑 ↔ ∃!𝑦[𝑦 / 𝑥]𝜑)) | ||
| Theorem | wl-sb8mot 37544 | Substitution of variable in universal quantifier. Closed form of sb8mo 2600. (Contributed by Wolf Lammen, 11-Aug-2019.) |
| ⊢ (∀𝑥Ⅎ𝑦𝜑 → (∃*𝑥𝜑 ↔ ∃*𝑦[𝑦 / 𝑥]𝜑)) | ||
| Theorem | wl-sb8motv 37545* |
Substitution of variable in universal quantifier. Closed form of
sb8mo 2600 without ax-13 2376, but requiring 𝑥 and 𝑦 being
disjoint.
This theorem relates to wl-mo3t 37540, since replacing 𝜑 with [𝑦 / 𝑥]𝜑 in the latter yields subexpressions like [𝑥 / 𝑦][𝑦 / 𝑥]𝜑, which can be reduced to 𝜑 via sbft 2270 and sbco 2511. So ∃*𝑥𝜑 ↔ ∃*𝑦[𝑦 / 𝑥]𝜑 is provable from wl-mo3t 37540 in a simple fashion. From an educational standpoint, one would assume wl-mo3t 37540 to be more fundamental, as it hints how the "at most one" objects on both sides of the biconditional correlate (they are the same), if they exist at all, and then prove this theorem from it. (Contributed by Wolf Lammen, 3-May-2025.) |
| ⊢ (∀𝑥Ⅎ𝑦𝜑 → (∃*𝑥𝜑 ↔ ∃*𝑦[𝑦 / 𝑥]𝜑)) | ||
| Theorem | wl-issetft 37546 | A closed form of issetf 3476. The proof here is a modification of a subproof in vtoclgft 3531, where it could be used to shorten the proof. (Contributed by Wolf Lammen, 25-Jan-2025.) |
| ⊢ (Ⅎ𝑥𝐴 → (𝐴 ∈ V ↔ ∃𝑥 𝑥 = 𝐴)) | ||
| Theorem | wl-axc11rc11 37547 |
Proving axc11r 2370 from axc11 2434. The hypotheses are two instances of
axc11 2434 used in the proof here. Some systems
introduce axc11 2434 as an
axiom, see for example System S2 in
https://us.metamath.org/downloads/finiteaxiom.pdf 2434.
By contrast, this database sees the variant axc11r 2370, directly derived from ax-12 2177, as foundational. Later axc11 2434 is proven somewhat trickily, requiring ax-10 2141 and ax-13 2376, see its proof. (Contributed by Wolf Lammen, 18-Jul-2023.) |
| ⊢ (∀𝑦 𝑦 = 𝑥 → (∀𝑦 𝑦 = 𝑥 → ∀𝑥 𝑦 = 𝑥)) & ⊢ (∀𝑥 𝑥 = 𝑦 → (∀𝑥𝜑 → ∀𝑦𝜑)) ⇒ ⊢ (∀𝑦 𝑦 = 𝑥 → (∀𝑥𝜑 → ∀𝑦𝜑)) | ||
| Axiom | ax-wl-11v 37548* | Version of ax-11 2157 with distinct variable conditions. Currently implemented as an axiom to detect unintended references to the foundational axiom ax-11 2157. It will later be converted into a theorem directly based on ax-11 2157. (Contributed by Wolf Lammen, 28-Jun-2019.) |
| ⊢ (∀𝑥∀𝑦𝜑 → ∀𝑦∀𝑥𝜑) | ||
| Theorem | wl-ax11-lem1 37549 | A transitive law for variable identifying expressions. (Contributed by Wolf Lammen, 30-Jun-2019.) |
| ⊢ (∀𝑥 𝑥 = 𝑦 → (∀𝑥 𝑥 = 𝑧 ↔ ∀𝑦 𝑦 = 𝑧)) | ||
| Theorem | wl-ax11-lem2 37550* | Lemma. (Contributed by Wolf Lammen, 30-Jun-2019.) |
| ⊢ ((∀𝑢 𝑢 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → ∀𝑥 𝑢 = 𝑦) | ||
| Theorem | wl-ax11-lem3 37551* | Lemma. (Contributed by Wolf Lammen, 30-Jun-2019.) |
| ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥∀𝑢 𝑢 = 𝑦) | ||
| Theorem | wl-ax11-lem4 37552* | Lemma. (Contributed by Wolf Lammen, 30-Jun-2019.) |
| ⊢ Ⅎ𝑥(∀𝑢 𝑢 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑦) | ||
| Theorem | wl-ax11-lem5 37553 | Lemma. (Contributed by Wolf Lammen, 30-Jun-2019.) |
| ⊢ (∀𝑢 𝑢 = 𝑦 → (∀𝑢[𝑢 / 𝑦]𝜑 ↔ ∀𝑦𝜑)) | ||
| Theorem | wl-ax11-lem6 37554* | Lemma. (Contributed by Wolf Lammen, 30-Jun-2019.) |
| ⊢ ((∀𝑢 𝑢 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → (∀𝑢∀𝑥[𝑢 / 𝑦]𝜑 ↔ ∀𝑥∀𝑦𝜑)) | ||
| Theorem | wl-ax11-lem7 37555 | Lemma. (Contributed by Wolf Lammen, 30-Jun-2019.) |
| ⊢ (∀𝑥(¬ ∀𝑥 𝑥 = 𝑦 ∧ 𝜑) ↔ (¬ ∀𝑥 𝑥 = 𝑦 ∧ ∀𝑥𝜑)) | ||
| Theorem | wl-ax11-lem8 37556* | Lemma. (Contributed by Wolf Lammen, 30-Jun-2019.) |
| ⊢ ((∀𝑢 𝑢 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → (∀𝑢∀𝑥[𝑢 / 𝑦]𝜑 ↔ ∀𝑦∀𝑥𝜑)) | ||
| Theorem | wl-ax11-lem9 37557 | The easy part when 𝑥 coincides with 𝑦. (Contributed by Wolf Lammen, 30-Jun-2019.) |
| ⊢ (∀𝑥 𝑥 = 𝑦 → (∀𝑦∀𝑥𝜑 ↔ ∀𝑥∀𝑦𝜑)) | ||
| Theorem | wl-ax11-lem10 37558* | We now have prepared everything. The unwanted variable 𝑢 is just in one place left. pm2.61 192 can be used in conjunction with wl-ax11-lem9 37557 to eliminate the second antecedent. Missing is something along the lines of ax-6 1967, so we could remove the first antecedent. But the Metamath axioms cannot accomplish this. Such a rule must reside one abstraction level higher than all others: It says that a distinctor implies a distinct variable condition on its contained setvar. This is only needed if such conditions are required, as ax-11v does. The result of this study is for me, that you cannot introduce a setvar capturing this condition, and hope to eliminate it later. (Contributed by Wolf Lammen, 30-Jun-2019.) |
| ⊢ (∀𝑦 𝑦 = 𝑢 → (¬ ∀𝑥 𝑥 = 𝑦 → (∀𝑦∀𝑥𝜑 → ∀𝑥∀𝑦𝜑))) | ||
| Theorem | wl-clabv 37559* |
Variant of df-clab 2714, where the element 𝑥 is required to be
disjoint from the class it is taken from. This restriction meets
similar ones found in other definitions and axioms like ax-ext 2707,
df-clel 2809 and df-cleq 2727. 𝑥 ∈ 𝐴 with 𝐴 depending on 𝑥 can
be the source of side effects, that you rather want to be aware of. So
here we eliminate one possible way of letting this slip in instead.
An expression 𝑥 ∈ 𝐴 with 𝑥, 𝐴 not disjoint, is now only introduced either via ax-8 2110, ax-9 2118, or df-clel 2809. Theorem cleljust 2117 shows that a possible choice does not matter. The original df-clab 2714 can be rederived, see wl-dfclab 37560. In an implementation this theorem is the only user of df-clab. (Contributed by NM, 26-May-1993.) Element and class are disjoint. (Revised by Wolf Lammen, 31-May-2023.) |
| ⊢ (𝑥 ∈ {𝑦 ∣ 𝜑} ↔ [𝑥 / 𝑦]𝜑) | ||
| Theorem | wl-dfclab 37560 | Rederive df-clab 2714 from wl-clabv 37559. (Contributed by Wolf Lammen, 31-May-2023.) (Proof modification is discouraged.) |
| ⊢ (𝑥 ∈ {𝑦 ∣ 𝜑} ↔ [𝑥 / 𝑦]𝜑) | ||
| Theorem | wl-clabtv 37561* | Using class abstraction in a context, requiring 𝑥 and 𝜑 disjoint, but based on fewer axioms than wl-clabt 37562. (Contributed by Wolf Lammen, 29-May-2023.) |
| ⊢ (𝜑 → {𝑥 ∣ 𝜓} = {𝑥 ∣ (𝜑 → 𝜓)}) | ||
| Theorem | wl-clabt 37562 | Using class abstraction in a context. For a version based on fewer axioms see wl-clabtv 37561. (Contributed by Wolf Lammen, 29-May-2023.) |
| ⊢ Ⅎ𝑥𝜑 ⇒ ⊢ (𝜑 → {𝑥 ∣ 𝜓} = {𝑥 ∣ (𝜑 → 𝜓)}) | ||
| Theorem | rabiun 37563* | Abstraction restricted to an indexed union. (Contributed by Brendan Leahy, 26-Oct-2017.) |
| ⊢ {𝑥 ∈ ∪ 𝑦 ∈ 𝐴 𝐵 ∣ 𝜑} = ∪ 𝑦 ∈ 𝐴 {𝑥 ∈ 𝐵 ∣ 𝜑} | ||
| Theorem | iundif1 37564* | Indexed union of class difference with the subtrahend held constant. (Contributed by Brendan Leahy, 6-Aug-2018.) |
| ⊢ ∪ 𝑥 ∈ 𝐴 (𝐵 ∖ 𝐶) = (∪ 𝑥 ∈ 𝐴 𝐵 ∖ 𝐶) | ||
| Theorem | imadifss 37565 | The difference of images is a subset of the image of the difference. (Contributed by Brendan Leahy, 21-Aug-2020.) |
| ⊢ ((𝐹 “ 𝐴) ∖ (𝐹 “ 𝐵)) ⊆ (𝐹 “ (𝐴 ∖ 𝐵)) | ||
| Theorem | cureq 37566 | Equality theorem for currying. (Contributed by Brendan Leahy, 2-Jun-2021.) |
| ⊢ (𝐴 = 𝐵 → curry 𝐴 = curry 𝐵) | ||
| Theorem | unceq 37567 | Equality theorem for uncurrying. (Contributed by Brendan Leahy, 2-Jun-2021.) |
| ⊢ (𝐴 = 𝐵 → uncurry 𝐴 = uncurry 𝐵) | ||
| Theorem | curf 37568 | Functional property of currying. (Contributed by Brendan Leahy, 2-Jun-2021.) |
| ⊢ ((𝐹:(𝐴 × 𝐵)⟶𝐶 ∧ 𝐵 ∈ (𝑉 ∖ {∅}) ∧ 𝐶 ∈ 𝑊) → curry 𝐹:𝐴⟶(𝐶 ↑m 𝐵)) | ||
| Theorem | uncf 37569 | Functional property of uncurrying. (Contributed by Brendan Leahy, 2-Jun-2021.) |
| ⊢ (𝐹:𝐴⟶(𝐶 ↑m 𝐵) → uncurry 𝐹:(𝐴 × 𝐵)⟶𝐶) | ||
| Theorem | curfv 37570 | Value of currying. (Contributed by Brendan Leahy, 2-Jun-2021.) |
| ⊢ (((𝐹 Fn (𝑉 × 𝑊) ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ 𝑊 ∈ 𝑋) → ((curry 𝐹‘𝐴)‘𝐵) = (𝐴𝐹𝐵)) | ||
| Theorem | uncov 37571 | Value of uncurrying. (Contributed by Brendan Leahy, 2-Jun-2021.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴uncurry 𝐹𝐵) = ((𝐹‘𝐴)‘𝐵)) | ||
| Theorem | curunc 37572 | Currying of uncurrying. (Contributed by Brendan Leahy, 2-Jun-2021.) |
| ⊢ ((𝐹:𝐴⟶(𝐶 ↑m 𝐵) ∧ 𝐵 ≠ ∅) → curry uncurry 𝐹 = 𝐹) | ||
| Theorem | unccur 37573 | Uncurrying of currying. (Contributed by Brendan Leahy, 5-Jun-2021.) |
| ⊢ ((𝐹:(𝐴 × 𝐵)⟶𝐶 ∧ 𝐵 ∈ (𝑉 ∖ {∅}) ∧ 𝐶 ∈ 𝑊) → uncurry curry 𝐹 = 𝐹) | ||
| Theorem | phpreu 37574* | Theorem related to pigeonhole principle. (Contributed by Brendan Leahy, 21-Aug-2020.) |
| ⊢ ((𝐴 ∈ Fin ∧ 𝐴 ≈ 𝐵) → (∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑥 = 𝐶 ↔ ∀𝑥 ∈ 𝐴 ∃!𝑦 ∈ 𝐵 𝑥 = 𝐶)) | ||
| Theorem | finixpnum 37575* | A finite Cartesian product of numerable sets is numerable. (Contributed by Brendan Leahy, 24-Feb-2019.) |
| ⊢ ((𝐴 ∈ Fin ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ dom card) → X𝑥 ∈ 𝐴 𝐵 ∈ dom card) | ||
| Theorem | fin2solem 37576* | Lemma for fin2so 37577. (Contributed by Brendan Leahy, 29-Jun-2019.) |
| ⊢ ((𝑅 Or 𝑥 ∧ (𝑦 ∈ 𝑥 ∧ 𝑧 ∈ 𝑥)) → (𝑦𝑅𝑧 → {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑦} [⊊] {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑧})) | ||
| Theorem | fin2so 37577 | Any totally ordered Tarski-finite set is finite; in particular, no amorphous set can be ordered. Theorem 2 of [Levy58]] p. 4. (Contributed by Brendan Leahy, 28-Jun-2019.) |
| ⊢ ((𝐴 ∈ FinII ∧ 𝑅 Or 𝐴) → 𝐴 ∈ Fin) | ||
| Theorem | ltflcei 37578 | Theorem to move the floor function across a strict inequality. (Contributed by Brendan Leahy, 25-Oct-2017.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((⌊‘𝐴) < 𝐵 ↔ 𝐴 < -(⌊‘-𝐵))) | ||
| Theorem | leceifl 37579 | Theorem to move the floor function across a non-strict inequality. (Contributed by Brendan Leahy, 25-Oct-2017.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (-(⌊‘-𝐴) ≤ 𝐵 ↔ 𝐴 ≤ (⌊‘𝐵))) | ||
| Theorem | sin2h 37580 | Half-angle rule for sine. (Contributed by Brendan Leahy, 3-Aug-2018.) |
| ⊢ (𝐴 ∈ (0[,](2 · π)) → (sin‘(𝐴 / 2)) = (√‘((1 − (cos‘𝐴)) / 2))) | ||
| Theorem | cos2h 37581 | Half-angle rule for cosine. (Contributed by Brendan Leahy, 4-Aug-2018.) |
| ⊢ (𝐴 ∈ (-π[,]π) → (cos‘(𝐴 / 2)) = (√‘((1 + (cos‘𝐴)) / 2))) | ||
| Theorem | tan2h 37582 | Half-angle rule for tangent. (Contributed by Brendan Leahy, 4-Aug-2018.) |
| ⊢ (𝐴 ∈ (0[,)π) → (tan‘(𝐴 / 2)) = (√‘((1 − (cos‘𝐴)) / (1 + (cos‘𝐴))))) | ||
| Theorem | lindsadd 37583 | In a vector space, the union of an independent set and a vector not in its span is an independent set. (Contributed by Brendan Leahy, 4-Mar-2023.) |
| ⊢ ((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ ((Base‘𝑊) ∖ ((LSpan‘𝑊)‘𝐹))) → (𝐹 ∪ {𝑋}) ∈ (LIndS‘𝑊)) | ||
| Theorem | lindsdom 37584 | A linearly independent set in a free linear module of finite dimension over a division ring is smaller than the dimension of the module. (Contributed by Brendan Leahy, 2-Jun-2021.) |
| ⊢ ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) → 𝑋 ≼ 𝐼) | ||
| Theorem | lindsenlbs 37585 | A maximal linearly independent set in a free module of finite dimension over a division ring is a basis. (Contributed by Brendan Leahy, 2-Jun-2021.) |
| ⊢ (((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ 𝑋 ≈ 𝐼) → 𝑋 ∈ (LBasis‘(𝑅 freeLMod 𝐼))) | ||
| Theorem | matunitlindflem1 37586 | One direction of matunitlindf 37588. (Contributed by Brendan Leahy, 2-Jun-2021.) |
| ⊢ (((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) → (¬ curry 𝑀 LIndF (𝑅 freeLMod 𝐼) → ((𝐼 maDet 𝑅)‘𝑀) = (0g‘𝑅))) | ||
| Theorem | matunitlindflem2 37587 | One direction of matunitlindf 37588. (Contributed by Brendan Leahy, 2-Jun-2021.) |
| ⊢ ((((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ 𝐼 ≠ ∅) ∧ curry 𝑀 LIndF (𝑅 freeLMod 𝐼)) → ((𝐼 maDet 𝑅)‘𝑀) ∈ (Unit‘𝑅)) | ||
| Theorem | matunitlindf 37588 | A matrix over a field is invertible iff the rows are linearly independent. (Contributed by Brendan Leahy, 2-Jun-2021.) |
| ⊢ ((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) → (𝑀 ∈ (Unit‘(𝐼 Mat 𝑅)) ↔ curry 𝑀 LIndF (𝑅 freeLMod 𝐼))) | ||
| Theorem | ptrest 37589* | Expressing a restriction of a product topology as a product topology. (Contributed by Brendan Leahy, 24-Mar-2019.) |
| ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝐴⟶Top) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑆 ∈ 𝑊) ⇒ ⊢ (𝜑 → ((∏t‘𝐹) ↾t X𝑘 ∈ 𝐴 𝑆) = (∏t‘(𝑘 ∈ 𝐴 ↦ ((𝐹‘𝑘) ↾t 𝑆)))) | ||
| Theorem | ptrecube 37590* | Any point in an open set of N-space is surrounded by an open cube within that set. (Contributed by Brendan Leahy, 21-Aug-2020.) (Proof shortened by AV, 28-Sep-2020.) |
| ⊢ 𝑅 = (∏t‘((1...𝑁) × {(topGen‘ran (,))})) & ⊢ 𝐷 = ((abs ∘ − ) ↾ (ℝ × ℝ)) ⇒ ⊢ ((𝑆 ∈ 𝑅 ∧ 𝑃 ∈ 𝑆) → ∃𝑑 ∈ ℝ+ X𝑛 ∈ (1...𝑁)((𝑃‘𝑛)(ball‘𝐷)𝑑) ⊆ 𝑆) | ||
| Theorem | poimirlem1 37591* | Lemma for poimir 37623- the vertices on either side of a skipped vertex differ in at least two dimensions. (Contributed by Brendan Leahy, 21-Aug-2020.) |
| ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < 𝑀, 𝑦, (𝑦 + 1)) / 𝑗⦌(𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))))) & ⊢ (𝜑 → 𝑇:(1...𝑁)⟶ℤ) & ⊢ (𝜑 → 𝑈:(1...𝑁)–1-1-onto→(1...𝑁)) & ⊢ (𝜑 → 𝑀 ∈ (1...(𝑁 − 1))) ⇒ ⊢ (𝜑 → ¬ ∃*𝑛 ∈ (1...𝑁)((𝐹‘(𝑀 − 1))‘𝑛) ≠ ((𝐹‘𝑀)‘𝑛)) | ||
| Theorem | poimirlem2 37592* | Lemma for poimir 37623- consecutive vertices differ in at most one dimension. (Contributed by Brendan Leahy, 21-Aug-2020.) |
| ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < 𝑀, 𝑦, (𝑦 + 1)) / 𝑗⦌(𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))))) & ⊢ (𝜑 → 𝑇:(1...𝑁)⟶ℤ) & ⊢ (𝜑 → 𝑈:(1...𝑁)–1-1-onto→(1...𝑁)) & ⊢ (𝜑 → 𝑉 ∈ (1...(𝑁 − 1))) & ⊢ (𝜑 → 𝑀 ∈ ((0...𝑁) ∖ {𝑉})) ⇒ ⊢ (𝜑 → ∃*𝑛 ∈ (1...𝑁)((𝐹‘(𝑉 − 1))‘𝑛) ≠ ((𝐹‘𝑉)‘𝑛)) | ||
| Theorem | poimirlem3 37593* | Lemma for poimir 37623 to add an interior point to an admissible face on the back face of the cube. (Contributed by Brendan Leahy, 21-Aug-2020.) |
| ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐾 ∈ ℕ) & ⊢ (𝜑 → 𝑀 ∈ ℕ0) & ⊢ (𝜑 → 𝑀 < 𝑁) & ⊢ (𝜑 → 𝑇:(1...𝑀)⟶(0..^𝐾)) & ⊢ (𝜑 → 𝑈:(1...𝑀)–1-1-onto→(1...𝑀)) ⇒ ⊢ (𝜑 → (∀𝑖 ∈ (0...𝑀)∃𝑗 ∈ (0...𝑀)𝑖 = ⦋((𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑀)) × {0}))) ∪ (((𝑀 + 1)...𝑁) × {0})) / 𝑝⦌𝐵 → (〈(𝑇 ∪ {〈(𝑀 + 1), 0〉}), (𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉})〉 ∈ (((0..^𝐾) ↑m (1...(𝑀 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑀 + 1))–1-1-onto→(1...(𝑀 + 1))}) ∧ (∀𝑖 ∈ (0...𝑀)∃𝑗 ∈ (0...𝑀)𝑖 = ⦋(((𝑇 ∪ {〈(𝑀 + 1), 0〉}) ∘f + ((((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ (1...𝑗)) × {1}) ∪ (((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ ((𝑗 + 1)...(𝑀 + 1))) × {0}))) ∪ ((((𝑀 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵 ∧ ((𝑇 ∪ {〈(𝑀 + 1), 0〉})‘(𝑀 + 1)) = 0 ∧ ((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉})‘(𝑀 + 1)) = (𝑀 + 1))))) | ||
| Theorem | poimirlem4 37594* | Lemma for poimir 37623 connecting the admissible faces on the back face of the (𝑀 + 1)-cube to admissible simplices in the 𝑀-cube. (Contributed by Brendan Leahy, 21-Aug-2020.) |
| ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐾 ∈ ℕ) & ⊢ (𝜑 → 𝑀 ∈ ℕ0) & ⊢ (𝜑 → 𝑀 < 𝑁) ⇒ ⊢ (𝜑 → {𝑠 ∈ (((0..^𝐾) ↑m (1...𝑀)) × {𝑓 ∣ 𝑓:(1...𝑀)–1-1-onto→(1...𝑀)}) ∣ ∀𝑖 ∈ (0...𝑀)∃𝑗 ∈ (0...𝑀)𝑖 = ⦋(((1st ‘𝑠) ∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd ‘𝑠) “ ((𝑗 + 1)...𝑀)) × {0}))) ∪ (((𝑀 + 1)...𝑁) × {0})) / 𝑝⦌𝐵} ≈ {𝑠 ∈ (((0..^𝐾) ↑m (1...(𝑀 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑀 + 1))–1-1-onto→(1...(𝑀 + 1))}) ∣ (∀𝑖 ∈ (0...𝑀)∃𝑗 ∈ (0...𝑀)𝑖 = ⦋(((1st ‘𝑠) ∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd ‘𝑠) “ ((𝑗 + 1)...(𝑀 + 1))) × {0}))) ∪ ((((𝑀 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵 ∧ ((1st ‘𝑠)‘(𝑀 + 1)) = 0 ∧ ((2nd ‘𝑠)‘(𝑀 + 1)) = (𝑀 + 1))}) | ||
| Theorem | poimirlem5 37595* | Lemma for poimir 37623 to establish that, for the simplices defined by a walk along the edges of an 𝑁-cube, if the starting vertex is not opposite a given face, it is the earliest vertex of the face on the walk. (Contributed by Brendan Leahy, 21-Aug-2020.) |
| ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ 𝑆 = {𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd ‘𝑡), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st ‘(1st ‘𝑡)) ∘f + ((((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))} & ⊢ (𝜑 → 𝑇 ∈ 𝑆) & ⊢ (𝜑 → 0 < (2nd ‘𝑇)) ⇒ ⊢ (𝜑 → (𝐹‘0) = (1st ‘(1st ‘𝑇))) | ||
| Theorem | poimirlem6 37596* | Lemma for poimir 37623 establishing, for a face of a simplex defined by a walk along the edges of an 𝑁-cube, the single dimension in which successive vertices before the opposite vertex differ. (Contributed by Brendan Leahy, 21-Aug-2020.) |
| ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ 𝑆 = {𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd ‘𝑡), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st ‘(1st ‘𝑡)) ∘f + ((((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))} & ⊢ (𝜑 → 𝑇 ∈ 𝑆) & ⊢ (𝜑 → (2nd ‘𝑇) ∈ (1...(𝑁 − 1))) & ⊢ (𝜑 → 𝑀 ∈ (1...((2nd ‘𝑇) − 1))) ⇒ ⊢ (𝜑 → (℩𝑛 ∈ (1...𝑁)((𝐹‘(𝑀 − 1))‘𝑛) ≠ ((𝐹‘𝑀)‘𝑛)) = ((2nd ‘(1st ‘𝑇))‘𝑀)) | ||
| Theorem | poimirlem7 37597* | Lemma for poimir 37623, similar to poimirlem6 37596, but for vertices after the opposite vertex. (Contributed by Brendan Leahy, 21-Aug-2020.) |
| ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ 𝑆 = {𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd ‘𝑡), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st ‘(1st ‘𝑡)) ∘f + ((((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))} & ⊢ (𝜑 → 𝑇 ∈ 𝑆) & ⊢ (𝜑 → (2nd ‘𝑇) ∈ (1...(𝑁 − 1))) & ⊢ (𝜑 → 𝑀 ∈ ((((2nd ‘𝑇) + 1) + 1)...𝑁)) ⇒ ⊢ (𝜑 → (℩𝑛 ∈ (1...𝑁)((𝐹‘(𝑀 − 2))‘𝑛) ≠ ((𝐹‘(𝑀 − 1))‘𝑛)) = ((2nd ‘(1st ‘𝑇))‘𝑀)) | ||
| Theorem | poimirlem8 37598* | Lemma for poimir 37623, establishing that away from the opposite vertex the walks in poimirlem9 37599 yield the same vertices. (Contributed by Brendan Leahy, 21-Aug-2020.) |
| ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ 𝑆 = {𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd ‘𝑡), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st ‘(1st ‘𝑡)) ∘f + ((((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))} & ⊢ (𝜑 → 𝑇 ∈ 𝑆) & ⊢ (𝜑 → (2nd ‘𝑇) ∈ (1...(𝑁 − 1))) & ⊢ (𝜑 → 𝑈 ∈ 𝑆) ⇒ ⊢ (𝜑 → ((2nd ‘(1st ‘𝑈)) ↾ ((1...𝑁) ∖ {(2nd ‘𝑇), ((2nd ‘𝑇) + 1)})) = ((2nd ‘(1st ‘𝑇)) ↾ ((1...𝑁) ∖ {(2nd ‘𝑇), ((2nd ‘𝑇) + 1)}))) | ||
| Theorem | poimirlem9 37599* | Lemma for poimir 37623, establishing the two walks that yield a given face when the opposite vertex is neither first nor last. (Contributed by Brendan Leahy, 21-Aug-2020.) |
| ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ 𝑆 = {𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd ‘𝑡), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st ‘(1st ‘𝑡)) ∘f + ((((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))} & ⊢ (𝜑 → 𝑇 ∈ 𝑆) & ⊢ (𝜑 → (2nd ‘𝑇) ∈ (1...(𝑁 − 1))) & ⊢ (𝜑 → 𝑈 ∈ 𝑆) & ⊢ (𝜑 → (2nd ‘(1st ‘𝑈)) ≠ (2nd ‘(1st ‘𝑇))) ⇒ ⊢ (𝜑 → (2nd ‘(1st ‘𝑈)) = ((2nd ‘(1st ‘𝑇)) ∘ ({〈(2nd ‘𝑇), ((2nd ‘𝑇) + 1)〉, 〈((2nd ‘𝑇) + 1), (2nd ‘𝑇)〉} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd ‘𝑇), ((2nd ‘𝑇) + 1)}))))) | ||
| Theorem | poimirlem10 37600* | Lemma for poimir 37623 establishing the cube that yields the simplex that yields a face if the opposite vertex was first on the walk. (Contributed by Brendan Leahy, 21-Aug-2020.) |
| ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ 𝑆 = {𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd ‘𝑡), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st ‘(1st ‘𝑡)) ∘f + ((((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))} & ⊢ (𝜑 → 𝐹:(0...(𝑁 − 1))⟶((0...𝐾) ↑m (1...𝑁))) & ⊢ (𝜑 → 𝑇 ∈ 𝑆) & ⊢ (𝜑 → (2nd ‘𝑇) = 0) ⇒ ⊢ (𝜑 → ((𝐹‘(𝑁 − 1)) ∘f − ((1...𝑁) × {1})) = (1st ‘(1st ‘𝑇))) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |