| Metamath
Proof Explorer Theorem List (p. 376 of 498) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30880) |
(30881-32403) |
(32404-49778) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | wl-nfnae1 37501 | Unlike nfnae 2432, this specialized theorem avoids ax-11 2158. (Contributed by Wolf Lammen, 27-Jun-2019.) |
| ⊢ Ⅎ𝑥 ¬ ∀𝑦 𝑦 = 𝑥 | ||
| Theorem | wl-aetr 37502 | A transitive law for variable identifying expressions. (Contributed by Wolf Lammen, 30-Jun-2019.) |
| ⊢ (∀𝑥 𝑥 = 𝑦 → (∀𝑥 𝑥 = 𝑧 → ∀𝑦 𝑦 = 𝑧)) | ||
| Theorem | wl-axc11r 37503 | Same as axc11r 2366, but using ax12 2421 instead of ax-12 2178 directly. This better reflects axiom usage in theorems dependent on it. (Contributed by NM, 25-Jul-2015.) Avoid direct use of ax-12 2178. (Revised by Wolf Lammen, 30-Mar-2024.) |
| ⊢ (∀𝑦 𝑦 = 𝑥 → (∀𝑥𝜑 → ∀𝑦𝜑)) | ||
| Theorem | wl-dral1d 37504 | A version of dral1 2437 with a context. Note: At first glance one might be tempted to generalize this (or a similar) theorem by weakening the first two hypotheses adding a 𝑥 = 𝑦, ∀𝑥𝑥 = 𝑦 or 𝜑 antecedent. wl-equsal1i 37517 and nf5di 2285 show that this is in fact pointless. (Contributed by Wolf Lammen, 28-Jul-2019.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑦𝜑 & ⊢ (𝜑 → (𝑥 = 𝑦 → (𝜓 ↔ 𝜒))) ⇒ ⊢ (𝜑 → (∀𝑥 𝑥 = 𝑦 → (∀𝑥𝜓 ↔ ∀𝑦𝜒))) | ||
| Theorem | wl-cbvalnaed 37505 | wl-cbvalnae 37506 with a context. (Contributed by Wolf Lammen, 28-Jul-2019.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑦𝜑 & ⊢ (𝜑 → (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑦𝜓)) & ⊢ (𝜑 → (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥𝜒)) & ⊢ (𝜑 → (𝑥 = 𝑦 → (𝜓 ↔ 𝜒))) ⇒ ⊢ (𝜑 → (∀𝑥𝜓 ↔ ∀𝑦𝜒)) | ||
| Theorem | wl-cbvalnae 37506 | A more general version of cbval 2396 when nonfree properties depend on a distinctor. Such expressions arise in proofs aiming at the elimination of distinct variable constraints, specifically in application of dvelimf 2446, nfsb2 2481 or dveeq1 2378. (Contributed by Wolf Lammen, 4-Jun-2019.) |
| ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑦𝜑) & ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥𝜓) & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∀𝑥𝜑 ↔ ∀𝑦𝜓) | ||
| Theorem | wl-exeq 37507 | The semantics of ∃𝑥𝑦 = 𝑧. (Contributed by Wolf Lammen, 27-Apr-2018.) |
| ⊢ (∃𝑥 𝑦 = 𝑧 ↔ (𝑦 = 𝑧 ∨ ∀𝑥 𝑥 = 𝑦 ∨ ∀𝑥 𝑥 = 𝑧)) | ||
| Theorem | wl-aleq 37508 | The semantics of ∀𝑥𝑦 = 𝑧. (Contributed by Wolf Lammen, 27-Apr-2018.) |
| ⊢ (∀𝑥 𝑦 = 𝑧 ↔ (𝑦 = 𝑧 ∧ (∀𝑥 𝑥 = 𝑦 ↔ ∀𝑥 𝑥 = 𝑧))) | ||
| Theorem | wl-nfeqfb 37509 | Extend nfeqf 2379 to an equivalence. (Contributed by Wolf Lammen, 31-Jul-2019.) |
| ⊢ (Ⅎ𝑥 𝑦 = 𝑧 ↔ (∀𝑥 𝑥 = 𝑦 ↔ ∀𝑥 𝑥 = 𝑧)) | ||
| Theorem | wl-nfs1t 37510 | If 𝑦 is not free in 𝜑, 𝑥 is not free in [𝑦 / 𝑥]𝜑. Closed form of nfs1 2486. (Contributed by Wolf Lammen, 27-Jul-2019.) |
| ⊢ (Ⅎ𝑦𝜑 → Ⅎ𝑥[𝑦 / 𝑥]𝜑) | ||
| Theorem | wl-equsalvw 37511* |
Version of equsalv 2268 with a disjoint variable condition, and of equsal 2415
with two disjoint variable conditions, which requires fewer axioms. See
also the dual form equsexvw 2005.
This theorem lays the foundation to a transformation of expressions called substitution of set variables in a wff. Only in this particular context we additionally assume 𝜑 and 𝑦 disjoint, stated here as 𝜑(𝑥). Similarly the disjointness of 𝜓 and 𝑥 is expressed by 𝜓(𝑦). Both 𝜑 and 𝜓 may still depend on other set variables, but that is irrelevant here. We want to transform 𝜑(𝑥) into 𝜓(𝑦) such that 𝜓 depends on 𝑦 the same way as 𝜑 depends on 𝑥. This dependency is expressed in our hypothesis (called implicit substitution): (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)). For primitive enough 𝜑 a sort of textual substitution of 𝑥 by 𝑦 is sufficient for such transformation. But note: 𝜑 must not contain wff variables, and the substitution is no proper textual substitution either. We still need grammar information to not accidently replace the x in a token 'x.' denoting multiplication, but only catch set variables 𝑥. Our current stage of development allows only equations and quantifiers make up such primitives. Thanks to equequ1 2025 and cbvalvw 2036 we can then prove in a mechanical way that in fact the implicit substitution holds for each instance. If 𝜑 contains wff variables we cannot use textual transformation any longer, since we don't know how to replace 𝑦 for 𝑥 in placeholders of unknown structure. Our theorem now states, that the generic expression ∀𝑥(𝑥 = 𝑦 → 𝜑) formally behaves as if such a substitution was possible and made. (Contributed by BJ, 31-May-2019.) |
| ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∀𝑥(𝑥 = 𝑦 → 𝜑) ↔ 𝜓) | ||
| Theorem | wl-equsald 37512 | Deduction version of equsal 2415. (Contributed by Wolf Lammen, 27-Jul-2019.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → Ⅎ𝑥𝜒) & ⊢ (𝜑 → (𝑥 = 𝑦 → (𝜓 ↔ 𝜒))) ⇒ ⊢ (𝜑 → (∀𝑥(𝑥 = 𝑦 → 𝜓) ↔ 𝜒)) | ||
| Theorem | wl-equsaldv 37513* | Deduction version of equsal 2415. (Contributed by Wolf Lammen, 27-Jul-2019.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → Ⅎ𝑥𝜒) & ⊢ (𝜑 → (𝑥 = 𝑦 → (𝜓 ↔ 𝜒))) ⇒ ⊢ (𝜑 → (∀𝑥(𝑥 = 𝑦 → 𝜓) ↔ 𝜒)) | ||
| Theorem | wl-equsal 37514 | A useful equivalence related to substitution. (Contributed by NM, 2-Jun-1993.) (Proof shortened by Andrew Salmon, 12-Aug-2011.) (Revised by Mario Carneiro, 3-Oct-2016.) It seems proving wl-equsald 37512 first, and then deriving more specialized versions wl-equsal 37514 and wl-equsal1t 37515 then is more efficient than the other way round, which is possible, too. See also equsal 2415. (Revised by Wolf Lammen, 27-Jul-2019.) (Proof modification is discouraged.) |
| ⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∀𝑥(𝑥 = 𝑦 → 𝜑) ↔ 𝜓) | ||
| Theorem | wl-equsal1t 37515 |
The expression 𝑥 = 𝑦 in antecedent position plays an
important role in
predicate logic, namely in implicit substitution. However, occasionally
it is irrelevant, and can safely be dropped. A sufficient condition for
this is when 𝑥 (or 𝑦 or both) is not free in
𝜑.
This theorem is more fundamental than equsal 2415, spimt 2384 or sbft 2270, to which it is related. (Contributed by Wolf Lammen, 19-Aug-2018.) |
| ⊢ (Ⅎ𝑥𝜑 → (∀𝑥(𝑥 = 𝑦 → 𝜑) ↔ 𝜑)) | ||
| Theorem | wl-equsalcom 37516 | This simple equivalence eases substitution of one expression for the other. (Contributed by Wolf Lammen, 1-Sep-2018.) |
| ⊢ (∀𝑥(𝑥 = 𝑦 → 𝜑) ↔ ∀𝑥(𝑦 = 𝑥 → 𝜑)) | ||
| Theorem | wl-equsal1i 37517 | The antecedent 𝑥 = 𝑦 is irrelevant, if one or both setvar variables are not free in 𝜑. (Contributed by Wolf Lammen, 1-Sep-2018.) |
| ⊢ (Ⅎ𝑥𝜑 ∨ Ⅎ𝑦𝜑) & ⊢ (𝑥 = 𝑦 → 𝜑) ⇒ ⊢ 𝜑 | ||
| Theorem | wl-sbid2ft 37518* | A more general version of sbid2vw 2260. (Contributed by Wolf Lammen, 14-May-2019.) |
| ⊢ (Ⅎ𝑥𝜑 → ([𝑦 / 𝑥][𝑥 / 𝑦]𝜑 ↔ 𝜑)) | ||
| Theorem | wl-cbvalsbi 37519* | Change bounded variables in a special case. The reverse direction seems to involve ax-11 2158. My hope is that I will in some future be able to prove mo3 2557 with reversed quantifiers not using ax-11 2158. See also the remark in mo4 2559, which lead me to this effort. (Contributed by Wolf Lammen, 5-Mar-2024.) |
| ⊢ (∀𝑥𝜑 → ∀𝑦[𝑦 / 𝑥]𝜑) | ||
| Theorem | wl-sbrimt 37520 | Substitution with a variable not free in antecedent affects only the consequent. Closed form of sbrim 2304. (Contributed by Wolf Lammen, 26-Jul-2019.) |
| ⊢ (Ⅎ𝑥𝜑 → ([𝑦 / 𝑥](𝜑 → 𝜓) ↔ (𝜑 → [𝑦 / 𝑥]𝜓))) | ||
| Theorem | wl-sblimt 37521 | Substitution with a variable not free in antecedent affects only the consequent. Closed form of sbrim 2304. (Contributed by Wolf Lammen, 26-Jul-2019.) |
| ⊢ (Ⅎ𝑥𝜓 → ([𝑦 / 𝑥](𝜑 → 𝜓) ↔ ([𝑦 / 𝑥]𝜑 → 𝜓))) | ||
| Theorem | wl-sb9v 37522* | Commutation of quantification and substitution variables based on fewer axioms than sb9 2517. (Contributed by Wolf Lammen, 27-Apr-2025.) |
| ⊢ (∀𝑥[𝑥 / 𝑦]𝜑 ↔ ∀𝑦[𝑦 / 𝑥]𝜑) | ||
| Theorem | wl-sb8ft 37523* | Substitution of variable in universal quantifier. Closed form of sb8f 2352. (Contributed by Wolf Lammen, 27-Apr-2025.) |
| ⊢ (∀𝑥Ⅎ𝑦𝜑 → (∀𝑥𝜑 ↔ ∀𝑦[𝑦 / 𝑥]𝜑)) | ||
| Theorem | wl-sb8eft 37524* | Substitution of variable in existentialal quantifier. Closed form of sb8ef 2353. (Contributed by Wolf Lammen, 27-Apr-2025.) |
| ⊢ (∀𝑥Ⅎ𝑦𝜑 → (∃𝑥𝜑 ↔ ∃𝑦[𝑦 / 𝑥]𝜑)) | ||
| Theorem | wl-sb8t 37525 | Substitution of variable in universal quantifier. Closed form of sb8 2515. (Contributed by Wolf Lammen, 27-Jul-2019.) |
| ⊢ (∀𝑥Ⅎ𝑦𝜑 → (∀𝑥𝜑 ↔ ∀𝑦[𝑦 / 𝑥]𝜑)) | ||
| Theorem | wl-sb8et 37526 | Substitution of variable in universal quantifier. Closed form of sb8e 2516. (Contributed by Wolf Lammen, 27-Jul-2019.) |
| ⊢ (∀𝑥Ⅎ𝑦𝜑 → (∃𝑥𝜑 ↔ ∃𝑦[𝑦 / 𝑥]𝜑)) | ||
| Theorem | wl-sbhbt 37527 | Closed form of sbhb 2519. Characterizing the expression 𝜑 → ∀𝑥𝜑 using a substitution expression. (Contributed by Wolf Lammen, 28-Jul-2019.) |
| ⊢ (∀𝑥Ⅎ𝑦𝜑 → ((𝜑 → ∀𝑥𝜑) ↔ ∀𝑦(𝜑 → [𝑦 / 𝑥]𝜑))) | ||
| Theorem | wl-sbnf1 37528 | Two ways expressing that 𝑥 is effectively not free in 𝜑. Simplified version of sbnf2 2356. Note: This theorem shows that sbnf2 2356 has unnecessary distinct variable constraints. (Contributed by Wolf Lammen, 28-Jul-2019.) |
| ⊢ (∀𝑥Ⅎ𝑦𝜑 → (Ⅎ𝑥𝜑 ↔ ∀𝑥∀𝑦(𝜑 → [𝑦 / 𝑥]𝜑))) | ||
| Theorem | wl-equsb3 37529 | equsb3 2104 with a distinctor. (Contributed by Wolf Lammen, 27-Jun-2019.) |
| ⊢ (¬ ∀𝑦 𝑦 = 𝑧 → ([𝑥 / 𝑦]𝑦 = 𝑧 ↔ 𝑥 = 𝑧)) | ||
| Theorem | wl-equsb4 37530 | Substitution applied to an atomic wff. The distinctor antecedent is more general than a distinct variable condition. (Contributed by Wolf Lammen, 26-Jun-2019.) |
| ⊢ (¬ ∀𝑥 𝑥 = 𝑧 → ([𝑦 / 𝑥]𝑦 = 𝑧 ↔ 𝑦 = 𝑧)) | ||
| Theorem | wl-2sb6d 37531 | Version of 2sb6 2087 with a context, and distinct variable conditions replaced with distinctors. (Contributed by Wolf Lammen, 4-Aug-2019.) |
| ⊢ (𝜑 → ¬ ∀𝑦 𝑦 = 𝑥) & ⊢ (𝜑 → ¬ ∀𝑦 𝑦 = 𝑤) & ⊢ (𝜑 → ¬ ∀𝑦 𝑦 = 𝑧) & ⊢ (𝜑 → ¬ ∀𝑥 𝑥 = 𝑧) ⇒ ⊢ (𝜑 → ([𝑧 / 𝑥][𝑤 / 𝑦]𝜓 ↔ ∀𝑥∀𝑦((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → 𝜓))) | ||
| Theorem | wl-sbcom2d-lem1 37532* | Lemma used to prove wl-sbcom2d 37534. (Contributed by Wolf Lammen, 10-Aug-2019.) (New usage is discouraged.) |
| ⊢ ((𝑢 = 𝑦 ∧ 𝑣 = 𝑤) → (¬ ∀𝑥 𝑥 = 𝑤 → ([𝑢 / 𝑥][𝑣 / 𝑧]𝜑 ↔ [𝑦 / 𝑥][𝑤 / 𝑧]𝜑))) | ||
| Theorem | wl-sbcom2d-lem2 37533* | Lemma used to prove wl-sbcom2d 37534. (Contributed by Wolf Lammen, 10-Aug-2019.) (New usage is discouraged.) |
| ⊢ (¬ ∀𝑦 𝑦 = 𝑥 → ([𝑢 / 𝑥][𝑣 / 𝑦]𝜑 ↔ ∀𝑥∀𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) → 𝜑))) | ||
| Theorem | wl-sbcom2d 37534 | Version of sbcom2 2174 with a context, and distinct variable conditions replaced with distinctors. (Contributed by Wolf Lammen, 4-Aug-2019.) |
| ⊢ (𝜑 → ¬ ∀𝑥 𝑥 = 𝑤) & ⊢ (𝜑 → ¬ ∀𝑥 𝑥 = 𝑧) & ⊢ (𝜑 → ¬ ∀𝑧 𝑧 = 𝑦) ⇒ ⊢ (𝜑 → ([𝑤 / 𝑧][𝑦 / 𝑥]𝜓 ↔ [𝑦 / 𝑥][𝑤 / 𝑧]𝜓)) | ||
| Theorem | wl-sbalnae 37535 | A theorem used in elimination of disjoint variable restrictions by replacing them with distinctors. (Contributed by Wolf Lammen, 25-Jul-2019.) |
| ⊢ ((¬ ∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) → ([𝑧 / 𝑦]∀𝑥𝜑 ↔ ∀𝑥[𝑧 / 𝑦]𝜑)) | ||
| Theorem | wl-sbal1 37536* | A theorem used in elimination of disjoint variable restriction on 𝑥 and 𝑦 by replacing it with a distinctor ¬ ∀𝑥𝑥 = 𝑧. (Contributed by NM, 15-May-1993.) Proof is based on wl-sbalnae 37535 now. See also sbal1 2526. (Revised by Wolf Lammen, 25-Jul-2019.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (¬ ∀𝑥 𝑥 = 𝑧 → ([𝑧 / 𝑦]∀𝑥𝜑 ↔ ∀𝑥[𝑧 / 𝑦]𝜑)) | ||
| Theorem | wl-sbal2 37537* | Move quantifier in and out of substitution. Revised to remove a distinct variable constraint. (Contributed by NM, 2-Jan-2002.) Proof is based on wl-sbalnae 37535 now. See also sbal2 2527. (Revised by Wolf Lammen, 25-Jul-2019.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → ([𝑧 / 𝑦]∀𝑥𝜑 ↔ ∀𝑥[𝑧 / 𝑦]𝜑)) | ||
| Theorem | wl-2spsbbi 37538 | spsbbi 2074 applied twice. (Contributed by Wolf Lammen, 5-Aug-2023.) |
| ⊢ (∀𝑎∀𝑏(𝜑 ↔ 𝜓) → ([𝑦 / 𝑏][𝑥 / 𝑎]𝜑 ↔ [𝑦 / 𝑏][𝑥 / 𝑎]𝜓)) | ||
| Theorem | wl-lem-exsb 37539* | This theorem provides a basic working step in proving theorems about ∃* or ∃!. (Contributed by Wolf Lammen, 3-Oct-2019.) |
| ⊢ (𝑥 = 𝑦 → (𝜑 ↔ ∀𝑥(𝑥 = 𝑦 → 𝜑))) | ||
| Theorem | wl-lem-nexmo 37540 | This theorem provides a basic working step in proving theorems about ∃* or ∃!. (Contributed by Wolf Lammen, 3-Oct-2019.) |
| ⊢ (¬ ∃𝑥𝜑 → ∀𝑥(𝜑 → 𝑥 = 𝑧)) | ||
| Theorem | wl-lem-moexsb 37541* |
The antecedent ∀𝑥(𝜑 → 𝑥 = 𝑧) relates to ∃*𝑥𝜑, but is
better suited for usage in proofs. Note that no distinct variable
restriction is placed on 𝜑.
This theorem provides a basic working step in proving theorems about ∃* or ∃!. (Contributed by Wolf Lammen, 3-Oct-2019.) |
| ⊢ (∀𝑥(𝜑 → 𝑥 = 𝑧) → (∃𝑥𝜑 ↔ [𝑧 / 𝑥]𝜑)) | ||
| Theorem | wl-alanbii 37542 | This theorem extends alanimi 1816 to a biconditional. Recurrent usage stacks up more quantifiers. (Contributed by Wolf Lammen, 4-Oct-2019.) |
| ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) ⇒ ⊢ (∀𝑥𝜑 ↔ (∀𝑥𝜓 ∧ ∀𝑥𝜒)) | ||
| Theorem | wl-mo2df 37543 | Version of mof 2556 with a context and a distinctor replacing a distinct variable condition. This version should be used only to eliminate disjoint variable conditions. (Contributed by Wolf Lammen, 11-Aug-2019.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑦𝜑 & ⊢ (𝜑 → ¬ ∀𝑥 𝑥 = 𝑦) & ⊢ (𝜑 → Ⅎ𝑦𝜓) ⇒ ⊢ (𝜑 → (∃*𝑥𝜓 ↔ ∃𝑦∀𝑥(𝜓 → 𝑥 = 𝑦))) | ||
| Theorem | wl-mo2tf 37544 | Closed form of mof 2556 with a distinctor avoiding distinct variable conditions. (Contributed by Wolf Lammen, 20-Sep-2020.) |
| ⊢ ((¬ ∀𝑥 𝑥 = 𝑦 ∧ ∀𝑥Ⅎ𝑦𝜑) → (∃*𝑥𝜑 ↔ ∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦))) | ||
| Theorem | wl-eudf 37545 | Version of eu6 2567 with a context and a distinctor replacing a distinct variable condition. This version should be used only to eliminate disjoint variable conditions. (Contributed by Wolf Lammen, 23-Sep-2020.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑦𝜑 & ⊢ (𝜑 → ¬ ∀𝑥 𝑥 = 𝑦) & ⊢ (𝜑 → Ⅎ𝑦𝜓) ⇒ ⊢ (𝜑 → (∃!𝑥𝜓 ↔ ∃𝑦∀𝑥(𝜓 ↔ 𝑥 = 𝑦))) | ||
| Theorem | wl-eutf 37546 | Closed form of eu6 2567 with a distinctor avoiding distinct variable conditions. (Contributed by Wolf Lammen, 23-Sep-2020.) |
| ⊢ ((¬ ∀𝑥 𝑥 = 𝑦 ∧ ∀𝑥Ⅎ𝑦𝜑) → (∃!𝑥𝜑 ↔ ∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦))) | ||
| Theorem | wl-euequf 37547 | euequ 2590 proved with a distinctor. (Contributed by Wolf Lammen, 23-Sep-2020.) |
| ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → ∃!𝑥 𝑥 = 𝑦) | ||
| Theorem | wl-mo2t 37548* | Closed form of mof 2556. (Contributed by Wolf Lammen, 18-Aug-2019.) |
| ⊢ (∀𝑥Ⅎ𝑦𝜑 → (∃*𝑥𝜑 ↔ ∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦))) | ||
| Theorem | wl-mo3t 37549* | Closed form of mo3 2557. (Contributed by Wolf Lammen, 18-Aug-2019.) |
| ⊢ (∀𝑥Ⅎ𝑦𝜑 → (∃*𝑥𝜑 ↔ ∀𝑥∀𝑦((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦))) | ||
| Theorem | wl-nfsbtv 37550* | Closed form of nfsbv 2329. (Contributed by Wolf Lammen, 2-May-2025.) |
| ⊢ (∀𝑥Ⅎ𝑧𝜑 → Ⅎ𝑧[𝑦 / 𝑥]𝜑) | ||
| Theorem | wl-sb8eut 37551 | Substitution of variable in universal quantifier. Closed form of sb8eu 2593. (Contributed by Wolf Lammen, 11-Aug-2019.) |
| ⊢ (∀𝑥Ⅎ𝑦𝜑 → (∃!𝑥𝜑 ↔ ∃!𝑦[𝑦 / 𝑥]𝜑)) | ||
| Theorem | wl-sb8eutv 37552* | Substitution of variable in universal quantifier. Closed form of sb8euv 2592. (Contributed by Wolf Lammen, 3-May-2025.) |
| ⊢ (∀𝑥Ⅎ𝑦𝜑 → (∃!𝑥𝜑 ↔ ∃!𝑦[𝑦 / 𝑥]𝜑)) | ||
| Theorem | wl-sb8mot 37553 | Substitution of variable in universal quantifier. Closed form of sb8mo 2594. (Contributed by Wolf Lammen, 11-Aug-2019.) |
| ⊢ (∀𝑥Ⅎ𝑦𝜑 → (∃*𝑥𝜑 ↔ ∃*𝑦[𝑦 / 𝑥]𝜑)) | ||
| Theorem | wl-sb8motv 37554* |
Substitution of variable in universal quantifier. Closed form of
sb8mo 2594 without ax-13 2370, but requiring 𝑥 and 𝑦 being
disjoint.
This theorem relates to wl-mo3t 37549, since replacing 𝜑 with [𝑦 / 𝑥]𝜑 in the latter yields subexpressions like [𝑥 / 𝑦][𝑦 / 𝑥]𝜑, which can be reduced to 𝜑 via sbft 2270 and sbco 2505. So ∃*𝑥𝜑 ↔ ∃*𝑦[𝑦 / 𝑥]𝜑 is provable from wl-mo3t 37549 in a simple fashion. From an educational standpoint, one would assume wl-mo3t 37549 to be more fundamental, as it hints how the "at most one" objects on both sides of the biconditional correlate (they are the same), if they exist at all, and then prove this theorem from it. (Contributed by Wolf Lammen, 3-May-2025.) |
| ⊢ (∀𝑥Ⅎ𝑦𝜑 → (∃*𝑥𝜑 ↔ ∃*𝑦[𝑦 / 𝑥]𝜑)) | ||
| Theorem | wl-issetft 37555 | A closed form of issetf 3455. The proof here is a modification of a subproof in vtoclgft 3509, where it could be used to shorten the proof. (Contributed by Wolf Lammen, 25-Jan-2025.) |
| ⊢ (Ⅎ𝑥𝐴 → (𝐴 ∈ V ↔ ∃𝑥 𝑥 = 𝐴)) | ||
| Theorem | wl-axc11rc11 37556 |
Proving axc11r 2366 from axc11 2428. The hypotheses are two instances of
axc11 2428 used in the proof here. Some systems
introduce axc11 2428 as an
axiom, see for example System S2 in
https://us.metamath.org/downloads/finiteaxiom.pdf 2428.
By contrast, this database sees the variant axc11r 2366, directly derived from ax-12 2178, as foundational. Later axc11 2428 is proven somewhat trickily, requiring ax-10 2142 and ax-13 2370, see its proof. (Contributed by Wolf Lammen, 18-Jul-2023.) |
| ⊢ (∀𝑦 𝑦 = 𝑥 → (∀𝑦 𝑦 = 𝑥 → ∀𝑥 𝑦 = 𝑥)) & ⊢ (∀𝑥 𝑥 = 𝑦 → (∀𝑥𝜑 → ∀𝑦𝜑)) ⇒ ⊢ (∀𝑦 𝑦 = 𝑥 → (∀𝑥𝜑 → ∀𝑦𝜑)) | ||
| Axiom | ax-wl-11v 37557* | Version of ax-11 2158 with distinct variable conditions. Currently implemented as an axiom to detect unintended references to the foundational axiom ax-11 2158. It will later be converted into a theorem directly based on ax-11 2158. (Contributed by Wolf Lammen, 28-Jun-2019.) |
| ⊢ (∀𝑥∀𝑦𝜑 → ∀𝑦∀𝑥𝜑) | ||
| Theorem | wl-ax11-lem1 37558 | A transitive law for variable identifying expressions. (Contributed by Wolf Lammen, 30-Jun-2019.) |
| ⊢ (∀𝑥 𝑥 = 𝑦 → (∀𝑥 𝑥 = 𝑧 ↔ ∀𝑦 𝑦 = 𝑧)) | ||
| Theorem | wl-ax11-lem2 37559* | Lemma. (Contributed by Wolf Lammen, 30-Jun-2019.) |
| ⊢ ((∀𝑢 𝑢 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → ∀𝑥 𝑢 = 𝑦) | ||
| Theorem | wl-ax11-lem3 37560* | Lemma. (Contributed by Wolf Lammen, 30-Jun-2019.) |
| ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥∀𝑢 𝑢 = 𝑦) | ||
| Theorem | wl-ax11-lem4 37561* | Lemma. (Contributed by Wolf Lammen, 30-Jun-2019.) |
| ⊢ Ⅎ𝑥(∀𝑢 𝑢 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑦) | ||
| Theorem | wl-ax11-lem5 37562 | Lemma. (Contributed by Wolf Lammen, 30-Jun-2019.) |
| ⊢ (∀𝑢 𝑢 = 𝑦 → (∀𝑢[𝑢 / 𝑦]𝜑 ↔ ∀𝑦𝜑)) | ||
| Theorem | wl-ax11-lem6 37563* | Lemma. (Contributed by Wolf Lammen, 30-Jun-2019.) |
| ⊢ ((∀𝑢 𝑢 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → (∀𝑢∀𝑥[𝑢 / 𝑦]𝜑 ↔ ∀𝑥∀𝑦𝜑)) | ||
| Theorem | wl-ax11-lem7 37564 | Lemma. (Contributed by Wolf Lammen, 30-Jun-2019.) |
| ⊢ (∀𝑥(¬ ∀𝑥 𝑥 = 𝑦 ∧ 𝜑) ↔ (¬ ∀𝑥 𝑥 = 𝑦 ∧ ∀𝑥𝜑)) | ||
| Theorem | wl-ax11-lem8 37565* | Lemma. (Contributed by Wolf Lammen, 30-Jun-2019.) |
| ⊢ ((∀𝑢 𝑢 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → (∀𝑢∀𝑥[𝑢 / 𝑦]𝜑 ↔ ∀𝑦∀𝑥𝜑)) | ||
| Theorem | wl-ax11-lem9 37566 | The easy part when 𝑥 coincides with 𝑦. (Contributed by Wolf Lammen, 30-Jun-2019.) |
| ⊢ (∀𝑥 𝑥 = 𝑦 → (∀𝑦∀𝑥𝜑 ↔ ∀𝑥∀𝑦𝜑)) | ||
| Theorem | wl-ax11-lem10 37567* | We now have prepared everything. The unwanted variable 𝑢 is just in one place left. pm2.61 192 can be used in conjunction with wl-ax11-lem9 37566 to eliminate the second antecedent. Missing is something along the lines of ax-6 1967, so we could remove the first antecedent. But the Metamath axioms cannot accomplish this. Such a rule must reside one abstraction level higher than all others: It says that a distinctor implies a distinct variable condition on its contained setvar. This is only needed if such conditions are required, as ax-11v does. The result of this study is for me, that you cannot introduce a setvar capturing this condition, and hope to eliminate it later. (Contributed by Wolf Lammen, 30-Jun-2019.) |
| ⊢ (∀𝑦 𝑦 = 𝑢 → (¬ ∀𝑥 𝑥 = 𝑦 → (∀𝑦∀𝑥𝜑 → ∀𝑥∀𝑦𝜑))) | ||
| Theorem | wl-clabv 37568* |
Variant of df-clab 2708, where the element 𝑥 is required to be
disjoint from the class it is taken from. This restriction meets
similar ones found in other definitions and axioms like ax-ext 2701,
df-clel 2803 and df-cleq 2721. 𝑥 ∈ 𝐴 with 𝐴 depending on 𝑥 can
be the source of side effects, that you rather want to be aware of. So
here we eliminate one possible way of letting this slip in instead.
An expression 𝑥 ∈ 𝐴 with 𝑥, 𝐴 not disjoint, is now only introduced either via ax-8 2111, ax-9 2119, or df-clel 2803. Theorem cleljust 2118 shows that a possible choice does not matter. The original df-clab 2708 can be rederived, see wl-dfclab 37569. In an implementation this theorem is the only user of df-clab. (Contributed by NM, 26-May-1993.) Element and class are disjoint. (Revised by Wolf Lammen, 31-May-2023.) |
| ⊢ (𝑥 ∈ {𝑦 ∣ 𝜑} ↔ [𝑥 / 𝑦]𝜑) | ||
| Theorem | wl-dfclab 37569 | Rederive df-clab 2708 from wl-clabv 37568. (Contributed by Wolf Lammen, 31-May-2023.) (Proof modification is discouraged.) |
| ⊢ (𝑥 ∈ {𝑦 ∣ 𝜑} ↔ [𝑥 / 𝑦]𝜑) | ||
| Theorem | wl-clabtv 37570* | Using class abstraction in a context, requiring 𝑥 and 𝜑 disjoint, but based on fewer axioms than wl-clabt 37571. (Contributed by Wolf Lammen, 29-May-2023.) |
| ⊢ (𝜑 → {𝑥 ∣ 𝜓} = {𝑥 ∣ (𝜑 → 𝜓)}) | ||
| Theorem | wl-clabt 37571 | Using class abstraction in a context. For a version based on fewer axioms see wl-clabtv 37570. (Contributed by Wolf Lammen, 29-May-2023.) |
| ⊢ Ⅎ𝑥𝜑 ⇒ ⊢ (𝜑 → {𝑥 ∣ 𝜓} = {𝑥 ∣ (𝜑 → 𝜓)}) | ||
| Theorem | rabiun 37572* | Abstraction restricted to an indexed union. (Contributed by Brendan Leahy, 26-Oct-2017.) |
| ⊢ {𝑥 ∈ ∪ 𝑦 ∈ 𝐴 𝐵 ∣ 𝜑} = ∪ 𝑦 ∈ 𝐴 {𝑥 ∈ 𝐵 ∣ 𝜑} | ||
| Theorem | iundif1 37573* | Indexed union of class difference with the subtrahend held constant. (Contributed by Brendan Leahy, 6-Aug-2018.) |
| ⊢ ∪ 𝑥 ∈ 𝐴 (𝐵 ∖ 𝐶) = (∪ 𝑥 ∈ 𝐴 𝐵 ∖ 𝐶) | ||
| Theorem | imadifss 37574 | The difference of images is a subset of the image of the difference. (Contributed by Brendan Leahy, 21-Aug-2020.) |
| ⊢ ((𝐹 “ 𝐴) ∖ (𝐹 “ 𝐵)) ⊆ (𝐹 “ (𝐴 ∖ 𝐵)) | ||
| Theorem | cureq 37575 | Equality theorem for currying. (Contributed by Brendan Leahy, 2-Jun-2021.) |
| ⊢ (𝐴 = 𝐵 → curry 𝐴 = curry 𝐵) | ||
| Theorem | unceq 37576 | Equality theorem for uncurrying. (Contributed by Brendan Leahy, 2-Jun-2021.) |
| ⊢ (𝐴 = 𝐵 → uncurry 𝐴 = uncurry 𝐵) | ||
| Theorem | curf 37577 | Functional property of currying. (Contributed by Brendan Leahy, 2-Jun-2021.) |
| ⊢ ((𝐹:(𝐴 × 𝐵)⟶𝐶 ∧ 𝐵 ∈ (𝑉 ∖ {∅}) ∧ 𝐶 ∈ 𝑊) → curry 𝐹:𝐴⟶(𝐶 ↑m 𝐵)) | ||
| Theorem | uncf 37578 | Functional property of uncurrying. (Contributed by Brendan Leahy, 2-Jun-2021.) |
| ⊢ (𝐹:𝐴⟶(𝐶 ↑m 𝐵) → uncurry 𝐹:(𝐴 × 𝐵)⟶𝐶) | ||
| Theorem | curfv 37579 | Value of currying. (Contributed by Brendan Leahy, 2-Jun-2021.) |
| ⊢ (((𝐹 Fn (𝑉 × 𝑊) ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ 𝑊 ∈ 𝑋) → ((curry 𝐹‘𝐴)‘𝐵) = (𝐴𝐹𝐵)) | ||
| Theorem | uncov 37580 | Value of uncurrying. (Contributed by Brendan Leahy, 2-Jun-2021.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴uncurry 𝐹𝐵) = ((𝐹‘𝐴)‘𝐵)) | ||
| Theorem | curunc 37581 | Currying of uncurrying. (Contributed by Brendan Leahy, 2-Jun-2021.) |
| ⊢ ((𝐹:𝐴⟶(𝐶 ↑m 𝐵) ∧ 𝐵 ≠ ∅) → curry uncurry 𝐹 = 𝐹) | ||
| Theorem | unccur 37582 | Uncurrying of currying. (Contributed by Brendan Leahy, 5-Jun-2021.) |
| ⊢ ((𝐹:(𝐴 × 𝐵)⟶𝐶 ∧ 𝐵 ∈ (𝑉 ∖ {∅}) ∧ 𝐶 ∈ 𝑊) → uncurry curry 𝐹 = 𝐹) | ||
| Theorem | phpreu 37583* | Theorem related to pigeonhole principle. (Contributed by Brendan Leahy, 21-Aug-2020.) |
| ⊢ ((𝐴 ∈ Fin ∧ 𝐴 ≈ 𝐵) → (∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑥 = 𝐶 ↔ ∀𝑥 ∈ 𝐴 ∃!𝑦 ∈ 𝐵 𝑥 = 𝐶)) | ||
| Theorem | finixpnum 37584* | A finite Cartesian product of numerable sets is numerable. (Contributed by Brendan Leahy, 24-Feb-2019.) |
| ⊢ ((𝐴 ∈ Fin ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ dom card) → X𝑥 ∈ 𝐴 𝐵 ∈ dom card) | ||
| Theorem | fin2solem 37585* | Lemma for fin2so 37586. (Contributed by Brendan Leahy, 29-Jun-2019.) |
| ⊢ ((𝑅 Or 𝑥 ∧ (𝑦 ∈ 𝑥 ∧ 𝑧 ∈ 𝑥)) → (𝑦𝑅𝑧 → {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑦} [⊊] {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑧})) | ||
| Theorem | fin2so 37586 | Any totally ordered Tarski-finite set is finite; in particular, no amorphous set can be ordered. Theorem 2 of [Levy58]] p. 4. (Contributed by Brendan Leahy, 28-Jun-2019.) |
| ⊢ ((𝐴 ∈ FinII ∧ 𝑅 Or 𝐴) → 𝐴 ∈ Fin) | ||
| Theorem | ltflcei 37587 | Theorem to move the floor function across a strict inequality. (Contributed by Brendan Leahy, 25-Oct-2017.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((⌊‘𝐴) < 𝐵 ↔ 𝐴 < -(⌊‘-𝐵))) | ||
| Theorem | leceifl 37588 | Theorem to move the floor function across a non-strict inequality. (Contributed by Brendan Leahy, 25-Oct-2017.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (-(⌊‘-𝐴) ≤ 𝐵 ↔ 𝐴 ≤ (⌊‘𝐵))) | ||
| Theorem | sin2h 37589 | Half-angle rule for sine. (Contributed by Brendan Leahy, 3-Aug-2018.) |
| ⊢ (𝐴 ∈ (0[,](2 · π)) → (sin‘(𝐴 / 2)) = (√‘((1 − (cos‘𝐴)) / 2))) | ||
| Theorem | cos2h 37590 | Half-angle rule for cosine. (Contributed by Brendan Leahy, 4-Aug-2018.) |
| ⊢ (𝐴 ∈ (-π[,]π) → (cos‘(𝐴 / 2)) = (√‘((1 + (cos‘𝐴)) / 2))) | ||
| Theorem | tan2h 37591 | Half-angle rule for tangent. (Contributed by Brendan Leahy, 4-Aug-2018.) |
| ⊢ (𝐴 ∈ (0[,)π) → (tan‘(𝐴 / 2)) = (√‘((1 − (cos‘𝐴)) / (1 + (cos‘𝐴))))) | ||
| Theorem | lindsadd 37592 | In a vector space, the union of an independent set and a vector not in its span is an independent set. (Contributed by Brendan Leahy, 4-Mar-2023.) |
| ⊢ ((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ ((Base‘𝑊) ∖ ((LSpan‘𝑊)‘𝐹))) → (𝐹 ∪ {𝑋}) ∈ (LIndS‘𝑊)) | ||
| Theorem | lindsdom 37593 | A linearly independent set in a free linear module of finite dimension over a division ring is smaller than the dimension of the module. (Contributed by Brendan Leahy, 2-Jun-2021.) |
| ⊢ ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) → 𝑋 ≼ 𝐼) | ||
| Theorem | lindsenlbs 37594 | A maximal linearly independent set in a free module of finite dimension over a division ring is a basis. (Contributed by Brendan Leahy, 2-Jun-2021.) |
| ⊢ (((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ 𝑋 ≈ 𝐼) → 𝑋 ∈ (LBasis‘(𝑅 freeLMod 𝐼))) | ||
| Theorem | matunitlindflem1 37595 | One direction of matunitlindf 37597. (Contributed by Brendan Leahy, 2-Jun-2021.) |
| ⊢ (((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) → (¬ curry 𝑀 LIndF (𝑅 freeLMod 𝐼) → ((𝐼 maDet 𝑅)‘𝑀) = (0g‘𝑅))) | ||
| Theorem | matunitlindflem2 37596 | One direction of matunitlindf 37597. (Contributed by Brendan Leahy, 2-Jun-2021.) |
| ⊢ ((((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ 𝐼 ≠ ∅) ∧ curry 𝑀 LIndF (𝑅 freeLMod 𝐼)) → ((𝐼 maDet 𝑅)‘𝑀) ∈ (Unit‘𝑅)) | ||
| Theorem | matunitlindf 37597 | A matrix over a field is invertible iff the rows are linearly independent. (Contributed by Brendan Leahy, 2-Jun-2021.) |
| ⊢ ((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) → (𝑀 ∈ (Unit‘(𝐼 Mat 𝑅)) ↔ curry 𝑀 LIndF (𝑅 freeLMod 𝐼))) | ||
| Theorem | ptrest 37598* | Expressing a restriction of a product topology as a product topology. (Contributed by Brendan Leahy, 24-Mar-2019.) |
| ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝐴⟶Top) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑆 ∈ 𝑊) ⇒ ⊢ (𝜑 → ((∏t‘𝐹) ↾t X𝑘 ∈ 𝐴 𝑆) = (∏t‘(𝑘 ∈ 𝐴 ↦ ((𝐹‘𝑘) ↾t 𝑆)))) | ||
| Theorem | ptrecube 37599* | Any point in an open set of N-space is surrounded by an open cube within that set. (Contributed by Brendan Leahy, 21-Aug-2020.) (Proof shortened by AV, 28-Sep-2020.) |
| ⊢ 𝑅 = (∏t‘((1...𝑁) × {(topGen‘ran (,))})) & ⊢ 𝐷 = ((abs ∘ − ) ↾ (ℝ × ℝ)) ⇒ ⊢ ((𝑆 ∈ 𝑅 ∧ 𝑃 ∈ 𝑆) → ∃𝑑 ∈ ℝ+ X𝑛 ∈ (1...𝑁)((𝑃‘𝑛)(ball‘𝐷)𝑑) ⊆ 𝑆) | ||
| Theorem | poimirlem1 37600* | Lemma for poimir 37632- the vertices on either side of a skipped vertex differ in at least two dimensions. (Contributed by Brendan Leahy, 21-Aug-2020.) |
| ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < 𝑀, 𝑦, (𝑦 + 1)) / 𝑗⦌(𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))))) & ⊢ (𝜑 → 𝑇:(1...𝑁)⟶ℤ) & ⊢ (𝜑 → 𝑈:(1...𝑁)–1-1-onto→(1...𝑁)) & ⊢ (𝜑 → 𝑀 ∈ (1...(𝑁 − 1))) ⇒ ⊢ (𝜑 → ¬ ∃*𝑛 ∈ (1...𝑁)((𝐹‘(𝑀 − 1))‘𝑛) ≠ ((𝐹‘𝑀)‘𝑛)) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |