Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isdmn Structured version   Visualization version   GIF version

Theorem isdmn 36139
Description: The predicate "is a domain". (Contributed by Jeff Madsen, 10-Jun-2010.)
Assertion
Ref Expression
isdmn (𝑅 ∈ Dmn ↔ (𝑅 ∈ PrRing ∧ 𝑅 ∈ Com2))

Proof of Theorem isdmn
StepHypRef Expression
1 df-dmn 36134 . 2 Dmn = (PrRing ∩ Com2)
21elin2 4127 1 (𝑅 ∈ Dmn ↔ (𝑅 ∈ PrRing ∧ 𝑅 ∈ Com2))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395  wcel 2108  Com2ccm2 36074  PrRingcprrng 36131  Dmncdmn 36132
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1542  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-v 3424  df-in 3890  df-dmn 36134
This theorem is referenced by:  isdmn2  36140
  Copyright terms: Public domain W3C validator