Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isdmn Structured version   Visualization version   GIF version

Theorem isdmn 38039
Description: The predicate "is a domain". (Contributed by Jeff Madsen, 10-Jun-2010.)
Assertion
Ref Expression
isdmn (𝑅 ∈ Dmn ↔ (𝑅 ∈ PrRing ∧ 𝑅 ∈ Com2))

Proof of Theorem isdmn
StepHypRef Expression
1 df-dmn 38034 . 2 Dmn = (PrRing ∩ Com2)
21elin2 4202 1 (𝑅 ∈ Dmn ↔ (𝑅 ∈ PrRing ∧ 𝑅 ∈ Com2))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  wcel 2108  Com2ccm2 37974  PrRingcprrng 38031  Dmncdmn 38032
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2728  df-clel 2815  df-v 3481  df-in 3957  df-dmn 38034
This theorem is referenced by:  isdmn2  38040
  Copyright terms: Public domain W3C validator