Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isdmn Structured version   Visualization version   GIF version

Theorem isdmn 37999
Description: The predicate "is a domain". (Contributed by Jeff Madsen, 10-Jun-2010.)
Assertion
Ref Expression
isdmn (𝑅 ∈ Dmn ↔ (𝑅 ∈ PrRing ∧ 𝑅 ∈ Com2))

Proof of Theorem isdmn
StepHypRef Expression
1 df-dmn 37994 . 2 Dmn = (PrRing ∩ Com2)
21elin2 4176 1 (𝑅 ∈ Dmn ↔ (𝑅 ∈ PrRing ∧ 𝑅 ∈ Com2))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  wcel 2107  Com2ccm2 37934  PrRingcprrng 37991  Dmncdmn 37992
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1542  df-ex 1779  df-sb 2064  df-clab 2713  df-cleq 2726  df-clel 2808  df-v 3459  df-in 3931  df-dmn 37994
This theorem is referenced by:  isdmn2  38000
  Copyright terms: Public domain W3C validator