![]() |
Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > isprrngo | Structured version Visualization version GIF version |
Description: The predicate "is a prime ring". (Contributed by Jeff Madsen, 10-Jun-2010.) |
Ref | Expression |
---|---|
isprrng.1 | ⊢ 𝐺 = (1st ‘𝑅) |
isprrng.2 | ⊢ 𝑍 = (GId‘𝐺) |
Ref | Expression |
---|---|
isprrngo | ⊢ (𝑅 ∈ PrRing ↔ (𝑅 ∈ RingOps ∧ {𝑍} ∈ (PrIdl‘𝑅))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6915 | . . . . . . 7 ⊢ (𝑟 = 𝑅 → (1st ‘𝑟) = (1st ‘𝑅)) | |
2 | isprrng.1 | . . . . . . 7 ⊢ 𝐺 = (1st ‘𝑅) | |
3 | 1, 2 | eqtr4di 2798 | . . . . . 6 ⊢ (𝑟 = 𝑅 → (1st ‘𝑟) = 𝐺) |
4 | 3 | fveq2d 6919 | . . . . 5 ⊢ (𝑟 = 𝑅 → (GId‘(1st ‘𝑟)) = (GId‘𝐺)) |
5 | isprrng.2 | . . . . 5 ⊢ 𝑍 = (GId‘𝐺) | |
6 | 4, 5 | eqtr4di 2798 | . . . 4 ⊢ (𝑟 = 𝑅 → (GId‘(1st ‘𝑟)) = 𝑍) |
7 | 6 | sneqd 4660 | . . 3 ⊢ (𝑟 = 𝑅 → {(GId‘(1st ‘𝑟))} = {𝑍}) |
8 | fveq2 6915 | . . 3 ⊢ (𝑟 = 𝑅 → (PrIdl‘𝑟) = (PrIdl‘𝑅)) | |
9 | 7, 8 | eleq12d 2838 | . 2 ⊢ (𝑟 = 𝑅 → ({(GId‘(1st ‘𝑟))} ∈ (PrIdl‘𝑟) ↔ {𝑍} ∈ (PrIdl‘𝑅))) |
10 | df-prrngo 38000 | . 2 ⊢ PrRing = {𝑟 ∈ RingOps ∣ {(GId‘(1st ‘𝑟))} ∈ (PrIdl‘𝑟)} | |
11 | 9, 10 | elrab2 3711 | 1 ⊢ (𝑅 ∈ PrRing ↔ (𝑅 ∈ RingOps ∧ {𝑍} ∈ (PrIdl‘𝑅))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 {csn 4648 ‘cfv 6568 1st c1st 8022 GIdcgi 30514 RingOpscrngo 37846 PrIdlcpridl 37960 PrRingcprrng 37998 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-iota 6520 df-fv 6576 df-prrngo 38000 |
This theorem is referenced by: prrngorngo 38003 smprngopr 38004 isdmn3 38026 |
Copyright terms: Public domain | W3C validator |