Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isprrngo Structured version   Visualization version   GIF version

Theorem isprrngo 36135
Description: The predicate "is a prime ring". (Contributed by Jeff Madsen, 10-Jun-2010.)
Hypotheses
Ref Expression
isprrng.1 𝐺 = (1st𝑅)
isprrng.2 𝑍 = (GId‘𝐺)
Assertion
Ref Expression
isprrngo (𝑅 ∈ PrRing ↔ (𝑅 ∈ RingOps ∧ {𝑍} ∈ (PrIdl‘𝑅)))

Proof of Theorem isprrngo
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6756 . . . . . . 7 (𝑟 = 𝑅 → (1st𝑟) = (1st𝑅))
2 isprrng.1 . . . . . . 7 𝐺 = (1st𝑅)
31, 2eqtr4di 2797 . . . . . 6 (𝑟 = 𝑅 → (1st𝑟) = 𝐺)
43fveq2d 6760 . . . . 5 (𝑟 = 𝑅 → (GId‘(1st𝑟)) = (GId‘𝐺))
5 isprrng.2 . . . . 5 𝑍 = (GId‘𝐺)
64, 5eqtr4di 2797 . . . 4 (𝑟 = 𝑅 → (GId‘(1st𝑟)) = 𝑍)
76sneqd 4570 . . 3 (𝑟 = 𝑅 → {(GId‘(1st𝑟))} = {𝑍})
8 fveq2 6756 . . 3 (𝑟 = 𝑅 → (PrIdl‘𝑟) = (PrIdl‘𝑅))
97, 8eleq12d 2833 . 2 (𝑟 = 𝑅 → ({(GId‘(1st𝑟))} ∈ (PrIdl‘𝑟) ↔ {𝑍} ∈ (PrIdl‘𝑅)))
10 df-prrngo 36133 . 2 PrRing = {𝑟 ∈ RingOps ∣ {(GId‘(1st𝑟))} ∈ (PrIdl‘𝑟)}
119, 10elrab2 3620 1 (𝑅 ∈ PrRing ↔ (𝑅 ∈ RingOps ∧ {𝑍} ∈ (PrIdl‘𝑅)))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395   = wceq 1539  wcel 2108  {csn 4558  cfv 6418  1st c1st 7802  GIdcgi 28753  RingOpscrngo 35979  PrIdlcpridl 36093  PrRingcprrng 36131
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-iota 6376  df-fv 6426  df-prrngo 36133
This theorem is referenced by:  prrngorngo  36136  smprngopr  36137  isdmn3  36159
  Copyright terms: Public domain W3C validator