Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isprrngo Structured version   Visualization version   GIF version

Theorem isprrngo 38002
Description: The predicate "is a prime ring". (Contributed by Jeff Madsen, 10-Jun-2010.)
Hypotheses
Ref Expression
isprrng.1 𝐺 = (1st𝑅)
isprrng.2 𝑍 = (GId‘𝐺)
Assertion
Ref Expression
isprrngo (𝑅 ∈ PrRing ↔ (𝑅 ∈ RingOps ∧ {𝑍} ∈ (PrIdl‘𝑅)))

Proof of Theorem isprrngo
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6915 . . . . . . 7 (𝑟 = 𝑅 → (1st𝑟) = (1st𝑅))
2 isprrng.1 . . . . . . 7 𝐺 = (1st𝑅)
31, 2eqtr4di 2798 . . . . . 6 (𝑟 = 𝑅 → (1st𝑟) = 𝐺)
43fveq2d 6919 . . . . 5 (𝑟 = 𝑅 → (GId‘(1st𝑟)) = (GId‘𝐺))
5 isprrng.2 . . . . 5 𝑍 = (GId‘𝐺)
64, 5eqtr4di 2798 . . . 4 (𝑟 = 𝑅 → (GId‘(1st𝑟)) = 𝑍)
76sneqd 4660 . . 3 (𝑟 = 𝑅 → {(GId‘(1st𝑟))} = {𝑍})
8 fveq2 6915 . . 3 (𝑟 = 𝑅 → (PrIdl‘𝑟) = (PrIdl‘𝑅))
97, 8eleq12d 2838 . 2 (𝑟 = 𝑅 → ({(GId‘(1st𝑟))} ∈ (PrIdl‘𝑟) ↔ {𝑍} ∈ (PrIdl‘𝑅)))
10 df-prrngo 38000 . 2 PrRing = {𝑟 ∈ RingOps ∣ {(GId‘(1st𝑟))} ∈ (PrIdl‘𝑟)}
119, 10elrab2 3711 1 (𝑅 ∈ PrRing ↔ (𝑅 ∈ RingOps ∧ {𝑍} ∈ (PrIdl‘𝑅)))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1537  wcel 2108  {csn 4648  cfv 6568  1st c1st 8022  GIdcgi 30514  RingOpscrngo 37846  PrIdlcpridl 37960  PrRingcprrng 37998
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-iota 6520  df-fv 6576  df-prrngo 38000
This theorem is referenced by:  prrngorngo  38003  smprngopr  38004  isdmn3  38026
  Copyright terms: Public domain W3C validator