Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isprrngo Structured version   Visualization version   GIF version

Theorem isprrngo 38098
Description: The predicate "is a prime ring". (Contributed by Jeff Madsen, 10-Jun-2010.)
Hypotheses
Ref Expression
isprrng.1 𝐺 = (1st𝑅)
isprrng.2 𝑍 = (GId‘𝐺)
Assertion
Ref Expression
isprrngo (𝑅 ∈ PrRing ↔ (𝑅 ∈ RingOps ∧ {𝑍} ∈ (PrIdl‘𝑅)))

Proof of Theorem isprrngo
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6822 . . . . . . 7 (𝑟 = 𝑅 → (1st𝑟) = (1st𝑅))
2 isprrng.1 . . . . . . 7 𝐺 = (1st𝑅)
31, 2eqtr4di 2784 . . . . . 6 (𝑟 = 𝑅 → (1st𝑟) = 𝐺)
43fveq2d 6826 . . . . 5 (𝑟 = 𝑅 → (GId‘(1st𝑟)) = (GId‘𝐺))
5 isprrng.2 . . . . 5 𝑍 = (GId‘𝐺)
64, 5eqtr4di 2784 . . . 4 (𝑟 = 𝑅 → (GId‘(1st𝑟)) = 𝑍)
76sneqd 4585 . . 3 (𝑟 = 𝑅 → {(GId‘(1st𝑟))} = {𝑍})
8 fveq2 6822 . . 3 (𝑟 = 𝑅 → (PrIdl‘𝑟) = (PrIdl‘𝑅))
97, 8eleq12d 2825 . 2 (𝑟 = 𝑅 → ({(GId‘(1st𝑟))} ∈ (PrIdl‘𝑟) ↔ {𝑍} ∈ (PrIdl‘𝑅)))
10 df-prrngo 38096 . 2 PrRing = {𝑟 ∈ RingOps ∣ {(GId‘(1st𝑟))} ∈ (PrIdl‘𝑟)}
119, 10elrab2 3645 1 (𝑅 ∈ PrRing ↔ (𝑅 ∈ RingOps ∧ {𝑍} ∈ (PrIdl‘𝑅)))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1541  wcel 2111  {csn 4573  cfv 6481  1st c1st 7919  GIdcgi 30470  RingOpscrngo 37942  PrIdlcpridl 38056  PrRingcprrng 38094
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-iota 6437  df-fv 6489  df-prrngo 38096
This theorem is referenced by:  prrngorngo  38099  smprngopr  38100  isdmn3  38122
  Copyright terms: Public domain W3C validator