Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > isprrngo | Structured version Visualization version GIF version |
Description: The predicate "is a prime ring". (Contributed by Jeff Madsen, 10-Jun-2010.) |
Ref | Expression |
---|---|
isprrng.1 | ⊢ 𝐺 = (1st ‘𝑅) |
isprrng.2 | ⊢ 𝑍 = (GId‘𝐺) |
Ref | Expression |
---|---|
isprrngo | ⊢ (𝑅 ∈ PrRing ↔ (𝑅 ∈ RingOps ∧ {𝑍} ∈ (PrIdl‘𝑅))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6756 | . . . . . . 7 ⊢ (𝑟 = 𝑅 → (1st ‘𝑟) = (1st ‘𝑅)) | |
2 | isprrng.1 | . . . . . . 7 ⊢ 𝐺 = (1st ‘𝑅) | |
3 | 1, 2 | eqtr4di 2797 | . . . . . 6 ⊢ (𝑟 = 𝑅 → (1st ‘𝑟) = 𝐺) |
4 | 3 | fveq2d 6760 | . . . . 5 ⊢ (𝑟 = 𝑅 → (GId‘(1st ‘𝑟)) = (GId‘𝐺)) |
5 | isprrng.2 | . . . . 5 ⊢ 𝑍 = (GId‘𝐺) | |
6 | 4, 5 | eqtr4di 2797 | . . . 4 ⊢ (𝑟 = 𝑅 → (GId‘(1st ‘𝑟)) = 𝑍) |
7 | 6 | sneqd 4570 | . . 3 ⊢ (𝑟 = 𝑅 → {(GId‘(1st ‘𝑟))} = {𝑍}) |
8 | fveq2 6756 | . . 3 ⊢ (𝑟 = 𝑅 → (PrIdl‘𝑟) = (PrIdl‘𝑅)) | |
9 | 7, 8 | eleq12d 2833 | . 2 ⊢ (𝑟 = 𝑅 → ({(GId‘(1st ‘𝑟))} ∈ (PrIdl‘𝑟) ↔ {𝑍} ∈ (PrIdl‘𝑅))) |
10 | df-prrngo 36133 | . 2 ⊢ PrRing = {𝑟 ∈ RingOps ∣ {(GId‘(1st ‘𝑟))} ∈ (PrIdl‘𝑟)} | |
11 | 9, 10 | elrab2 3620 | 1 ⊢ (𝑅 ∈ PrRing ↔ (𝑅 ∈ RingOps ∧ {𝑍} ∈ (PrIdl‘𝑅))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 {csn 4558 ‘cfv 6418 1st c1st 7802 GIdcgi 28753 RingOpscrngo 35979 PrIdlcpridl 36093 PrRingcprrng 36131 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-iota 6376 df-fv 6426 df-prrngo 36133 |
This theorem is referenced by: prrngorngo 36136 smprngopr 36137 isdmn3 36159 |
Copyright terms: Public domain | W3C validator |