MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-drng Structured version   Visualization version   GIF version

Definition df-drng 20359
Description: Define class of all division rings. A division ring is a ring in which the set of units is exactly the nonzero elements of the ring. (Contributed by NM, 18-Oct-2012.)
Assertion
Ref Expression
df-drng DivRing = {π‘Ÿ ∈ Ring ∣ (Unitβ€˜π‘Ÿ) = ((Baseβ€˜π‘Ÿ) βˆ– {(0gβ€˜π‘Ÿ)})}

Detailed syntax breakdown of Definition df-drng
StepHypRef Expression
1 cdr 20357 . 2 class DivRing
2 vr . . . . . 6 setvar π‘Ÿ
32cv 1541 . . . . 5 class π‘Ÿ
4 cui 20169 . . . . 5 class Unit
53, 4cfv 6544 . . . 4 class (Unitβ€˜π‘Ÿ)
6 cbs 17144 . . . . . 6 class Base
73, 6cfv 6544 . . . . 5 class (Baseβ€˜π‘Ÿ)
8 c0g 17385 . . . . . . 7 class 0g
93, 8cfv 6544 . . . . . 6 class (0gβ€˜π‘Ÿ)
109csn 4629 . . . . 5 class {(0gβ€˜π‘Ÿ)}
117, 10cdif 3946 . . . 4 class ((Baseβ€˜π‘Ÿ) βˆ– {(0gβ€˜π‘Ÿ)})
125, 11wceq 1542 . . 3 wff (Unitβ€˜π‘Ÿ) = ((Baseβ€˜π‘Ÿ) βˆ– {(0gβ€˜π‘Ÿ)})
13 crg 20056 . . 3 class Ring
1412, 2, 13crab 3433 . 2 class {π‘Ÿ ∈ Ring ∣ (Unitβ€˜π‘Ÿ) = ((Baseβ€˜π‘Ÿ) βˆ– {(0gβ€˜π‘Ÿ)})}
151, 14wceq 1542 1 wff DivRing = {π‘Ÿ ∈ Ring ∣ (Unitβ€˜π‘Ÿ) = ((Baseβ€˜π‘Ÿ) βˆ– {(0gβ€˜π‘Ÿ)})}
Colors of variables: wff setvar class
This definition is referenced by:  isdrng  20361
  Copyright terms: Public domain W3C validator