Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > df-drng | Structured version Visualization version GIF version |
Description: Define class of all division rings. A division ring is a ring in which the set of units is exactly the nonzero elements of the ring. (Contributed by NM, 18-Oct-2012.) |
Ref | Expression |
---|---|
df-drng | ⊢ DivRing = {𝑟 ∈ Ring ∣ (Unit‘𝑟) = ((Base‘𝑟) ∖ {(0g‘𝑟)})} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cdr 20036 | . 2 class DivRing | |
2 | vr | . . . . . 6 setvar 𝑟 | |
3 | 2 | cv 1538 | . . . . 5 class 𝑟 |
4 | cui 19926 | . . . . 5 class Unit | |
5 | 3, 4 | cfv 6458 | . . . 4 class (Unit‘𝑟) |
6 | cbs 16957 | . . . . . 6 class Base | |
7 | 3, 6 | cfv 6458 | . . . . 5 class (Base‘𝑟) |
8 | c0g 17195 | . . . . . . 7 class 0g | |
9 | 3, 8 | cfv 6458 | . . . . . 6 class (0g‘𝑟) |
10 | 9 | csn 4565 | . . . . 5 class {(0g‘𝑟)} |
11 | 7, 10 | cdif 3889 | . . . 4 class ((Base‘𝑟) ∖ {(0g‘𝑟)}) |
12 | 5, 11 | wceq 1539 | . . 3 wff (Unit‘𝑟) = ((Base‘𝑟) ∖ {(0g‘𝑟)}) |
13 | crg 19828 | . . 3 class Ring | |
14 | 12, 2, 13 | crab 3284 | . 2 class {𝑟 ∈ Ring ∣ (Unit‘𝑟) = ((Base‘𝑟) ∖ {(0g‘𝑟)})} |
15 | 1, 14 | wceq 1539 | 1 wff DivRing = {𝑟 ∈ Ring ∣ (Unit‘𝑟) = ((Base‘𝑟) ∖ {(0g‘𝑟)})} |
Colors of variables: wff setvar class |
This definition is referenced by: isdrng 20040 |
Copyright terms: Public domain | W3C validator |