| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-drng | Structured version Visualization version GIF version | ||
| Description: Define class of all division rings. A division ring is a ring in which the set of units is exactly the nonzero elements of the ring. (Contributed by NM, 18-Oct-2012.) |
| Ref | Expression |
|---|---|
| df-drng | ⊢ DivRing = {𝑟 ∈ Ring ∣ (Unit‘𝑟) = ((Base‘𝑟) ∖ {(0g‘𝑟)})} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cdr 20729 | . 2 class DivRing | |
| 2 | vr | . . . . . 6 setvar 𝑟 | |
| 3 | 2 | cv 1539 | . . . . 5 class 𝑟 |
| 4 | cui 20355 | . . . . 5 class Unit | |
| 5 | 3, 4 | cfv 6561 | . . . 4 class (Unit‘𝑟) |
| 6 | cbs 17247 | . . . . . 6 class Base | |
| 7 | 3, 6 | cfv 6561 | . . . . 5 class (Base‘𝑟) |
| 8 | c0g 17484 | . . . . . . 7 class 0g | |
| 9 | 3, 8 | cfv 6561 | . . . . . 6 class (0g‘𝑟) |
| 10 | 9 | csn 4626 | . . . . 5 class {(0g‘𝑟)} |
| 11 | 7, 10 | cdif 3948 | . . . 4 class ((Base‘𝑟) ∖ {(0g‘𝑟)}) |
| 12 | 5, 11 | wceq 1540 | . . 3 wff (Unit‘𝑟) = ((Base‘𝑟) ∖ {(0g‘𝑟)}) |
| 13 | crg 20230 | . . 3 class Ring | |
| 14 | 12, 2, 13 | crab 3436 | . 2 class {𝑟 ∈ Ring ∣ (Unit‘𝑟) = ((Base‘𝑟) ∖ {(0g‘𝑟)})} |
| 15 | 1, 14 | wceq 1540 | 1 wff DivRing = {𝑟 ∈ Ring ∣ (Unit‘𝑟) = ((Base‘𝑟) ∖ {(0g‘𝑟)})} |
| Colors of variables: wff setvar class |
| This definition is referenced by: isdrng 20733 |
| Copyright terms: Public domain | W3C validator |