Step | Hyp | Ref
| Expression |
1 | | cdr 20357 |
. 2
class
DivRing |
2 | | vr |
. . . . . 6
setvar π |
3 | 2 | cv 1541 |
. . . . 5
class π |
4 | | cui 20169 |
. . . . 5
class
Unit |
5 | 3, 4 | cfv 6544 |
. . . 4
class
(Unitβπ) |
6 | | cbs 17144 |
. . . . . 6
class
Base |
7 | 3, 6 | cfv 6544 |
. . . . 5
class
(Baseβπ) |
8 | | c0g 17385 |
. . . . . . 7
class
0g |
9 | 3, 8 | cfv 6544 |
. . . . . 6
class
(0gβπ) |
10 | 9 | csn 4629 |
. . . . 5
class
{(0gβπ)} |
11 | 7, 10 | cdif 3946 |
. . . 4
class
((Baseβπ)
β {(0gβπ)}) |
12 | 5, 11 | wceq 1542 |
. . 3
wff
(Unitβπ) =
((Baseβπ) β
{(0gβπ)}) |
13 | | crg 20056 |
. . 3
class
Ring |
14 | 12, 2, 13 | crab 3433 |
. 2
class {π β Ring β£
(Unitβπ) =
((Baseβπ) β
{(0gβπ)})} |
15 | 1, 14 | wceq 1542 |
1
wff DivRing =
{π β Ring β£
(Unitβπ) =
((Baseβπ) β
{(0gβπ)})} |