MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-drng Structured version   Visualization version   GIF version

Definition df-drng 20095
Description: Define class of all division rings. A division ring is a ring in which the set of units is exactly the nonzero elements of the ring. (Contributed by NM, 18-Oct-2012.)
Assertion
Ref Expression
df-drng DivRing = {𝑟 ∈ Ring ∣ (Unit‘𝑟) = ((Base‘𝑟) ∖ {(0g𝑟)})}

Detailed syntax breakdown of Definition df-drng
StepHypRef Expression
1 cdr 20093 . 2 class DivRing
2 vr . . . . . 6 setvar 𝑟
32cv 1539 . . . . 5 class 𝑟
4 cui 19976 . . . . 5 class Unit
53, 4cfv 6479 . . . 4 class (Unit‘𝑟)
6 cbs 17009 . . . . . 6 class Base
73, 6cfv 6479 . . . . 5 class (Base‘𝑟)
8 c0g 17247 . . . . . . 7 class 0g
93, 8cfv 6479 . . . . . 6 class (0g𝑟)
109csn 4573 . . . . 5 class {(0g𝑟)}
117, 10cdif 3895 . . . 4 class ((Base‘𝑟) ∖ {(0g𝑟)})
125, 11wceq 1540 . . 3 wff (Unit‘𝑟) = ((Base‘𝑟) ∖ {(0g𝑟)})
13 crg 19878 . . 3 class Ring
1412, 2, 13crab 3403 . 2 class {𝑟 ∈ Ring ∣ (Unit‘𝑟) = ((Base‘𝑟) ∖ {(0g𝑟)})}
151, 14wceq 1540 1 wff DivRing = {𝑟 ∈ Ring ∣ (Unit‘𝑟) = ((Base‘𝑟) ∖ {(0g𝑟)})}
Colors of variables: wff setvar class
This definition is referenced by:  isdrng  20097
  Copyright terms: Public domain W3C validator