Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > isdrng | Structured version Visualization version GIF version |
Description: The predicate "is a division ring". (Contributed by NM, 18-Oct-2012.) (Revised by Mario Carneiro, 2-Dec-2014.) |
Ref | Expression |
---|---|
isdrng.b | ⊢ 𝐵 = (Base‘𝑅) |
isdrng.u | ⊢ 𝑈 = (Unit‘𝑅) |
isdrng.z | ⊢ 0 = (0g‘𝑅) |
Ref | Expression |
---|---|
isdrng | ⊢ (𝑅 ∈ DivRing ↔ (𝑅 ∈ Ring ∧ 𝑈 = (𝐵 ∖ { 0 }))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6756 | . . . 4 ⊢ (𝑟 = 𝑅 → (Unit‘𝑟) = (Unit‘𝑅)) | |
2 | isdrng.u | . . . 4 ⊢ 𝑈 = (Unit‘𝑅) | |
3 | 1, 2 | eqtr4di 2797 | . . 3 ⊢ (𝑟 = 𝑅 → (Unit‘𝑟) = 𝑈) |
4 | fveq2 6756 | . . . . 5 ⊢ (𝑟 = 𝑅 → (Base‘𝑟) = (Base‘𝑅)) | |
5 | isdrng.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑅) | |
6 | 4, 5 | eqtr4di 2797 | . . . 4 ⊢ (𝑟 = 𝑅 → (Base‘𝑟) = 𝐵) |
7 | fveq2 6756 | . . . . . 6 ⊢ (𝑟 = 𝑅 → (0g‘𝑟) = (0g‘𝑅)) | |
8 | isdrng.z | . . . . . 6 ⊢ 0 = (0g‘𝑅) | |
9 | 7, 8 | eqtr4di 2797 | . . . . 5 ⊢ (𝑟 = 𝑅 → (0g‘𝑟) = 0 ) |
10 | 9 | sneqd 4570 | . . . 4 ⊢ (𝑟 = 𝑅 → {(0g‘𝑟)} = { 0 }) |
11 | 6, 10 | difeq12d 4054 | . . 3 ⊢ (𝑟 = 𝑅 → ((Base‘𝑟) ∖ {(0g‘𝑟)}) = (𝐵 ∖ { 0 })) |
12 | 3, 11 | eqeq12d 2754 | . 2 ⊢ (𝑟 = 𝑅 → ((Unit‘𝑟) = ((Base‘𝑟) ∖ {(0g‘𝑟)}) ↔ 𝑈 = (𝐵 ∖ { 0 }))) |
13 | df-drng 19908 | . 2 ⊢ DivRing = {𝑟 ∈ Ring ∣ (Unit‘𝑟) = ((Base‘𝑟) ∖ {(0g‘𝑟)})} | |
14 | 12, 13 | elrab2 3620 | 1 ⊢ (𝑅 ∈ DivRing ↔ (𝑅 ∈ Ring ∧ 𝑈 = (𝐵 ∖ { 0 }))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∖ cdif 3880 {csn 4558 ‘cfv 6418 Basecbs 16840 0gc0g 17067 Ringcrg 19698 Unitcui 19796 DivRingcdr 19906 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-iota 6376 df-fv 6426 df-drng 19908 |
This theorem is referenced by: drngunit 19911 drngui 19912 drngring 19913 isdrng2 19916 drngprop 19917 drngid 19920 opprdrng 19930 drngpropd 19933 issubdrg 19964 cntzsdrg 19985 drngdomn 20487 fidomndrng 20492 zringndrg 20602 istdrg2 23237 cvsunit 24200 cphreccllem 24247 sradrng 31575 zrhunitpreima 31828 |
Copyright terms: Public domain | W3C validator |