MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isdrng Structured version   Visualization version   GIF version

Theorem isdrng 20701
Description: The predicate "is a division ring". (Contributed by NM, 18-Oct-2012.) (Revised by Mario Carneiro, 2-Dec-2014.)
Hypotheses
Ref Expression
isdrng.b 𝐵 = (Base‘𝑅)
isdrng.u 𝑈 = (Unit‘𝑅)
isdrng.z 0 = (0g𝑅)
Assertion
Ref Expression
isdrng (𝑅 ∈ DivRing ↔ (𝑅 ∈ Ring ∧ 𝑈 = (𝐵 ∖ { 0 })))

Proof of Theorem isdrng
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6886 . . . 4 (𝑟 = 𝑅 → (Unit‘𝑟) = (Unit‘𝑅))
2 isdrng.u . . . 4 𝑈 = (Unit‘𝑅)
31, 2eqtr4di 2787 . . 3 (𝑟 = 𝑅 → (Unit‘𝑟) = 𝑈)
4 fveq2 6886 . . . . 5 (𝑟 = 𝑅 → (Base‘𝑟) = (Base‘𝑅))
5 isdrng.b . . . . 5 𝐵 = (Base‘𝑅)
64, 5eqtr4di 2787 . . . 4 (𝑟 = 𝑅 → (Base‘𝑟) = 𝐵)
7 fveq2 6886 . . . . . 6 (𝑟 = 𝑅 → (0g𝑟) = (0g𝑅))
8 isdrng.z . . . . . 6 0 = (0g𝑅)
97, 8eqtr4di 2787 . . . . 5 (𝑟 = 𝑅 → (0g𝑟) = 0 )
109sneqd 4618 . . . 4 (𝑟 = 𝑅 → {(0g𝑟)} = { 0 })
116, 10difeq12d 4107 . . 3 (𝑟 = 𝑅 → ((Base‘𝑟) ∖ {(0g𝑟)}) = (𝐵 ∖ { 0 }))
123, 11eqeq12d 2750 . 2 (𝑟 = 𝑅 → ((Unit‘𝑟) = ((Base‘𝑟) ∖ {(0g𝑟)}) ↔ 𝑈 = (𝐵 ∖ { 0 })))
13 df-drng 20699 . 2 DivRing = {𝑟 ∈ Ring ∣ (Unit‘𝑟) = ((Base‘𝑟) ∖ {(0g𝑟)})}
1412, 13elrab2 3678 1 (𝑅 ∈ DivRing ↔ (𝑅 ∈ Ring ∧ 𝑈 = (𝐵 ∖ { 0 })))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1539  wcel 2107  cdif 3928  {csn 4606  cfv 6541  Basecbs 17229  0gc0g 17455  Ringcrg 20198  Unitcui 20323  DivRingcdr 20697
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2064  df-clab 2713  df-cleq 2726  df-clel 2808  df-rab 3420  df-v 3465  df-dif 3934  df-un 3936  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-br 5124  df-iota 6494  df-fv 6549  df-drng 20699
This theorem is referenced by:  drngunit  20702  drngui  20703  drngring  20704  isdrng2  20711  drngprop  20712  drngid  20714  drngdomn  20717  opprdrng  20732  drngpropd  20737  fidomndrng  20742  issubdrg  20749  imadrhmcl  20766  cntzsdrg  20771  zringndrg  21441  istdrg2  24132  cvsunit  25100  cphreccllem  25148  isdrng4  33237  sradrng  33568  assafld  33623  zrhunitpreima  33936  aks5lem7  42160
  Copyright terms: Public domain W3C validator