| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > isdrng | Structured version Visualization version GIF version | ||
| Description: The predicate "is a division ring". (Contributed by NM, 18-Oct-2012.) (Revised by Mario Carneiro, 2-Dec-2014.) |
| Ref | Expression |
|---|---|
| isdrng.b | ⊢ 𝐵 = (Base‘𝑅) |
| isdrng.u | ⊢ 𝑈 = (Unit‘𝑅) |
| isdrng.z | ⊢ 0 = (0g‘𝑅) |
| Ref | Expression |
|---|---|
| isdrng | ⊢ (𝑅 ∈ DivRing ↔ (𝑅 ∈ Ring ∧ 𝑈 = (𝐵 ∖ { 0 }))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 6861 | . . . 4 ⊢ (𝑟 = 𝑅 → (Unit‘𝑟) = (Unit‘𝑅)) | |
| 2 | isdrng.u | . . . 4 ⊢ 𝑈 = (Unit‘𝑅) | |
| 3 | 1, 2 | eqtr4di 2783 | . . 3 ⊢ (𝑟 = 𝑅 → (Unit‘𝑟) = 𝑈) |
| 4 | fveq2 6861 | . . . . 5 ⊢ (𝑟 = 𝑅 → (Base‘𝑟) = (Base‘𝑅)) | |
| 5 | isdrng.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑅) | |
| 6 | 4, 5 | eqtr4di 2783 | . . . 4 ⊢ (𝑟 = 𝑅 → (Base‘𝑟) = 𝐵) |
| 7 | fveq2 6861 | . . . . . 6 ⊢ (𝑟 = 𝑅 → (0g‘𝑟) = (0g‘𝑅)) | |
| 8 | isdrng.z | . . . . . 6 ⊢ 0 = (0g‘𝑅) | |
| 9 | 7, 8 | eqtr4di 2783 | . . . . 5 ⊢ (𝑟 = 𝑅 → (0g‘𝑟) = 0 ) |
| 10 | 9 | sneqd 4604 | . . . 4 ⊢ (𝑟 = 𝑅 → {(0g‘𝑟)} = { 0 }) |
| 11 | 6, 10 | difeq12d 4093 | . . 3 ⊢ (𝑟 = 𝑅 → ((Base‘𝑟) ∖ {(0g‘𝑟)}) = (𝐵 ∖ { 0 })) |
| 12 | 3, 11 | eqeq12d 2746 | . 2 ⊢ (𝑟 = 𝑅 → ((Unit‘𝑟) = ((Base‘𝑟) ∖ {(0g‘𝑟)}) ↔ 𝑈 = (𝐵 ∖ { 0 }))) |
| 13 | df-drng 20647 | . 2 ⊢ DivRing = {𝑟 ∈ Ring ∣ (Unit‘𝑟) = ((Base‘𝑟) ∖ {(0g‘𝑟)})} | |
| 14 | 12, 13 | elrab2 3665 | 1 ⊢ (𝑅 ∈ DivRing ↔ (𝑅 ∈ Ring ∧ 𝑈 = (𝐵 ∖ { 0 }))) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∖ cdif 3914 {csn 4592 ‘cfv 6514 Basecbs 17186 0gc0g 17409 Ringcrg 20149 Unitcui 20271 DivRingcdr 20645 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-iota 6467 df-fv 6522 df-drng 20647 |
| This theorem is referenced by: drngunit 20650 drngui 20651 drngring 20652 isdrng2 20659 drngprop 20660 drngid 20662 drngdomn 20665 opprdrng 20680 drngpropd 20685 fidomndrng 20689 issubdrg 20696 imadrhmcl 20713 cntzsdrg 20718 zringndrg 21385 istdrg2 24072 cvsunit 25038 cphreccllem 25085 isdrng4 33252 sradrng 33585 assafld 33640 zrhunitpreima 33973 aks5lem7 42195 |
| Copyright terms: Public domain | W3C validator |