![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > isdrng | Structured version Visualization version GIF version |
Description: The predicate "is a division ring". (Contributed by NM, 18-Oct-2012.) (Revised by Mario Carneiro, 2-Dec-2014.) |
Ref | Expression |
---|---|
isdrng.b | β’ π΅ = (Baseβπ ) |
isdrng.u | β’ π = (Unitβπ ) |
isdrng.z | β’ 0 = (0gβπ ) |
Ref | Expression |
---|---|
isdrng | β’ (π β DivRing β (π β Ring β§ π = (π΅ β { 0 }))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6892 | . . . 4 β’ (π = π β (Unitβπ) = (Unitβπ )) | |
2 | isdrng.u | . . . 4 β’ π = (Unitβπ ) | |
3 | 1, 2 | eqtr4di 2791 | . . 3 β’ (π = π β (Unitβπ) = π) |
4 | fveq2 6892 | . . . . 5 β’ (π = π β (Baseβπ) = (Baseβπ )) | |
5 | isdrng.b | . . . . 5 β’ π΅ = (Baseβπ ) | |
6 | 4, 5 | eqtr4di 2791 | . . . 4 β’ (π = π β (Baseβπ) = π΅) |
7 | fveq2 6892 | . . . . . 6 β’ (π = π β (0gβπ) = (0gβπ )) | |
8 | isdrng.z | . . . . . 6 β’ 0 = (0gβπ ) | |
9 | 7, 8 | eqtr4di 2791 | . . . . 5 β’ (π = π β (0gβπ) = 0 ) |
10 | 9 | sneqd 4641 | . . . 4 β’ (π = π β {(0gβπ)} = { 0 }) |
11 | 6, 10 | difeq12d 4124 | . . 3 β’ (π = π β ((Baseβπ) β {(0gβπ)}) = (π΅ β { 0 })) |
12 | 3, 11 | eqeq12d 2749 | . 2 β’ (π = π β ((Unitβπ) = ((Baseβπ) β {(0gβπ)}) β π = (π΅ β { 0 }))) |
13 | df-drng 20359 | . 2 β’ DivRing = {π β Ring β£ (Unitβπ) = ((Baseβπ) β {(0gβπ)})} | |
14 | 12, 13 | elrab2 3687 | 1 β’ (π β DivRing β (π β Ring β§ π = (π΅ β { 0 }))) |
Colors of variables: wff setvar class |
Syntax hints: β wb 205 β§ wa 397 = wceq 1542 β wcel 2107 β cdif 3946 {csn 4629 βcfv 6544 Basecbs 17144 0gc0g 17385 Ringcrg 20056 Unitcui 20169 DivRingcdr 20357 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-rab 3434 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-iota 6496 df-fv 6552 df-drng 20359 |
This theorem is referenced by: drngunit 20362 drngui 20363 drngring 20364 isdrng2 20371 drngprop 20372 drngid 20375 opprdrng 20389 drngpropd 20394 issubdrg 20401 imadrhmcl 20413 cntzsdrg 20418 drngdomn 20921 fidomndrng 20926 zringndrg 21038 istdrg2 23682 cvsunit 24647 cphreccllem 24695 isdrng4 32395 sradrng 32673 zrhunitpreima 32958 |
Copyright terms: Public domain | W3C validator |