MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isdrng Structured version   Visualization version   GIF version

Theorem isdrng 20636
Description: The predicate "is a division ring". (Contributed by NM, 18-Oct-2012.) (Revised by Mario Carneiro, 2-Dec-2014.)
Hypotheses
Ref Expression
isdrng.b 𝐵 = (Base‘𝑅)
isdrng.u 𝑈 = (Unit‘𝑅)
isdrng.z 0 = (0g𝑅)
Assertion
Ref Expression
isdrng (𝑅 ∈ DivRing ↔ (𝑅 ∈ Ring ∧ 𝑈 = (𝐵 ∖ { 0 })))

Proof of Theorem isdrng
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6826 . . . 4 (𝑟 = 𝑅 → (Unit‘𝑟) = (Unit‘𝑅))
2 isdrng.u . . . 4 𝑈 = (Unit‘𝑅)
31, 2eqtr4di 2782 . . 3 (𝑟 = 𝑅 → (Unit‘𝑟) = 𝑈)
4 fveq2 6826 . . . . 5 (𝑟 = 𝑅 → (Base‘𝑟) = (Base‘𝑅))
5 isdrng.b . . . . 5 𝐵 = (Base‘𝑅)
64, 5eqtr4di 2782 . . . 4 (𝑟 = 𝑅 → (Base‘𝑟) = 𝐵)
7 fveq2 6826 . . . . . 6 (𝑟 = 𝑅 → (0g𝑟) = (0g𝑅))
8 isdrng.z . . . . . 6 0 = (0g𝑅)
97, 8eqtr4di 2782 . . . . 5 (𝑟 = 𝑅 → (0g𝑟) = 0 )
109sneqd 4591 . . . 4 (𝑟 = 𝑅 → {(0g𝑟)} = { 0 })
116, 10difeq12d 4080 . . 3 (𝑟 = 𝑅 → ((Base‘𝑟) ∖ {(0g𝑟)}) = (𝐵 ∖ { 0 }))
123, 11eqeq12d 2745 . 2 (𝑟 = 𝑅 → ((Unit‘𝑟) = ((Base‘𝑟) ∖ {(0g𝑟)}) ↔ 𝑈 = (𝐵 ∖ { 0 })))
13 df-drng 20634 . 2 DivRing = {𝑟 ∈ Ring ∣ (Unit‘𝑟) = ((Base‘𝑟) ∖ {(0g𝑟)})}
1412, 13elrab2 3653 1 (𝑅 ∈ DivRing ↔ (𝑅 ∈ Ring ∧ 𝑈 = (𝐵 ∖ { 0 })))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  wcel 2109  cdif 3902  {csn 4579  cfv 6486  Basecbs 17138  0gc0g 17361  Ringcrg 20136  Unitcui 20258  DivRingcdr 20632
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-iota 6442  df-fv 6494  df-drng 20634
This theorem is referenced by:  drngunit  20637  drngui  20638  drngring  20639  isdrng2  20646  drngprop  20647  drngid  20649  drngdomn  20652  opprdrng  20667  drngpropd  20672  fidomndrng  20676  issubdrg  20683  imadrhmcl  20700  cntzsdrg  20705  zringndrg  21393  istdrg2  24081  cvsunit  25047  cphreccllem  25094  isdrng4  33244  sradrng  33554  assafld  33609  zrhunitpreima  33942  aks5lem7  42173
  Copyright terms: Public domain W3C validator