Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > isdrng | Structured version Visualization version GIF version |
Description: The predicate "is a division ring". (Contributed by NM, 18-Oct-2012.) (Revised by Mario Carneiro, 2-Dec-2014.) |
Ref | Expression |
---|---|
isdrng.b | ⊢ 𝐵 = (Base‘𝑅) |
isdrng.u | ⊢ 𝑈 = (Unit‘𝑅) |
isdrng.z | ⊢ 0 = (0g‘𝑅) |
Ref | Expression |
---|---|
isdrng | ⊢ (𝑅 ∈ DivRing ↔ (𝑅 ∈ Ring ∧ 𝑈 = (𝐵 ∖ { 0 }))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6717 | . . . 4 ⊢ (𝑟 = 𝑅 → (Unit‘𝑟) = (Unit‘𝑅)) | |
2 | isdrng.u | . . . 4 ⊢ 𝑈 = (Unit‘𝑅) | |
3 | 1, 2 | eqtr4di 2796 | . . 3 ⊢ (𝑟 = 𝑅 → (Unit‘𝑟) = 𝑈) |
4 | fveq2 6717 | . . . . 5 ⊢ (𝑟 = 𝑅 → (Base‘𝑟) = (Base‘𝑅)) | |
5 | isdrng.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑅) | |
6 | 4, 5 | eqtr4di 2796 | . . . 4 ⊢ (𝑟 = 𝑅 → (Base‘𝑟) = 𝐵) |
7 | fveq2 6717 | . . . . . 6 ⊢ (𝑟 = 𝑅 → (0g‘𝑟) = (0g‘𝑅)) | |
8 | isdrng.z | . . . . . 6 ⊢ 0 = (0g‘𝑅) | |
9 | 7, 8 | eqtr4di 2796 | . . . . 5 ⊢ (𝑟 = 𝑅 → (0g‘𝑟) = 0 ) |
10 | 9 | sneqd 4553 | . . . 4 ⊢ (𝑟 = 𝑅 → {(0g‘𝑟)} = { 0 }) |
11 | 6, 10 | difeq12d 4038 | . . 3 ⊢ (𝑟 = 𝑅 → ((Base‘𝑟) ∖ {(0g‘𝑟)}) = (𝐵 ∖ { 0 })) |
12 | 3, 11 | eqeq12d 2753 | . 2 ⊢ (𝑟 = 𝑅 → ((Unit‘𝑟) = ((Base‘𝑟) ∖ {(0g‘𝑟)}) ↔ 𝑈 = (𝐵 ∖ { 0 }))) |
13 | df-drng 19769 | . 2 ⊢ DivRing = {𝑟 ∈ Ring ∣ (Unit‘𝑟) = ((Base‘𝑟) ∖ {(0g‘𝑟)})} | |
14 | 12, 13 | elrab2 3605 | 1 ⊢ (𝑅 ∈ DivRing ↔ (𝑅 ∈ Ring ∧ 𝑈 = (𝐵 ∖ { 0 }))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 209 ∧ wa 399 = wceq 1543 ∈ wcel 2110 ∖ cdif 3863 {csn 4541 ‘cfv 6380 Basecbs 16760 0gc0g 16944 Ringcrg 19562 Unitcui 19657 DivRingcdr 19767 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-ext 2708 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-sb 2071 df-clab 2715 df-cleq 2729 df-clel 2816 df-rab 3070 df-v 3410 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-nul 4238 df-if 4440 df-sn 4542 df-pr 4544 df-op 4548 df-uni 4820 df-br 5054 df-iota 6338 df-fv 6388 df-drng 19769 |
This theorem is referenced by: drngunit 19772 drngui 19773 drngring 19774 isdrng2 19777 drngprop 19778 drngid 19781 opprdrng 19791 drngpropd 19794 issubdrg 19825 cntzsdrg 19846 drngdomn 20341 fidomndrng 20345 zringndrg 20455 istdrg2 23075 cvsunit 24028 cphreccllem 24075 sradrng 31387 zrhunitpreima 31640 |
Copyright terms: Public domain | W3C validator |