| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > isdrng | Structured version Visualization version GIF version | ||
| Description: The predicate "is a division ring". (Contributed by NM, 18-Oct-2012.) (Revised by Mario Carneiro, 2-Dec-2014.) |
| Ref | Expression |
|---|---|
| isdrng.b | ⊢ 𝐵 = (Base‘𝑅) |
| isdrng.u | ⊢ 𝑈 = (Unit‘𝑅) |
| isdrng.z | ⊢ 0 = (0g‘𝑅) |
| Ref | Expression |
|---|---|
| isdrng | ⊢ (𝑅 ∈ DivRing ↔ (𝑅 ∈ Ring ∧ 𝑈 = (𝐵 ∖ { 0 }))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 6828 | . . . 4 ⊢ (𝑟 = 𝑅 → (Unit‘𝑟) = (Unit‘𝑅)) | |
| 2 | isdrng.u | . . . 4 ⊢ 𝑈 = (Unit‘𝑅) | |
| 3 | 1, 2 | eqtr4di 2786 | . . 3 ⊢ (𝑟 = 𝑅 → (Unit‘𝑟) = 𝑈) |
| 4 | fveq2 6828 | . . . . 5 ⊢ (𝑟 = 𝑅 → (Base‘𝑟) = (Base‘𝑅)) | |
| 5 | isdrng.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑅) | |
| 6 | 4, 5 | eqtr4di 2786 | . . . 4 ⊢ (𝑟 = 𝑅 → (Base‘𝑟) = 𝐵) |
| 7 | fveq2 6828 | . . . . . 6 ⊢ (𝑟 = 𝑅 → (0g‘𝑟) = (0g‘𝑅)) | |
| 8 | isdrng.z | . . . . . 6 ⊢ 0 = (0g‘𝑅) | |
| 9 | 7, 8 | eqtr4di 2786 | . . . . 5 ⊢ (𝑟 = 𝑅 → (0g‘𝑟) = 0 ) |
| 10 | 9 | sneqd 4587 | . . . 4 ⊢ (𝑟 = 𝑅 → {(0g‘𝑟)} = { 0 }) |
| 11 | 6, 10 | difeq12d 4076 | . . 3 ⊢ (𝑟 = 𝑅 → ((Base‘𝑟) ∖ {(0g‘𝑟)}) = (𝐵 ∖ { 0 })) |
| 12 | 3, 11 | eqeq12d 2749 | . 2 ⊢ (𝑟 = 𝑅 → ((Unit‘𝑟) = ((Base‘𝑟) ∖ {(0g‘𝑟)}) ↔ 𝑈 = (𝐵 ∖ { 0 }))) |
| 13 | df-drng 20648 | . 2 ⊢ DivRing = {𝑟 ∈ Ring ∣ (Unit‘𝑟) = ((Base‘𝑟) ∖ {(0g‘𝑟)})} | |
| 14 | 12, 13 | elrab2 3646 | 1 ⊢ (𝑅 ∈ DivRing ↔ (𝑅 ∈ Ring ∧ 𝑈 = (𝐵 ∖ { 0 }))) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ∖ cdif 3895 {csn 4575 ‘cfv 6486 Basecbs 17122 0gc0g 17345 Ringcrg 20153 Unitcui 20275 DivRingcdr 20646 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-iota 6442 df-fv 6494 df-drng 20648 |
| This theorem is referenced by: drngunit 20651 drngui 20652 drngring 20653 isdrng2 20660 drngprop 20661 drngid 20663 drngdomn 20666 opprdrng 20681 drngpropd 20686 fidomndrng 20690 issubdrg 20697 imadrhmcl 20714 cntzsdrg 20719 zringndrg 21407 istdrg2 24094 cvsunit 25059 cphreccllem 25106 isdrng4 33268 sradrng 33615 assafld 33671 zrhunitpreima 34010 aks5lem7 42313 |
| Copyright terms: Public domain | W3C validator |