MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isdrng Structured version   Visualization version   GIF version

Theorem isdrng 20650
Description: The predicate "is a division ring". (Contributed by NM, 18-Oct-2012.) (Revised by Mario Carneiro, 2-Dec-2014.)
Hypotheses
Ref Expression
isdrng.b 𝐵 = (Base‘𝑅)
isdrng.u 𝑈 = (Unit‘𝑅)
isdrng.z 0 = (0g𝑅)
Assertion
Ref Expression
isdrng (𝑅 ∈ DivRing ↔ (𝑅 ∈ Ring ∧ 𝑈 = (𝐵 ∖ { 0 })))

Proof of Theorem isdrng
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6828 . . . 4 (𝑟 = 𝑅 → (Unit‘𝑟) = (Unit‘𝑅))
2 isdrng.u . . . 4 𝑈 = (Unit‘𝑅)
31, 2eqtr4di 2786 . . 3 (𝑟 = 𝑅 → (Unit‘𝑟) = 𝑈)
4 fveq2 6828 . . . . 5 (𝑟 = 𝑅 → (Base‘𝑟) = (Base‘𝑅))
5 isdrng.b . . . . 5 𝐵 = (Base‘𝑅)
64, 5eqtr4di 2786 . . . 4 (𝑟 = 𝑅 → (Base‘𝑟) = 𝐵)
7 fveq2 6828 . . . . . 6 (𝑟 = 𝑅 → (0g𝑟) = (0g𝑅))
8 isdrng.z . . . . . 6 0 = (0g𝑅)
97, 8eqtr4di 2786 . . . . 5 (𝑟 = 𝑅 → (0g𝑟) = 0 )
109sneqd 4587 . . . 4 (𝑟 = 𝑅 → {(0g𝑟)} = { 0 })
116, 10difeq12d 4076 . . 3 (𝑟 = 𝑅 → ((Base‘𝑟) ∖ {(0g𝑟)}) = (𝐵 ∖ { 0 }))
123, 11eqeq12d 2749 . 2 (𝑟 = 𝑅 → ((Unit‘𝑟) = ((Base‘𝑟) ∖ {(0g𝑟)}) ↔ 𝑈 = (𝐵 ∖ { 0 })))
13 df-drng 20648 . 2 DivRing = {𝑟 ∈ Ring ∣ (Unit‘𝑟) = ((Base‘𝑟) ∖ {(0g𝑟)})}
1412, 13elrab2 3646 1 (𝑅 ∈ DivRing ↔ (𝑅 ∈ Ring ∧ 𝑈 = (𝐵 ∖ { 0 })))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1541  wcel 2113  cdif 3895  {csn 4575  cfv 6486  Basecbs 17122  0gc0g 17345  Ringcrg 20153  Unitcui 20275  DivRingcdr 20646
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-ss 3915  df-nul 4283  df-if 4475  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-br 5094  df-iota 6442  df-fv 6494  df-drng 20648
This theorem is referenced by:  drngunit  20651  drngui  20652  drngring  20653  isdrng2  20660  drngprop  20661  drngid  20663  drngdomn  20666  opprdrng  20681  drngpropd  20686  fidomndrng  20690  issubdrg  20697  imadrhmcl  20714  cntzsdrg  20719  zringndrg  21407  istdrg2  24094  cvsunit  25059  cphreccllem  25106  isdrng4  33268  sradrng  33615  assafld  33671  zrhunitpreima  34010  aks5lem7  42313
  Copyright terms: Public domain W3C validator