MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isdrng Structured version   Visualization version   GIF version

Theorem isdrng 20646
Description: The predicate "is a division ring". (Contributed by NM, 18-Oct-2012.) (Revised by Mario Carneiro, 2-Dec-2014.)
Hypotheses
Ref Expression
isdrng.b 𝐵 = (Base‘𝑅)
isdrng.u 𝑈 = (Unit‘𝑅)
isdrng.z 0 = (0g𝑅)
Assertion
Ref Expression
isdrng (𝑅 ∈ DivRing ↔ (𝑅 ∈ Ring ∧ 𝑈 = (𝐵 ∖ { 0 })))

Proof of Theorem isdrng
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6822 . . . 4 (𝑟 = 𝑅 → (Unit‘𝑟) = (Unit‘𝑅))
2 isdrng.u . . . 4 𝑈 = (Unit‘𝑅)
31, 2eqtr4di 2784 . . 3 (𝑟 = 𝑅 → (Unit‘𝑟) = 𝑈)
4 fveq2 6822 . . . . 5 (𝑟 = 𝑅 → (Base‘𝑟) = (Base‘𝑅))
5 isdrng.b . . . . 5 𝐵 = (Base‘𝑅)
64, 5eqtr4di 2784 . . . 4 (𝑟 = 𝑅 → (Base‘𝑟) = 𝐵)
7 fveq2 6822 . . . . . 6 (𝑟 = 𝑅 → (0g𝑟) = (0g𝑅))
8 isdrng.z . . . . . 6 0 = (0g𝑅)
97, 8eqtr4di 2784 . . . . 5 (𝑟 = 𝑅 → (0g𝑟) = 0 )
109sneqd 4588 . . . 4 (𝑟 = 𝑅 → {(0g𝑟)} = { 0 })
116, 10difeq12d 4077 . . 3 (𝑟 = 𝑅 → ((Base‘𝑟) ∖ {(0g𝑟)}) = (𝐵 ∖ { 0 }))
123, 11eqeq12d 2747 . 2 (𝑟 = 𝑅 → ((Unit‘𝑟) = ((Base‘𝑟) ∖ {(0g𝑟)}) ↔ 𝑈 = (𝐵 ∖ { 0 })))
13 df-drng 20644 . 2 DivRing = {𝑟 ∈ Ring ∣ (Unit‘𝑟) = ((Base‘𝑟) ∖ {(0g𝑟)})}
1412, 13elrab2 3650 1 (𝑅 ∈ DivRing ↔ (𝑅 ∈ Ring ∧ 𝑈 = (𝐵 ∖ { 0 })))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1541  wcel 2111  cdif 3899  {csn 4576  cfv 6481  Basecbs 17117  0gc0g 17340  Ringcrg 20149  Unitcui 20271  DivRingcdr 20642
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-iota 6437  df-fv 6489  df-drng 20644
This theorem is referenced by:  drngunit  20647  drngui  20648  drngring  20649  isdrng2  20656  drngprop  20657  drngid  20659  drngdomn  20662  opprdrng  20677  drngpropd  20682  fidomndrng  20686  issubdrg  20693  imadrhmcl  20710  cntzsdrg  20715  zringndrg  21403  istdrg2  24091  cvsunit  25056  cphreccllem  25103  isdrng4  33256  sradrng  33589  assafld  33645  zrhunitpreima  33984  aks5lem7  42232
  Copyright terms: Public domain W3C validator