| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > isdrng | Structured version Visualization version GIF version | ||
| Description: The predicate "is a division ring". (Contributed by NM, 18-Oct-2012.) (Revised by Mario Carneiro, 2-Dec-2014.) |
| Ref | Expression |
|---|---|
| isdrng.b | ⊢ 𝐵 = (Base‘𝑅) |
| isdrng.u | ⊢ 𝑈 = (Unit‘𝑅) |
| isdrng.z | ⊢ 0 = (0g‘𝑅) |
| Ref | Expression |
|---|---|
| isdrng | ⊢ (𝑅 ∈ DivRing ↔ (𝑅 ∈ Ring ∧ 𝑈 = (𝐵 ∖ { 0 }))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 6826 | . . . 4 ⊢ (𝑟 = 𝑅 → (Unit‘𝑟) = (Unit‘𝑅)) | |
| 2 | isdrng.u | . . . 4 ⊢ 𝑈 = (Unit‘𝑅) | |
| 3 | 1, 2 | eqtr4di 2782 | . . 3 ⊢ (𝑟 = 𝑅 → (Unit‘𝑟) = 𝑈) |
| 4 | fveq2 6826 | . . . . 5 ⊢ (𝑟 = 𝑅 → (Base‘𝑟) = (Base‘𝑅)) | |
| 5 | isdrng.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑅) | |
| 6 | 4, 5 | eqtr4di 2782 | . . . 4 ⊢ (𝑟 = 𝑅 → (Base‘𝑟) = 𝐵) |
| 7 | fveq2 6826 | . . . . . 6 ⊢ (𝑟 = 𝑅 → (0g‘𝑟) = (0g‘𝑅)) | |
| 8 | isdrng.z | . . . . . 6 ⊢ 0 = (0g‘𝑅) | |
| 9 | 7, 8 | eqtr4di 2782 | . . . . 5 ⊢ (𝑟 = 𝑅 → (0g‘𝑟) = 0 ) |
| 10 | 9 | sneqd 4591 | . . . 4 ⊢ (𝑟 = 𝑅 → {(0g‘𝑟)} = { 0 }) |
| 11 | 6, 10 | difeq12d 4080 | . . 3 ⊢ (𝑟 = 𝑅 → ((Base‘𝑟) ∖ {(0g‘𝑟)}) = (𝐵 ∖ { 0 })) |
| 12 | 3, 11 | eqeq12d 2745 | . 2 ⊢ (𝑟 = 𝑅 → ((Unit‘𝑟) = ((Base‘𝑟) ∖ {(0g‘𝑟)}) ↔ 𝑈 = (𝐵 ∖ { 0 }))) |
| 13 | df-drng 20634 | . 2 ⊢ DivRing = {𝑟 ∈ Ring ∣ (Unit‘𝑟) = ((Base‘𝑟) ∖ {(0g‘𝑟)})} | |
| 14 | 12, 13 | elrab2 3653 | 1 ⊢ (𝑅 ∈ DivRing ↔ (𝑅 ∈ Ring ∧ 𝑈 = (𝐵 ∖ { 0 }))) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∖ cdif 3902 {csn 4579 ‘cfv 6486 Basecbs 17138 0gc0g 17361 Ringcrg 20136 Unitcui 20258 DivRingcdr 20632 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-iota 6442 df-fv 6494 df-drng 20634 |
| This theorem is referenced by: drngunit 20637 drngui 20638 drngring 20639 isdrng2 20646 drngprop 20647 drngid 20649 drngdomn 20652 opprdrng 20667 drngpropd 20672 fidomndrng 20676 issubdrg 20683 imadrhmcl 20700 cntzsdrg 20705 zringndrg 21393 istdrg2 24081 cvsunit 25047 cphreccllem 25094 isdrng4 33244 sradrng 33554 assafld 33609 zrhunitpreima 33942 aks5lem7 42173 |
| Copyright terms: Public domain | W3C validator |