| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > isdrng | Structured version Visualization version GIF version | ||
| Description: The predicate "is a division ring". (Contributed by NM, 18-Oct-2012.) (Revised by Mario Carneiro, 2-Dec-2014.) |
| Ref | Expression |
|---|---|
| isdrng.b | ⊢ 𝐵 = (Base‘𝑅) |
| isdrng.u | ⊢ 𝑈 = (Unit‘𝑅) |
| isdrng.z | ⊢ 0 = (0g‘𝑅) |
| Ref | Expression |
|---|---|
| isdrng | ⊢ (𝑅 ∈ DivRing ↔ (𝑅 ∈ Ring ∧ 𝑈 = (𝐵 ∖ { 0 }))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 6886 | . . . 4 ⊢ (𝑟 = 𝑅 → (Unit‘𝑟) = (Unit‘𝑅)) | |
| 2 | isdrng.u | . . . 4 ⊢ 𝑈 = (Unit‘𝑅) | |
| 3 | 1, 2 | eqtr4di 2787 | . . 3 ⊢ (𝑟 = 𝑅 → (Unit‘𝑟) = 𝑈) |
| 4 | fveq2 6886 | . . . . 5 ⊢ (𝑟 = 𝑅 → (Base‘𝑟) = (Base‘𝑅)) | |
| 5 | isdrng.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑅) | |
| 6 | 4, 5 | eqtr4di 2787 | . . . 4 ⊢ (𝑟 = 𝑅 → (Base‘𝑟) = 𝐵) |
| 7 | fveq2 6886 | . . . . . 6 ⊢ (𝑟 = 𝑅 → (0g‘𝑟) = (0g‘𝑅)) | |
| 8 | isdrng.z | . . . . . 6 ⊢ 0 = (0g‘𝑅) | |
| 9 | 7, 8 | eqtr4di 2787 | . . . . 5 ⊢ (𝑟 = 𝑅 → (0g‘𝑟) = 0 ) |
| 10 | 9 | sneqd 4618 | . . . 4 ⊢ (𝑟 = 𝑅 → {(0g‘𝑟)} = { 0 }) |
| 11 | 6, 10 | difeq12d 4107 | . . 3 ⊢ (𝑟 = 𝑅 → ((Base‘𝑟) ∖ {(0g‘𝑟)}) = (𝐵 ∖ { 0 })) |
| 12 | 3, 11 | eqeq12d 2750 | . 2 ⊢ (𝑟 = 𝑅 → ((Unit‘𝑟) = ((Base‘𝑟) ∖ {(0g‘𝑟)}) ↔ 𝑈 = (𝐵 ∖ { 0 }))) |
| 13 | df-drng 20699 | . 2 ⊢ DivRing = {𝑟 ∈ Ring ∣ (Unit‘𝑟) = ((Base‘𝑟) ∖ {(0g‘𝑟)})} | |
| 14 | 12, 13 | elrab2 3678 | 1 ⊢ (𝑅 ∈ DivRing ↔ (𝑅 ∈ Ring ∧ 𝑈 = (𝐵 ∖ { 0 }))) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ∖ cdif 3928 {csn 4606 ‘cfv 6541 Basecbs 17229 0gc0g 17455 Ringcrg 20198 Unitcui 20323 DivRingcdr 20697 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-rab 3420 df-v 3465 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-br 5124 df-iota 6494 df-fv 6549 df-drng 20699 |
| This theorem is referenced by: drngunit 20702 drngui 20703 drngring 20704 isdrng2 20711 drngprop 20712 drngid 20714 drngdomn 20717 opprdrng 20732 drngpropd 20737 fidomndrng 20742 issubdrg 20749 imadrhmcl 20766 cntzsdrg 20771 zringndrg 21441 istdrg2 24132 cvsunit 25100 cphreccllem 25148 isdrng4 33237 sradrng 33568 assafld 33623 zrhunitpreima 33936 aks5lem7 42160 |
| Copyright terms: Public domain | W3C validator |