![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > isdrng | Structured version Visualization version GIF version |
Description: The predicate "is a division ring". (Contributed by NM, 18-Oct-2012.) (Revised by Mario Carneiro, 2-Dec-2014.) |
Ref | Expression |
---|---|
isdrng.b | ⊢ 𝐵 = (Base‘𝑅) |
isdrng.u | ⊢ 𝑈 = (Unit‘𝑅) |
isdrng.z | ⊢ 0 = (0g‘𝑅) |
Ref | Expression |
---|---|
isdrng | ⊢ (𝑅 ∈ DivRing ↔ (𝑅 ∈ Ring ∧ 𝑈 = (𝐵 ∖ { 0 }))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6499 | . . . 4 ⊢ (𝑟 = 𝑅 → (Unit‘𝑟) = (Unit‘𝑅)) | |
2 | isdrng.u | . . . 4 ⊢ 𝑈 = (Unit‘𝑅) | |
3 | 1, 2 | syl6eqr 2833 | . . 3 ⊢ (𝑟 = 𝑅 → (Unit‘𝑟) = 𝑈) |
4 | fveq2 6499 | . . . . 5 ⊢ (𝑟 = 𝑅 → (Base‘𝑟) = (Base‘𝑅)) | |
5 | isdrng.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑅) | |
6 | 4, 5 | syl6eqr 2833 | . . . 4 ⊢ (𝑟 = 𝑅 → (Base‘𝑟) = 𝐵) |
7 | fveq2 6499 | . . . . . 6 ⊢ (𝑟 = 𝑅 → (0g‘𝑟) = (0g‘𝑅)) | |
8 | isdrng.z | . . . . . 6 ⊢ 0 = (0g‘𝑅) | |
9 | 7, 8 | syl6eqr 2833 | . . . . 5 ⊢ (𝑟 = 𝑅 → (0g‘𝑟) = 0 ) |
10 | 9 | sneqd 4453 | . . . 4 ⊢ (𝑟 = 𝑅 → {(0g‘𝑟)} = { 0 }) |
11 | 6, 10 | difeq12d 3991 | . . 3 ⊢ (𝑟 = 𝑅 → ((Base‘𝑟) ∖ {(0g‘𝑟)}) = (𝐵 ∖ { 0 })) |
12 | 3, 11 | eqeq12d 2794 | . 2 ⊢ (𝑟 = 𝑅 → ((Unit‘𝑟) = ((Base‘𝑟) ∖ {(0g‘𝑟)}) ↔ 𝑈 = (𝐵 ∖ { 0 }))) |
13 | df-drng 19227 | . 2 ⊢ DivRing = {𝑟 ∈ Ring ∣ (Unit‘𝑟) = ((Base‘𝑟) ∖ {(0g‘𝑟)})} | |
14 | 12, 13 | elrab2 3600 | 1 ⊢ (𝑅 ∈ DivRing ↔ (𝑅 ∈ Ring ∧ 𝑈 = (𝐵 ∖ { 0 }))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 198 ∧ wa 387 = wceq 1507 ∈ wcel 2050 ∖ cdif 3827 {csn 4441 ‘cfv 6188 Basecbs 16339 0gc0g 16569 Ringcrg 19020 Unitcui 19112 DivRingcdr 19225 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-ext 2751 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2016 df-clab 2760 df-cleq 2772 df-clel 2847 df-nfc 2919 df-ral 3094 df-rex 3095 df-rab 3098 df-v 3418 df-dif 3833 df-un 3835 df-in 3837 df-ss 3844 df-nul 4180 df-if 4351 df-sn 4442 df-pr 4444 df-op 4448 df-uni 4713 df-br 4930 df-iota 6152 df-fv 6196 df-drng 19227 |
This theorem is referenced by: drngunit 19230 drngui 19231 drngring 19232 isdrng2 19235 drngprop 19236 drngid 19239 opprdrng 19249 drngpropd 19252 issubdrg 19283 cntzsdrg 19303 drngdomn 19797 fidomndrng 19801 zringndrg 20339 istdrg2 22489 cvsunit 23438 cphreccllem 23485 sradrng 30614 zrhunitpreima 30860 |
Copyright terms: Public domain | W3C validator |