| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > isdrng | Structured version Visualization version GIF version | ||
| Description: The predicate "is a division ring". (Contributed by NM, 18-Oct-2012.) (Revised by Mario Carneiro, 2-Dec-2014.) |
| Ref | Expression |
|---|---|
| isdrng.b | ⊢ 𝐵 = (Base‘𝑅) |
| isdrng.u | ⊢ 𝑈 = (Unit‘𝑅) |
| isdrng.z | ⊢ 0 = (0g‘𝑅) |
| Ref | Expression |
|---|---|
| isdrng | ⊢ (𝑅 ∈ DivRing ↔ (𝑅 ∈ Ring ∧ 𝑈 = (𝐵 ∖ { 0 }))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 6822 | . . . 4 ⊢ (𝑟 = 𝑅 → (Unit‘𝑟) = (Unit‘𝑅)) | |
| 2 | isdrng.u | . . . 4 ⊢ 𝑈 = (Unit‘𝑅) | |
| 3 | 1, 2 | eqtr4di 2784 | . . 3 ⊢ (𝑟 = 𝑅 → (Unit‘𝑟) = 𝑈) |
| 4 | fveq2 6822 | . . . . 5 ⊢ (𝑟 = 𝑅 → (Base‘𝑟) = (Base‘𝑅)) | |
| 5 | isdrng.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑅) | |
| 6 | 4, 5 | eqtr4di 2784 | . . . 4 ⊢ (𝑟 = 𝑅 → (Base‘𝑟) = 𝐵) |
| 7 | fveq2 6822 | . . . . . 6 ⊢ (𝑟 = 𝑅 → (0g‘𝑟) = (0g‘𝑅)) | |
| 8 | isdrng.z | . . . . . 6 ⊢ 0 = (0g‘𝑅) | |
| 9 | 7, 8 | eqtr4di 2784 | . . . . 5 ⊢ (𝑟 = 𝑅 → (0g‘𝑟) = 0 ) |
| 10 | 9 | sneqd 4588 | . . . 4 ⊢ (𝑟 = 𝑅 → {(0g‘𝑟)} = { 0 }) |
| 11 | 6, 10 | difeq12d 4077 | . . 3 ⊢ (𝑟 = 𝑅 → ((Base‘𝑟) ∖ {(0g‘𝑟)}) = (𝐵 ∖ { 0 })) |
| 12 | 3, 11 | eqeq12d 2747 | . 2 ⊢ (𝑟 = 𝑅 → ((Unit‘𝑟) = ((Base‘𝑟) ∖ {(0g‘𝑟)}) ↔ 𝑈 = (𝐵 ∖ { 0 }))) |
| 13 | df-drng 20644 | . 2 ⊢ DivRing = {𝑟 ∈ Ring ∣ (Unit‘𝑟) = ((Base‘𝑟) ∖ {(0g‘𝑟)})} | |
| 14 | 12, 13 | elrab2 3650 | 1 ⊢ (𝑅 ∈ DivRing ↔ (𝑅 ∈ Ring ∧ 𝑈 = (𝐵 ∖ { 0 }))) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∖ cdif 3899 {csn 4576 ‘cfv 6481 Basecbs 17117 0gc0g 17340 Ringcrg 20149 Unitcui 20271 DivRingcdr 20642 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-iota 6437 df-fv 6489 df-drng 20644 |
| This theorem is referenced by: drngunit 20647 drngui 20648 drngring 20649 isdrng2 20656 drngprop 20657 drngid 20659 drngdomn 20662 opprdrng 20677 drngpropd 20682 fidomndrng 20686 issubdrg 20693 imadrhmcl 20710 cntzsdrg 20715 zringndrg 21403 istdrg2 24091 cvsunit 25056 cphreccllem 25103 isdrng4 33256 sradrng 33589 assafld 33645 zrhunitpreima 33984 aks5lem7 42232 |
| Copyright terms: Public domain | W3C validator |