MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-field Structured version   Visualization version   GIF version

Definition df-field 20360
Description: A field is a commutative division ring. (Contributed by Mario Carneiro, 17-Jun-2015.)
Assertion
Ref Expression
df-field Field = (DivRing ∩ CRing)

Detailed syntax breakdown of Definition df-field
StepHypRef Expression
1 cfield 20358 . 2 class Field
2 cdr 20357 . . 3 class DivRing
3 ccrg 20057 . . 3 class CRing
42, 3cin 3948 . 2 class (DivRing ∩ CRing)
51, 4wceq 1542 1 wff Field = (DivRing ∩ CRing)
Colors of variables: wff setvar class
This definition is referenced by:  isfld  20368  bj-fldssdrng  36169  fldc  46981  fldhmsubc  46982  fldcALTV  46999  fldhmsubcALTV  47000
  Copyright terms: Public domain W3C validator