MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-field Structured version   Visualization version   GIF version

Definition df-field 20656
Description: A field is a commutative division ring. (Contributed by Mario Carneiro, 17-Jun-2015.)
Assertion
Ref Expression
df-field Field = (DivRing ∩ CRing)

Detailed syntax breakdown of Definition df-field
StepHypRef Expression
1 cfield 20654 . 2 class Field
2 cdr 20653 . . 3 class DivRing
3 ccrg 20203 . . 3 class CRing
42, 3cin 3943 . 2 class (DivRing ∩ CRing)
51, 4wceq 1533 1 wff Field = (DivRing ∩ CRing)
Colors of variables: wff setvar class
This definition is referenced by:  isfld  20664  fldc  20701  fldhmsubc  20702  bj-fldssdrng  36918  fldcALTV  47585  fldhmsubcALTV  47586
  Copyright terms: Public domain W3C validator