| Metamath
Proof Explorer Theorem List (p. 204 of 500) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30900) |
(30901-32423) |
(32424-49930) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | unitmulclb 20301 | Reversal of unitmulcl 20300 in a commutative ring. (Contributed by Mario Carneiro, 18-Apr-2016.) |
| ⊢ 𝑈 = (Unit‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 𝐵 = (Base‘𝑅) ⇒ ⊢ ((𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 · 𝑌) ∈ 𝑈 ↔ (𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈))) | ||
| Theorem | unitgrpbas 20302 | The base set of the group of units. (Contributed by Mario Carneiro, 25-Dec-2014.) |
| ⊢ 𝑈 = (Unit‘𝑅) & ⊢ 𝐺 = ((mulGrp‘𝑅) ↾s 𝑈) ⇒ ⊢ 𝑈 = (Base‘𝐺) | ||
| Theorem | unitgrp 20303 | The group of units is a group under multiplication. (Contributed by Mario Carneiro, 2-Dec-2014.) |
| ⊢ 𝑈 = (Unit‘𝑅) & ⊢ 𝐺 = ((mulGrp‘𝑅) ↾s 𝑈) ⇒ ⊢ (𝑅 ∈ Ring → 𝐺 ∈ Grp) | ||
| Theorem | unitabl 20304 | The group of units of a commutative ring is abelian. (Contributed by Mario Carneiro, 19-Apr-2016.) |
| ⊢ 𝑈 = (Unit‘𝑅) & ⊢ 𝐺 = ((mulGrp‘𝑅) ↾s 𝑈) ⇒ ⊢ (𝑅 ∈ CRing → 𝐺 ∈ Abel) | ||
| Theorem | unitgrpid 20305 | The identity of the group of units of a ring is the ring unity. (Contributed by Mario Carneiro, 2-Dec-2014.) |
| ⊢ 𝑈 = (Unit‘𝑅) & ⊢ 𝐺 = ((mulGrp‘𝑅) ↾s 𝑈) & ⊢ 1 = (1r‘𝑅) ⇒ ⊢ (𝑅 ∈ Ring → 1 = (0g‘𝐺)) | ||
| Theorem | unitsubm 20306 | The group of units is a submonoid of the multiplicative monoid of the ring. (Contributed by Mario Carneiro, 18-Jun-2015.) |
| ⊢ 𝑈 = (Unit‘𝑅) & ⊢ 𝑀 = (mulGrp‘𝑅) ⇒ ⊢ (𝑅 ∈ Ring → 𝑈 ∈ (SubMnd‘𝑀)) | ||
| Syntax | cinvr 20307 | Extend class notation with multiplicative inverse. |
| class invr | ||
| Definition | df-invr 20308 | Define multiplicative inverse. (Contributed by NM, 21-Sep-2011.) |
| ⊢ invr = (𝑟 ∈ V ↦ (invg‘((mulGrp‘𝑟) ↾s (Unit‘𝑟)))) | ||
| Theorem | invrfval 20309 | Multiplicative inverse function for a division ring. (Contributed by NM, 21-Sep-2011.) (Revised by Mario Carneiro, 25-Dec-2014.) |
| ⊢ 𝑈 = (Unit‘𝑅) & ⊢ 𝐺 = ((mulGrp‘𝑅) ↾s 𝑈) & ⊢ 𝐼 = (invr‘𝑅) ⇒ ⊢ 𝐼 = (invg‘𝐺) | ||
| Theorem | unitinvcl 20310 | The inverse of a unit exists and is a unit. (Contributed by Mario Carneiro, 2-Dec-2014.) |
| ⊢ 𝑈 = (Unit‘𝑅) & ⊢ 𝐼 = (invr‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈) → (𝐼‘𝑋) ∈ 𝑈) | ||
| Theorem | unitinvinv 20311 | The inverse of the inverse of a unit is the same element. (Contributed by Mario Carneiro, 4-Dec-2014.) |
| ⊢ 𝑈 = (Unit‘𝑅) & ⊢ 𝐼 = (invr‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈) → (𝐼‘(𝐼‘𝑋)) = 𝑋) | ||
| Theorem | ringinvcl 20312 | The inverse of a unit is an element of the ring. (Contributed by Mario Carneiro, 2-Dec-2014.) |
| ⊢ 𝑈 = (Unit‘𝑅) & ⊢ 𝐼 = (invr‘𝑅) & ⊢ 𝐵 = (Base‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈) → (𝐼‘𝑋) ∈ 𝐵) | ||
| Theorem | unitlinv 20313 | A unit times its inverse is the ring unity. (Contributed by Mario Carneiro, 2-Dec-2014.) |
| ⊢ 𝑈 = (Unit‘𝑅) & ⊢ 𝐼 = (invr‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 1 = (1r‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈) → ((𝐼‘𝑋) · 𝑋) = 1 ) | ||
| Theorem | unitrinv 20314 | A unit times its inverse is the ring unity. (Contributed by Mario Carneiro, 2-Dec-2014.) |
| ⊢ 𝑈 = (Unit‘𝑅) & ⊢ 𝐼 = (invr‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 1 = (1r‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈) → (𝑋 · (𝐼‘𝑋)) = 1 ) | ||
| Theorem | 1rinv 20315 | The inverse of the ring unity is the ring unity. (Contributed by Mario Carneiro, 18-Jun-2015.) |
| ⊢ 𝐼 = (invr‘𝑅) & ⊢ 1 = (1r‘𝑅) ⇒ ⊢ (𝑅 ∈ Ring → (𝐼‘ 1 ) = 1 ) | ||
| Theorem | 0unit 20316 | The additive identity is a unit if and only if 1 = 0, i.e. we are in the zero ring. (Contributed by Mario Carneiro, 4-Dec-2014.) |
| ⊢ 𝑈 = (Unit‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 1 = (1r‘𝑅) ⇒ ⊢ (𝑅 ∈ Ring → ( 0 ∈ 𝑈 ↔ 1 = 0 )) | ||
| Theorem | unitnegcl 20317 | The negative of a unit is a unit. (Contributed by Mario Carneiro, 4-Dec-2014.) |
| ⊢ 𝑈 = (Unit‘𝑅) & ⊢ 𝑁 = (invg‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈) → (𝑁‘𝑋) ∈ 𝑈) | ||
| Theorem | ringunitnzdiv 20318 | In a unitary ring, a unit is not a zero divisor. (Contributed by AV, 7-Mar-2025.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑋 ∈ (Unit‘𝑅)) ⇒ ⊢ (𝜑 → ((𝑋 · 𝑌) = 0 ↔ 𝑌 = 0 )) | ||
| Theorem | ring1nzdiv 20319 | In a unitary ring, the ring unity is not a zero divisor. (Contributed by AV, 7-Mar-2025.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ 1 = (1r‘𝑅) ⇒ ⊢ (𝜑 → (( 1 · 𝑌) = 0 ↔ 𝑌 = 0 )) | ||
| Syntax | cdvr 20320 | Extend class notation with ring division. |
| class /r | ||
| Definition | df-dvr 20321* | Define ring division. (Contributed by Mario Carneiro, 2-Jul-2014.) |
| ⊢ /r = (𝑟 ∈ V ↦ (𝑥 ∈ (Base‘𝑟), 𝑦 ∈ (Unit‘𝑟) ↦ (𝑥(.r‘𝑟)((invr‘𝑟)‘𝑦)))) | ||
| Theorem | dvrfval 20322* | Division operation in a ring. (Contributed by Mario Carneiro, 2-Jul-2014.) (Revised by Mario Carneiro, 2-Dec-2014.) (Proof shortened by AV, 2-Mar-2024.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 𝑈 = (Unit‘𝑅) & ⊢ 𝐼 = (invr‘𝑅) & ⊢ / = (/r‘𝑅) ⇒ ⊢ / = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝑈 ↦ (𝑥 · (𝐼‘𝑦))) | ||
| Theorem | dvrval 20323 | Division operation in a ring. (Contributed by Mario Carneiro, 2-Jul-2014.) (Revised by Mario Carneiro, 2-Dec-2014.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 𝑈 = (Unit‘𝑅) & ⊢ 𝐼 = (invr‘𝑅) & ⊢ / = (/r‘𝑅) ⇒ ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈) → (𝑋 / 𝑌) = (𝑋 · (𝐼‘𝑌))) | ||
| Theorem | dvrcl 20324 | Closure of division operation. (Contributed by Mario Carneiro, 2-Jul-2014.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝑈 = (Unit‘𝑅) & ⊢ / = (/r‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈) → (𝑋 / 𝑌) ∈ 𝐵) | ||
| Theorem | unitdvcl 20325 | The units are closed under division. (Contributed by Mario Carneiro, 2-Jul-2014.) |
| ⊢ 𝑈 = (Unit‘𝑅) & ⊢ / = (/r‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈) → (𝑋 / 𝑌) ∈ 𝑈) | ||
| Theorem | dvrid 20326 | A ring element divided by itself is the ring unity. (divid 11814 analog.) (Contributed by Mario Carneiro, 18-Jun-2015.) |
| ⊢ 𝑈 = (Unit‘𝑅) & ⊢ / = (/r‘𝑅) & ⊢ 1 = (1r‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈) → (𝑋 / 𝑋) = 1 ) | ||
| Theorem | dvr1 20327 | A ring element divided by the ring unity is itself. (div1 11818 analog.) (Contributed by Mario Carneiro, 18-Jun-2015.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ / = (/r‘𝑅) & ⊢ 1 = (1r‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → (𝑋 / 1 ) = 𝑋) | ||
| Theorem | dvrass 20328 | An associative law for division. (divass 11801 analog.) (Contributed by Mario Carneiro, 4-Dec-2014.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝑈 = (Unit‘𝑅) & ⊢ / = (/r‘𝑅) & ⊢ · = (.r‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝑈)) → ((𝑋 · 𝑌) / 𝑍) = (𝑋 · (𝑌 / 𝑍))) | ||
| Theorem | dvrcan1 20329 | A cancellation law for division. (divcan1 11792 analog.) (Contributed by Mario Carneiro, 2-Jul-2014.) (Revised by Mario Carneiro, 2-Dec-2014.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝑈 = (Unit‘𝑅) & ⊢ / = (/r‘𝑅) & ⊢ · = (.r‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈) → ((𝑋 / 𝑌) · 𝑌) = 𝑋) | ||
| Theorem | dvrcan3 20330 | A cancellation law for division. (divcan3 11809 analog.) (Contributed by Mario Carneiro, 2-Jul-2014.) (Revised by Mario Carneiro, 18-Jun-2015.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝑈 = (Unit‘𝑅) & ⊢ / = (/r‘𝑅) & ⊢ · = (.r‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈) → ((𝑋 · 𝑌) / 𝑌) = 𝑋) | ||
| Theorem | dvreq1 20331 | Equality in terms of ratio equal to ring unity. (diveq1 11813 analog.) (Contributed by Mario Carneiro, 28-Apr-2016.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝑈 = (Unit‘𝑅) & ⊢ / = (/r‘𝑅) & ⊢ 1 = (1r‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈) → ((𝑋 / 𝑌) = 1 ↔ 𝑋 = 𝑌)) | ||
| Theorem | dvrdir 20332 | Distributive law for the division operation of a ring. (Contributed by Thierry Arnoux, 30-Oct-2017.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝑈 = (Unit‘𝑅) & ⊢ + = (+g‘𝑅) & ⊢ / = (/r‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝑈)) → ((𝑋 + 𝑌) / 𝑍) = ((𝑋 / 𝑍) + (𝑌 / 𝑍))) | ||
| Theorem | rdivmuldivd 20333 | Multiplication of two ratios. Theorem I.14 of [Apostol] p. 18. (Contributed by Thierry Arnoux, 30-Oct-2017.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝑈 = (Unit‘𝑅) & ⊢ + = (+g‘𝑅) & ⊢ / = (/r‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ CRing) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝑈) & ⊢ (𝜑 → 𝑍 ∈ 𝐵) & ⊢ (𝜑 → 𝑊 ∈ 𝑈) ⇒ ⊢ (𝜑 → ((𝑋 / 𝑌) · (𝑍 / 𝑊)) = ((𝑋 · 𝑍) / (𝑌 · 𝑊))) | ||
| Theorem | ringinvdv 20334 | Write the inverse function in terms of division. (Contributed by Mario Carneiro, 2-Jul-2014.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝑈 = (Unit‘𝑅) & ⊢ / = (/r‘𝑅) & ⊢ 1 = (1r‘𝑅) & ⊢ 𝐼 = (invr‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈) → (𝐼‘𝑋) = ( 1 / 𝑋)) | ||
| Theorem | rngidpropd 20335* | The ring unity depends only on the ring's base set and multiplication operation. (Contributed by Mario Carneiro, 26-Dec-2014.) |
| ⊢ (𝜑 → 𝐵 = (Base‘𝐾)) & ⊢ (𝜑 → 𝐵 = (Base‘𝐿)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(.r‘𝐾)𝑦) = (𝑥(.r‘𝐿)𝑦)) ⇒ ⊢ (𝜑 → (1r‘𝐾) = (1r‘𝐿)) | ||
| Theorem | dvdsrpropd 20336* | The divisibility relation depends only on the ring's base set and multiplication operation. (Contributed by Mario Carneiro, 26-Dec-2014.) |
| ⊢ (𝜑 → 𝐵 = (Base‘𝐾)) & ⊢ (𝜑 → 𝐵 = (Base‘𝐿)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(.r‘𝐾)𝑦) = (𝑥(.r‘𝐿)𝑦)) ⇒ ⊢ (𝜑 → (∥r‘𝐾) = (∥r‘𝐿)) | ||
| Theorem | unitpropd 20337* | The set of units depends only on the ring's base set and multiplication operation. (Contributed by Mario Carneiro, 26-Dec-2014.) |
| ⊢ (𝜑 → 𝐵 = (Base‘𝐾)) & ⊢ (𝜑 → 𝐵 = (Base‘𝐿)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(.r‘𝐾)𝑦) = (𝑥(.r‘𝐿)𝑦)) ⇒ ⊢ (𝜑 → (Unit‘𝐾) = (Unit‘𝐿)) | ||
| Theorem | invrpropd 20338* | The ring inverse function depends only on the ring's base set and multiplication operation. (Contributed by Mario Carneiro, 26-Dec-2014.) (Revised by Mario Carneiro, 5-Oct-2015.) |
| ⊢ (𝜑 → 𝐵 = (Base‘𝐾)) & ⊢ (𝜑 → 𝐵 = (Base‘𝐿)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(.r‘𝐾)𝑦) = (𝑥(.r‘𝐿)𝑦)) ⇒ ⊢ (𝜑 → (invr‘𝐾) = (invr‘𝐿)) | ||
| Theorem | isirred 20339* | An irreducible element of a ring is a non-unit that is not the product of two non-units. (Contributed by Mario Carneiro, 4-Dec-2014.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝑈 = (Unit‘𝑅) & ⊢ 𝐼 = (Irred‘𝑅) & ⊢ 𝑁 = (𝐵 ∖ 𝑈) & ⊢ · = (.r‘𝑅) ⇒ ⊢ (𝑋 ∈ 𝐼 ↔ (𝑋 ∈ 𝑁 ∧ ∀𝑥 ∈ 𝑁 ∀𝑦 ∈ 𝑁 (𝑥 · 𝑦) ≠ 𝑋)) | ||
| Theorem | isnirred 20340* | The property of being a non-irreducible (reducible) element in a ring. (Contributed by Mario Carneiro, 4-Dec-2014.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝑈 = (Unit‘𝑅) & ⊢ 𝐼 = (Irred‘𝑅) & ⊢ 𝑁 = (𝐵 ∖ 𝑈) & ⊢ · = (.r‘𝑅) ⇒ ⊢ (𝑋 ∈ 𝐵 → (¬ 𝑋 ∈ 𝐼 ↔ (𝑋 ∈ 𝑈 ∨ ∃𝑥 ∈ 𝑁 ∃𝑦 ∈ 𝑁 (𝑥 · 𝑦) = 𝑋))) | ||
| Theorem | isirred2 20341* | Expand out the class difference from isirred 20339. (Contributed by Mario Carneiro, 4-Dec-2014.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝑈 = (Unit‘𝑅) & ⊢ 𝐼 = (Irred‘𝑅) & ⊢ · = (.r‘𝑅) ⇒ ⊢ (𝑋 ∈ 𝐼 ↔ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ∈ 𝑈 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑥 · 𝑦) = 𝑋 → (𝑥 ∈ 𝑈 ∨ 𝑦 ∈ 𝑈)))) | ||
| Theorem | opprirred 20342 | Irreducibility is symmetric, so the irreducible elements of the opposite ring are the same as the original ring. (Contributed by Mario Carneiro, 4-Dec-2014.) |
| ⊢ 𝑆 = (oppr‘𝑅) & ⊢ 𝐼 = (Irred‘𝑅) ⇒ ⊢ 𝐼 = (Irred‘𝑆) | ||
| Theorem | irredn0 20343 | The additive identity is not irreducible. (Contributed by Mario Carneiro, 4-Dec-2014.) |
| ⊢ 𝐼 = (Irred‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐼) → 𝑋 ≠ 0 ) | ||
| Theorem | irredcl 20344 | An irreducible element is in the ring. (Contributed by Mario Carneiro, 4-Dec-2014.) |
| ⊢ 𝐼 = (Irred‘𝑅) & ⊢ 𝐵 = (Base‘𝑅) ⇒ ⊢ (𝑋 ∈ 𝐼 → 𝑋 ∈ 𝐵) | ||
| Theorem | irrednu 20345 | An irreducible element is not a unit. (Contributed by Mario Carneiro, 4-Dec-2014.) |
| ⊢ 𝐼 = (Irred‘𝑅) & ⊢ 𝑈 = (Unit‘𝑅) ⇒ ⊢ (𝑋 ∈ 𝐼 → ¬ 𝑋 ∈ 𝑈) | ||
| Theorem | irredn1 20346 | The multiplicative identity is not irreducible. (Contributed by Mario Carneiro, 4-Dec-2014.) |
| ⊢ 𝐼 = (Irred‘𝑅) & ⊢ 1 = (1r‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐼) → 𝑋 ≠ 1 ) | ||
| Theorem | irredrmul 20347 | The product of an irreducible element and a unit is irreducible. (Contributed by Mario Carneiro, 4-Dec-2014.) |
| ⊢ 𝐼 = (Irred‘𝑅) & ⊢ 𝑈 = (Unit‘𝑅) & ⊢ · = (.r‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐼 ∧ 𝑌 ∈ 𝑈) → (𝑋 · 𝑌) ∈ 𝐼) | ||
| Theorem | irredlmul 20348 | The product of a unit and an irreducible element is irreducible. (Contributed by Mario Carneiro, 4-Dec-2014.) |
| ⊢ 𝐼 = (Irred‘𝑅) & ⊢ 𝑈 = (Unit‘𝑅) & ⊢ · = (.r‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝐼) → (𝑋 · 𝑌) ∈ 𝐼) | ||
| Theorem | irredmul 20349 | If product of two elements is irreducible, then one of the elements must be a unit. (Contributed by Mario Carneiro, 4-Dec-2014.) |
| ⊢ 𝐼 = (Irred‘𝑅) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝑈 = (Unit‘𝑅) & ⊢ · = (.r‘𝑅) ⇒ ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ (𝑋 · 𝑌) ∈ 𝐼) → (𝑋 ∈ 𝑈 ∨ 𝑌 ∈ 𝑈)) | ||
| Theorem | irredneg 20350 | The negative of an irreducible element is irreducible. (Contributed by Mario Carneiro, 4-Dec-2014.) |
| ⊢ 𝐼 = (Irred‘𝑅) & ⊢ 𝑁 = (invg‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐼) → (𝑁‘𝑋) ∈ 𝐼) | ||
| Theorem | irrednegb 20351 | An element is irreducible iff its negative is. (Contributed by Mario Carneiro, 4-Dec-2014.) |
| ⊢ 𝐼 = (Irred‘𝑅) & ⊢ 𝑁 = (invg‘𝑅) & ⊢ 𝐵 = (Base‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → (𝑋 ∈ 𝐼 ↔ (𝑁‘𝑋) ∈ 𝐼)) | ||
| Syntax | crpm 20352 | Syntax for the ring primes function. |
| class RPrime | ||
| Definition | df-rprm 20353* | Define the function associating with a ring its set of prime elements. A prime element is a nonzero non-unit that satisfies an equivalent of Euclid's lemma euclemma 16626. Prime elements are closely related to irreducible elements (see df-irred 20279). (Contributed by Mario Carneiro, 17-Feb-2015.) |
| ⊢ RPrime = (𝑤 ∈ V ↦ ⦋(Base‘𝑤) / 𝑏⦌{𝑝 ∈ (𝑏 ∖ ((Unit‘𝑤) ∪ {(0g‘𝑤)})) ∣ ∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 [(∥r‘𝑤) / 𝑑](𝑝𝑑(𝑥(.r‘𝑤)𝑦) → (𝑝𝑑𝑥 ∨ 𝑝𝑑𝑦))}) | ||
| Syntax | crnghm 20354 | non-unital ring homomorphisms. |
| class RngHom | ||
| Syntax | crngim 20355 | non-unital ring isomorphisms. |
| class RngIso | ||
| Definition | df-rnghm 20356* | Define the set of non-unital ring homomorphisms from 𝑟 to 𝑠. (Contributed by AV, 20-Feb-2020.) |
| ⊢ RngHom = (𝑟 ∈ Rng, 𝑠 ∈ Rng ↦ ⦋(Base‘𝑟) / 𝑣⦌⦋(Base‘𝑠) / 𝑤⦌{𝑓 ∈ (𝑤 ↑m 𝑣) ∣ ∀𝑥 ∈ 𝑣 ∀𝑦 ∈ 𝑣 ((𝑓‘(𝑥(+g‘𝑟)𝑦)) = ((𝑓‘𝑥)(+g‘𝑠)(𝑓‘𝑦)) ∧ (𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥)(.r‘𝑠)(𝑓‘𝑦)))}) | ||
| Definition | df-rngim 20357* | Define the set of non-unital ring isomorphisms from 𝑟 to 𝑠. (Contributed by AV, 20-Feb-2020.) |
| ⊢ RngIso = (𝑟 ∈ V, 𝑠 ∈ V ↦ {𝑓 ∈ (𝑟 RngHom 𝑠) ∣ ◡𝑓 ∈ (𝑠 RngHom 𝑟)}) | ||
| Theorem | rnghmrcl 20358 | Reverse closure of a non-unital ring homomorphism. (Contributed by AV, 22-Feb-2020.) |
| ⊢ (𝐹 ∈ (𝑅 RngHom 𝑆) → (𝑅 ∈ Rng ∧ 𝑆 ∈ Rng)) | ||
| Theorem | rnghmfn 20359 | The mapping of two non-unital rings to the non-unital ring homomorphisms between them is a function. (Contributed by AV, 1-Mar-2020.) |
| ⊢ RngHom Fn (Rng × Rng) | ||
| Theorem | rnghmval 20360* | The set of the non-unital ring homomorphisms between two non-unital rings. (Contributed by AV, 22-Feb-2020.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ ∗ = (.r‘𝑆) & ⊢ 𝐶 = (Base‘𝑆) & ⊢ + = (+g‘𝑅) & ⊢ ✚ = (+g‘𝑆) ⇒ ⊢ ((𝑅 ∈ Rng ∧ 𝑆 ∈ Rng) → (𝑅 RngHom 𝑆) = {𝑓 ∈ (𝐶 ↑m 𝐵) ∣ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑓‘(𝑥 + 𝑦)) = ((𝑓‘𝑥) ✚ (𝑓‘𝑦)) ∧ (𝑓‘(𝑥 · 𝑦)) = ((𝑓‘𝑥) ∗ (𝑓‘𝑦)))}) | ||
| Theorem | isrnghm 20361* | A function is a non-unital ring homomorphism iff it is a group homomorphism and preserves multiplication. (Contributed by AV, 22-Feb-2020.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ ∗ = (.r‘𝑆) ⇒ ⊢ (𝐹 ∈ (𝑅 RngHom 𝑆) ↔ ((𝑅 ∈ Rng ∧ 𝑆 ∈ Rng) ∧ (𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝐹‘(𝑥 · 𝑦)) = ((𝐹‘𝑥) ∗ (𝐹‘𝑦))))) | ||
| Theorem | isrnghmmul 20362 | A function is a non-unital ring homomorphism iff it preserves both addition and multiplication. (Contributed by AV, 27-Feb-2020.) |
| ⊢ 𝑀 = (mulGrp‘𝑅) & ⊢ 𝑁 = (mulGrp‘𝑆) ⇒ ⊢ (𝐹 ∈ (𝑅 RngHom 𝑆) ↔ ((𝑅 ∈ Rng ∧ 𝑆 ∈ Rng) ∧ (𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹 ∈ (𝑀 MgmHom 𝑁)))) | ||
| Theorem | rnghmmgmhm 20363 | A non-unital ring homomorphism is a homomorphism of multiplicative magmas. (Contributed by AV, 27-Feb-2020.) |
| ⊢ 𝑀 = (mulGrp‘𝑅) & ⊢ 𝑁 = (mulGrp‘𝑆) ⇒ ⊢ (𝐹 ∈ (𝑅 RngHom 𝑆) → 𝐹 ∈ (𝑀 MgmHom 𝑁)) | ||
| Theorem | rnghmval2 20364 | The non-unital ring homomorphisms between two non-unital rings. (Contributed by AV, 1-Mar-2020.) |
| ⊢ ((𝑅 ∈ Rng ∧ 𝑆 ∈ Rng) → (𝑅 RngHom 𝑆) = ((𝑅 GrpHom 𝑆) ∩ ((mulGrp‘𝑅) MgmHom (mulGrp‘𝑆)))) | ||
| Theorem | isrngim 20365 | An isomorphism of non-unital rings is a homomorphism whose converse is also a homomorphism. (Contributed by AV, 22-Feb-2020.) |
| ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) → (𝐹 ∈ (𝑅 RngIso 𝑆) ↔ (𝐹 ∈ (𝑅 RngHom 𝑆) ∧ ◡𝐹 ∈ (𝑆 RngHom 𝑅)))) | ||
| Theorem | rngimrcl 20366 | Reverse closure for an isomorphism of non-unital rings. (Contributed by AV, 22-Feb-2020.) |
| ⊢ (𝐹 ∈ (𝑅 RngIso 𝑆) → (𝑅 ∈ V ∧ 𝑆 ∈ V)) | ||
| Theorem | rnghmghm 20367 | A non-unital ring homomorphism is an additive group homomorphism. (Contributed by AV, 23-Feb-2020.) |
| ⊢ (𝐹 ∈ (𝑅 RngHom 𝑆) → 𝐹 ∈ (𝑅 GrpHom 𝑆)) | ||
| Theorem | rnghmf 20368 | A ring homomorphism is a function. (Contributed by AV, 23-Feb-2020.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝐶 = (Base‘𝑆) ⇒ ⊢ (𝐹 ∈ (𝑅 RngHom 𝑆) → 𝐹:𝐵⟶𝐶) | ||
| Theorem | rnghmmul 20369 | A homomorphism of non-unital rings preserves multiplication. (Contributed by AV, 23-Feb-2020.) |
| ⊢ 𝑋 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ × = (.r‘𝑆) ⇒ ⊢ ((𝐹 ∈ (𝑅 RngHom 𝑆) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐹‘(𝐴 · 𝐵)) = ((𝐹‘𝐴) × (𝐹‘𝐵))) | ||
| Theorem | isrnghm2d 20370* | Demonstration of non-unital ring homomorphism. (Contributed by AV, 23-Feb-2020.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ × = (.r‘𝑆) & ⊢ (𝜑 → 𝑅 ∈ Rng) & ⊢ (𝜑 → 𝑆 ∈ Rng) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝐹‘(𝑥 · 𝑦)) = ((𝐹‘𝑥) × (𝐹‘𝑦))) & ⊢ (𝜑 → 𝐹 ∈ (𝑅 GrpHom 𝑆)) ⇒ ⊢ (𝜑 → 𝐹 ∈ (𝑅 RngHom 𝑆)) | ||
| Theorem | isrnghmd 20371* | Demonstration of non-unital ring homomorphism. (Contributed by AV, 23-Feb-2020.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ × = (.r‘𝑆) & ⊢ (𝜑 → 𝑅 ∈ Rng) & ⊢ (𝜑 → 𝑆 ∈ Rng) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝐹‘(𝑥 · 𝑦)) = ((𝐹‘𝑥) × (𝐹‘𝑦))) & ⊢ 𝐶 = (Base‘𝑆) & ⊢ + = (+g‘𝑅) & ⊢ ⨣ = (+g‘𝑆) & ⊢ (𝜑 → 𝐹:𝐵⟶𝐶) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ⨣ (𝐹‘𝑦))) ⇒ ⊢ (𝜑 → 𝐹 ∈ (𝑅 RngHom 𝑆)) | ||
| Theorem | rnghmf1o 20372 | A non-unital ring homomorphism is bijective iff its converse is also a non-unital ring homomorphism. (Contributed by AV, 27-Feb-2020.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝐶 = (Base‘𝑆) ⇒ ⊢ (𝐹 ∈ (𝑅 RngHom 𝑆) → (𝐹:𝐵–1-1-onto→𝐶 ↔ ◡𝐹 ∈ (𝑆 RngHom 𝑅))) | ||
| Theorem | isrngim2 20373 | An isomorphism of non-unital rings is a bijective homomorphism. (Contributed by AV, 23-Feb-2020.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝐶 = (Base‘𝑆) ⇒ ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) → (𝐹 ∈ (𝑅 RngIso 𝑆) ↔ (𝐹 ∈ (𝑅 RngHom 𝑆) ∧ 𝐹:𝐵–1-1-onto→𝐶))) | ||
| Theorem | rngimf1o 20374 | An isomorphism of non-unital rings is a bijection. (Contributed by AV, 23-Feb-2020.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝐶 = (Base‘𝑆) ⇒ ⊢ (𝐹 ∈ (𝑅 RngIso 𝑆) → 𝐹:𝐵–1-1-onto→𝐶) | ||
| Theorem | rngimrnghm 20375 | An isomorphism of non-unital rings is a homomorphism. (Contributed by AV, 23-Feb-2020.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝐶 = (Base‘𝑆) ⇒ ⊢ (𝐹 ∈ (𝑅 RngIso 𝑆) → 𝐹 ∈ (𝑅 RngHom 𝑆)) | ||
| Theorem | rngimcnv 20376 | The converse of an isomorphism of non-unital rings is an isomorphism of non-unital rings. (Contributed by AV, 27-Feb-2025.) |
| ⊢ (𝐹 ∈ (𝑆 RngIso 𝑇) → ◡𝐹 ∈ (𝑇 RngIso 𝑆)) | ||
| Theorem | rnghmco 20377 | The composition of non-unital ring homomorphisms is a homomorphism. (Contributed by AV, 27-Feb-2020.) |
| ⊢ ((𝐹 ∈ (𝑇 RngHom 𝑈) ∧ 𝐺 ∈ (𝑆 RngHom 𝑇)) → (𝐹 ∘ 𝐺) ∈ (𝑆 RngHom 𝑈)) | ||
| Theorem | idrnghm 20378 | The identity homomorphism on a non-unital ring. (Contributed by AV, 27-Feb-2020.) |
| ⊢ 𝐵 = (Base‘𝑅) ⇒ ⊢ (𝑅 ∈ Rng → ( I ↾ 𝐵) ∈ (𝑅 RngHom 𝑅)) | ||
| Theorem | c0mgm 20379* | The constant mapping to zero is a magma homomorphism into a monoid. Remark: Instead of the assumption that T is a monoid, it would be sufficient that T is a magma with a right or left identity. (Contributed by AV, 17-Apr-2020.) |
| ⊢ 𝐵 = (Base‘𝑆) & ⊢ 0 = (0g‘𝑇) & ⊢ 𝐻 = (𝑥 ∈ 𝐵 ↦ 0 ) ⇒ ⊢ ((𝑆 ∈ Mgm ∧ 𝑇 ∈ Mnd) → 𝐻 ∈ (𝑆 MgmHom 𝑇)) | ||
| Theorem | c0mhm 20380* | The constant mapping to zero is a monoid homomorphism. (Contributed by AV, 16-Apr-2020.) |
| ⊢ 𝐵 = (Base‘𝑆) & ⊢ 0 = (0g‘𝑇) & ⊢ 𝐻 = (𝑥 ∈ 𝐵 ↦ 0 ) ⇒ ⊢ ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) → 𝐻 ∈ (𝑆 MndHom 𝑇)) | ||
| Theorem | c0ghm 20381* | The constant mapping to zero is a group homomorphism. (Contributed by AV, 16-Apr-2020.) |
| ⊢ 𝐵 = (Base‘𝑆) & ⊢ 0 = (0g‘𝑇) & ⊢ 𝐻 = (𝑥 ∈ 𝐵 ↦ 0 ) ⇒ ⊢ ((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) → 𝐻 ∈ (𝑆 GrpHom 𝑇)) | ||
| Theorem | c0snmgmhm 20382* | The constant mapping to zero is a magma homomorphism from a magma with one element to any monoid. (Contributed by AV, 17-Apr-2020.) |
| ⊢ 𝐵 = (Base‘𝑇) & ⊢ 0 = (0g‘𝑆) & ⊢ 𝐻 = (𝑥 ∈ 𝐵 ↦ 0 ) ⇒ ⊢ ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm ∧ (♯‘𝐵) = 1) → 𝐻 ∈ (𝑇 MgmHom 𝑆)) | ||
| Theorem | c0snmhm 20383* | The constant mapping to zero is a monoid homomorphism from the trivial monoid (consisting of the zero only) to any monoid. (Contributed by AV, 17-Apr-2020.) |
| ⊢ 𝐵 = (Base‘𝑇) & ⊢ 0 = (0g‘𝑆) & ⊢ 𝐻 = (𝑥 ∈ 𝐵 ↦ 0 ) & ⊢ 𝑍 = (0g‘𝑇) ⇒ ⊢ ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd ∧ 𝐵 = {𝑍}) → 𝐻 ∈ (𝑇 MndHom 𝑆)) | ||
| Theorem | c0snghm 20384* | The constant mapping to zero is a group homomorphism from the trivial group (consisting of the zero only) to any group. (Contributed by AV, 17-Apr-2020.) |
| ⊢ 𝐵 = (Base‘𝑇) & ⊢ 0 = (0g‘𝑆) & ⊢ 𝐻 = (𝑥 ∈ 𝐵 ↦ 0 ) & ⊢ 𝑍 = (0g‘𝑇) ⇒ ⊢ ((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp ∧ 𝐵 = {𝑍}) → 𝐻 ∈ (𝑇 GrpHom 𝑆)) | ||
| Theorem | rngisomfv1 20385 | If there is a non-unital ring isomorphism between a unital ring and a non-unital ring, then the function value of the ring unity of the unital ring is an element of the base set of the non-unital ring. (Contributed by AV, 27-Feb-2025.) |
| ⊢ 1 = (1r‘𝑅) & ⊢ 𝐵 = (Base‘𝑆) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) → (𝐹‘ 1 ) ∈ 𝐵) | ||
| Theorem | rngisom1 20386* | If there is a non-unital ring isomorphism between a unital ring and a non-unital ring, then the function value of the ring unity of the unital ring is a ring unity of the non-unital ring. (Contributed by AV, 27-Feb-2025.) |
| ⊢ 1 = (1r‘𝑅) & ⊢ 𝐵 = (Base‘𝑆) & ⊢ · = (.r‘𝑆) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) → ∀𝑥 ∈ 𝐵 (((𝐹‘ 1 ) · 𝑥) = 𝑥 ∧ (𝑥 · (𝐹‘ 1 )) = 𝑥)) | ||
| Theorem | rngisomring 20387 | If there is a non-unital ring isomorphism between a unital ring and a non-unital ring, then both rings are unital. (Contributed by AV, 27-Feb-2025.) |
| ⊢ ((𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) → 𝑆 ∈ Ring) | ||
| Theorem | rngisomring1 20388 | If there is a non-unital ring isomorphism between a unital ring and a non-unital ring, then the ring unity of the second ring is the function value of the ring unity of the first ring for the isomorphism. (Contributed by AV, 16-Mar-2025.) |
| ⊢ ((𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) → (1r‘𝑆) = (𝐹‘(1r‘𝑅))) | ||
| Syntax | crh 20389 | Extend class notation with the ring homomorphisms. |
| class RingHom | ||
| Syntax | crs 20390 | Extend class notation with the ring isomorphisms. |
| class RingIso | ||
| Syntax | cric 20391 | Extend class notation with the ring isomorphism relation. |
| class ≃𝑟 | ||
| Definition | df-rhm 20392* | Define the set of ring homomorphisms from 𝑟 to 𝑠. (Contributed by Stefan O'Rear, 7-Mar-2015.) |
| ⊢ RingHom = (𝑟 ∈ Ring, 𝑠 ∈ Ring ↦ ⦋(Base‘𝑟) / 𝑣⦌⦋(Base‘𝑠) / 𝑤⦌{𝑓 ∈ (𝑤 ↑m 𝑣) ∣ ((𝑓‘(1r‘𝑟)) = (1r‘𝑠) ∧ ∀𝑥 ∈ 𝑣 ∀𝑦 ∈ 𝑣 ((𝑓‘(𝑥(+g‘𝑟)𝑦)) = ((𝑓‘𝑥)(+g‘𝑠)(𝑓‘𝑦)) ∧ (𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥)(.r‘𝑠)(𝑓‘𝑦))))}) | ||
| Definition | df-rim 20393* | Define the set of ring isomorphisms from 𝑟 to 𝑠. (Contributed by Stefan O'Rear, 7-Mar-2015.) |
| ⊢ RingIso = (𝑟 ∈ V, 𝑠 ∈ V ↦ {𝑓 ∈ (𝑟 RingHom 𝑠) ∣ ◡𝑓 ∈ (𝑠 RingHom 𝑟)}) | ||
| Theorem | dfrhm2 20394* | The property of a ring homomorphism can be decomposed into separate homomorphic conditions for addition and multiplication. (Contributed by Stefan O'Rear, 7-Mar-2015.) |
| ⊢ RingHom = (𝑟 ∈ Ring, 𝑠 ∈ Ring ↦ ((𝑟 GrpHom 𝑠) ∩ ((mulGrp‘𝑟) MndHom (mulGrp‘𝑠)))) | ||
| Definition | df-ric 20395 | Define the ring isomorphism relation, analogous to df-gic 19174: Two (unital) rings are said to be isomorphic iff they are connected by at least one isomorphism. Isomorphic rings share all global ring properties, but to relate local properties requires knowledge of a specific isomorphism. (Contributed by AV, 24-Dec-2019.) |
| ⊢ ≃𝑟 = (◡ RingIso “ (V ∖ 1o)) | ||
| Theorem | rhmrcl1 20396 | Reverse closure of a ring homomorphism. (Contributed by Stefan O'Rear, 7-Mar-2015.) |
| ⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝑅 ∈ Ring) | ||
| Theorem | rhmrcl2 20397 | Reverse closure of a ring homomorphism. (Contributed by Stefan O'Rear, 7-Mar-2015.) |
| ⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝑆 ∈ Ring) | ||
| Theorem | isrhm 20398 | A function is a ring homomorphism iff it preserves both addition and multiplication. (Contributed by Stefan O'Rear, 7-Mar-2015.) |
| ⊢ 𝑀 = (mulGrp‘𝑅) & ⊢ 𝑁 = (mulGrp‘𝑆) ⇒ ⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) ↔ ((𝑅 ∈ Ring ∧ 𝑆 ∈ Ring) ∧ (𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹 ∈ (𝑀 MndHom 𝑁)))) | ||
| Theorem | rhmmhm 20399 | A ring homomorphism is a homomorphism of multiplicative monoids. (Contributed by Stefan O'Rear, 7-Mar-2015.) |
| ⊢ 𝑀 = (mulGrp‘𝑅) & ⊢ 𝑁 = (mulGrp‘𝑆) ⇒ ⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝐹 ∈ (𝑀 MndHom 𝑁)) | ||
| Theorem | rhmisrnghm 20400 | Each unital ring homomorphism is a non-unital ring homomorphism. (Contributed by AV, 29-Feb-2020.) |
| ⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝐹 ∈ (𝑅 RngHom 𝑆)) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |