HomeHome Metamath Proof Explorer
Theorem List (p. 204 of 489)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-30950)
  Hilbert Space Explorer  Hilbert Space Explorer
(30951-32473)
  Users' Mathboxes  Users' Mathboxes
(32474-48899)
 

Theorem List for Metamath Proof Explorer - 20301-20400   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremringacl 20301 Closure of the addition operation of a ring. (Contributed by Mario Carneiro, 14-Jan-2014.)
𝐵 = (Base‘𝑅)    &    + = (+g𝑅)       ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → (𝑋 + 𝑌) ∈ 𝐵)
 
Theoremringcomlem 20302 Lemma for ringcom 20303. This (formerly) part of the proof for ringcom 20303 is also applicable for semirings (without using the commutativity of the addition given per definition of a semiring), see srgcom4lem 20240. (Contributed by Gérard Lang, 4-Dec-2014.) Variant of rglcom4d 20238 for rings. (Revised by AV, 5-Feb-2025.)
𝐵 = (Base‘𝑅)    &    + = (+g𝑅)       ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 + 𝑋) + (𝑌 + 𝑌)) = ((𝑋 + 𝑌) + (𝑋 + 𝑌)))
 
Theoremringcom 20303 Commutativity of the additive group of a ring. (See also lmodcom 20928.) This proof requires the existence of a multiplicative identity, and the existence of additive inverses. Therefore, this proof is not applicable for semirings. (Contributed by Gérard Lang, 4-Dec-2014.) (Proof shortened by AV, 1-Feb-2025.)
𝐵 = (Base‘𝑅)    &    + = (+g𝑅)       ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → (𝑋 + 𝑌) = (𝑌 + 𝑋))
 
Theoremringabl 20304 A ring is an Abelian group. (Contributed by NM, 26-Aug-2011.)
(𝑅 ∈ Ring → 𝑅 ∈ Abel)
 
Theoremringcmn 20305 A ring is a commutative monoid. (Contributed by Mario Carneiro, 7-Jan-2015.)
(𝑅 ∈ Ring → 𝑅 ∈ CMnd)
 
Theoremringabld 20306 A ring is an Abelian group. (Contributed by SN, 1-Jun-2024.)
(𝜑𝑅 ∈ Ring)       (𝜑𝑅 ∈ Abel)
 
Theoremringcmnd 20307 A ring is a commutative monoid. (Contributed by SN, 1-Jun-2024.)
(𝜑𝑅 ∈ Ring)       (𝜑𝑅 ∈ CMnd)
 
Theoremringrng 20308 A unital ring is a non-unital ring. (Contributed by AV, 6-Jan-2020.)
(𝑅 ∈ Ring → 𝑅 ∈ Rng)
 
Theoremringssrng 20309 The unital rings are non-unital rings. (Contributed by AV, 20-Mar-2020.)
Ring ⊆ Rng
 
Theoremisringrng 20310* The predicate "is a unital ring" as extension of the predicate "is a non-unital ring". (Contributed by AV, 17-Feb-2020.)
𝐵 = (Base‘𝑅)    &    · = (.r𝑅)       (𝑅 ∈ Ring ↔ (𝑅 ∈ Rng ∧ ∃𝑥𝐵𝑦𝐵 ((𝑥 · 𝑦) = 𝑦 ∧ (𝑦 · 𝑥) = 𝑦)))
 
Theoremringpropd 20311* If two structures have the same base set, and the values of their group (addition) and ring (multiplication) operations are equal for all pairs of elements of the base set, one is a ring iff the other one is. (Contributed by Mario Carneiro, 6-Dec-2014.) (Revised by Mario Carneiro, 6-Jan-2015.)
(𝜑𝐵 = (Base‘𝐾))    &   (𝜑𝐵 = (Base‘𝐿))    &   ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))    &   ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝐾)𝑦) = (𝑥(.r𝐿)𝑦))       (𝜑 → (𝐾 ∈ Ring ↔ 𝐿 ∈ Ring))
 
Theoremcrngpropd 20312* If two structures have the same group components (properties), one is a commutative ring iff the other one is. (Contributed by Mario Carneiro, 8-Feb-2015.)
(𝜑𝐵 = (Base‘𝐾))    &   (𝜑𝐵 = (Base‘𝐿))    &   ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))    &   ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝐾)𝑦) = (𝑥(.r𝐿)𝑦))       (𝜑 → (𝐾 ∈ CRing ↔ 𝐿 ∈ CRing))
 
Theoremringprop 20313 If two structures have the same ring components (properties), one is a ring iff the other one is. (Contributed by Mario Carneiro, 11-Oct-2013.)
(Base‘𝐾) = (Base‘𝐿)    &   (+g𝐾) = (+g𝐿)    &   (.r𝐾) = (.r𝐿)       (𝐾 ∈ Ring ↔ 𝐿 ∈ Ring)
 
Theoremisringd 20314* Properties that determine a ring. (Contributed by NM, 2-Aug-2013.)
(𝜑𝐵 = (Base‘𝑅))    &   (𝜑+ = (+g𝑅))    &   (𝜑· = (.r𝑅))    &   (𝜑𝑅 ∈ Grp)    &   ((𝜑𝑥𝐵𝑦𝐵) → (𝑥 · 𝑦) ∈ 𝐵)    &   ((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → ((𝑥 · 𝑦) · 𝑧) = (𝑥 · (𝑦 · 𝑧)))    &   ((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → (𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)))    &   ((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧)))    &   (𝜑1𝐵)    &   ((𝜑𝑥𝐵) → ( 1 · 𝑥) = 𝑥)    &   ((𝜑𝑥𝐵) → (𝑥 · 1 ) = 𝑥)       (𝜑𝑅 ∈ Ring)
 
Theoremiscrngd 20315* Properties that determine a commutative ring. (Contributed by Mario Carneiro, 7-Jan-2015.)
(𝜑𝐵 = (Base‘𝑅))    &   (𝜑+ = (+g𝑅))    &   (𝜑· = (.r𝑅))    &   (𝜑𝑅 ∈ Grp)    &   ((𝜑𝑥𝐵𝑦𝐵) → (𝑥 · 𝑦) ∈ 𝐵)    &   ((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → ((𝑥 · 𝑦) · 𝑧) = (𝑥 · (𝑦 · 𝑧)))    &   ((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → (𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)))    &   ((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧)))    &   (𝜑1𝐵)    &   ((𝜑𝑥𝐵) → ( 1 · 𝑥) = 𝑥)    &   ((𝜑𝑥𝐵) → (𝑥 · 1 ) = 𝑥)    &   ((𝜑𝑥𝐵𝑦𝐵) → (𝑥 · 𝑦) = (𝑦 · 𝑥))       (𝜑𝑅 ∈ CRing)
 
Theoremringlz 20316 The zero of a unital ring is a left-absorbing element. (Contributed by FL, 31-Aug-2009.) (Proof shortened by AV, 30-Mar-2025.)
𝐵 = (Base‘𝑅)    &    · = (.r𝑅)    &    0 = (0g𝑅)       ((𝑅 ∈ Ring ∧ 𝑋𝐵) → ( 0 · 𝑋) = 0 )
 
Theoremringrz 20317 The zero of a unital ring is a right-absorbing element. (Contributed by FL, 31-Aug-2009.) (Proof shortened by AV, 30-Mar-2025.)
𝐵 = (Base‘𝑅)    &    · = (.r𝑅)    &    0 = (0g𝑅)       ((𝑅 ∈ Ring ∧ 𝑋𝐵) → (𝑋 · 0 ) = 0 )
 
Theoremringlzd 20318 The zero of a unital ring is a left-absorbing element. (Contributed by SN, 7-Mar-2025.)
𝐵 = (Base‘𝑅)    &    · = (.r𝑅)    &    0 = (0g𝑅)    &   (𝜑𝑅 ∈ Ring)    &   (𝜑𝑋𝐵)       (𝜑 → ( 0 · 𝑋) = 0 )
 
Theoremringrzd 20319 The zero of a unital ring is a right-absorbing element. (Contributed by SN, 7-Mar-2025.)
𝐵 = (Base‘𝑅)    &    · = (.r𝑅)    &    0 = (0g𝑅)    &   (𝜑𝑅 ∈ Ring)    &   (𝜑𝑋𝐵)       (𝜑 → (𝑋 · 0 ) = 0 )
 
Theoremringsrg 20320 Any ring is also a semiring. (Contributed by Thierry Arnoux, 1-Apr-2018.)
(𝑅 ∈ Ring → 𝑅 ∈ SRing)
 
Theoremring1eq0 20321 If one and zero are equal, then any two elements of a ring are equal. Alternately, every ring has one distinct from zero except the zero ring containing the single element {0}. (Contributed by Mario Carneiro, 10-Sep-2014.)
𝐵 = (Base‘𝑅)    &    1 = (1r𝑅)    &    0 = (0g𝑅)       ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → ( 1 = 0𝑋 = 𝑌))
 
Theoremring1ne0 20322 If a ring has at least two elements, its one and zero are different. (Contributed by AV, 13-Apr-2019.)
𝐵 = (Base‘𝑅)    &    1 = (1r𝑅)    &    0 = (0g𝑅)       ((𝑅 ∈ Ring ∧ 1 < (♯‘𝐵)) → 10 )
 
Theoremringinvnz1ne0 20323* In a unital ring, a left invertible element is different from zero iff 10. (Contributed by FL, 18-Apr-2010.) (Revised by AV, 24-Aug-2021.)
𝐵 = (Base‘𝑅)    &    · = (.r𝑅)    &    1 = (1r𝑅)    &    0 = (0g𝑅)    &   (𝜑𝑅 ∈ Ring)    &   (𝜑𝑋𝐵)    &   (𝜑 → ∃𝑎𝐵 (𝑎 · 𝑋) = 1 )       (𝜑 → (𝑋010 ))
 
Theoremringinvnzdiv 20324* In a unital ring, a left invertible element is not a zero divisor. (Contributed by FL, 18-Apr-2010.) (Revised by Jeff Madsen, 18-Apr-2010.) (Revised by AV, 24-Aug-2021.)
𝐵 = (Base‘𝑅)    &    · = (.r𝑅)    &    1 = (1r𝑅)    &    0 = (0g𝑅)    &   (𝜑𝑅 ∈ Ring)    &   (𝜑𝑋𝐵)    &   (𝜑 → ∃𝑎𝐵 (𝑎 · 𝑋) = 1 )    &   (𝜑𝑌𝐵)       (𝜑 → ((𝑋 · 𝑌) = 0𝑌 = 0 ))
 
Theoremringnegl 20325 Negation in a ring is the same as left multiplication by -1. (rngonegmn1l 37901 analog.) (Contributed by Jeff Madsen, 19-Jun-2010.) (Revised by Mario Carneiro, 2-Jul-2014.)
𝐵 = (Base‘𝑅)    &    · = (.r𝑅)    &    1 = (1r𝑅)    &   𝑁 = (invg𝑅)    &   (𝜑𝑅 ∈ Ring)    &   (𝜑𝑋𝐵)       (𝜑 → ((𝑁1 ) · 𝑋) = (𝑁𝑋))
 
Theoremringnegr 20326 Negation in a ring is the same as right multiplication by -1. (rngonegmn1r 37902 analog.) (Contributed by Jeff Madsen, 19-Jun-2010.) (Revised by Mario Carneiro, 2-Jul-2014.)
𝐵 = (Base‘𝑅)    &    · = (.r𝑅)    &    1 = (1r𝑅)    &   𝑁 = (invg𝑅)    &   (𝜑𝑅 ∈ Ring)    &   (𝜑𝑋𝐵)       (𝜑 → (𝑋 · (𝑁1 )) = (𝑁𝑋))
 
Theoremringmneg1 20327 Negation of a product in a ring. (mulneg1 11726 analog.) Compared with rngmneg1 20194, the proof is shorter making use of the existence of a ring unity. (Contributed by Jeff Madsen, 19-Jun-2010.) (Revised by Mario Carneiro, 2-Jul-2014.)
𝐵 = (Base‘𝑅)    &    · = (.r𝑅)    &   𝑁 = (invg𝑅)    &   (𝜑𝑅 ∈ Ring)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)       (𝜑 → ((𝑁𝑋) · 𝑌) = (𝑁‘(𝑋 · 𝑌)))
 
Theoremringmneg2 20328 Negation of a product in a ring. (mulneg2 11727 analog.) Compared with rngmneg2 20195, the proof is shorter making use of the existence of a ring unity. (Contributed by Jeff Madsen, 19-Jun-2010.) (Revised by Mario Carneiro, 2-Jul-2014.)
𝐵 = (Base‘𝑅)    &    · = (.r𝑅)    &   𝑁 = (invg𝑅)    &   (𝜑𝑅 ∈ Ring)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)       (𝜑 → (𝑋 · (𝑁𝑌)) = (𝑁‘(𝑋 · 𝑌)))
 
Theoremringm2neg 20329 Double negation of a product in a ring. (mul2neg 11729 analog.) (Contributed by Mario Carneiro, 4-Dec-2014.) (Proof shortened by AV, 30-Mar-2025.)
𝐵 = (Base‘𝑅)    &    · = (.r𝑅)    &   𝑁 = (invg𝑅)    &   (𝜑𝑅 ∈ Ring)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)       (𝜑 → ((𝑁𝑋) · (𝑁𝑌)) = (𝑋 · 𝑌))
 
Theoremringsubdi 20330 Ring multiplication distributes over subtraction. (subdi 11723 analog.) (Contributed by Jeff Madsen, 19-Jun-2010.) (Revised by Mario Carneiro, 2-Jul-2014.)
𝐵 = (Base‘𝑅)    &    · = (.r𝑅)    &    = (-g𝑅)    &   (𝜑𝑅 ∈ Ring)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)    &   (𝜑𝑍𝐵)       (𝜑 → (𝑋 · (𝑌 𝑍)) = ((𝑋 · 𝑌) (𝑋 · 𝑍)))
 
Theoremringsubdir 20331 Ring multiplication distributes over subtraction. (subdir 11724 analog.) (Contributed by Jeff Madsen, 19-Jun-2010.) (Revised by Mario Carneiro, 2-Jul-2014.)
𝐵 = (Base‘𝑅)    &    · = (.r𝑅)    &    = (-g𝑅)    &   (𝜑𝑅 ∈ Ring)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)    &   (𝜑𝑍𝐵)       (𝜑 → ((𝑋 𝑌) · 𝑍) = ((𝑋 · 𝑍) (𝑌 · 𝑍)))
 
Theoremmulgass2 20332 An associative property between group multiple and ring multiplication. (Contributed by Mario Carneiro, 14-Jun-2015.)
𝐵 = (Base‘𝑅)    &    · = (.g𝑅)    &    × = (.r𝑅)       ((𝑅 ∈ Ring ∧ (𝑁 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → ((𝑁 · 𝑋) × 𝑌) = (𝑁 · (𝑋 × 𝑌)))
 
Theoremring1 20333 The (smallest) structure representing a zero ring. (Contributed by AV, 28-Apr-2019.)
𝑀 = {⟨(Base‘ndx), {𝑍}⟩, ⟨(+g‘ndx), {⟨⟨𝑍, 𝑍⟩, 𝑍⟩}⟩, ⟨(.r‘ndx), {⟨⟨𝑍, 𝑍⟩, 𝑍⟩}⟩}       (𝑍𝑉𝑀 ∈ Ring)
 
Theoremringn0 20334 Rings exist. (Contributed by AV, 29-Apr-2019.)
Ring ≠ ∅
 
Theoremringlghm 20335* Left-multiplication in a ring by a fixed element of the ring is a group homomorphism. (It is not usually a ring homomorphism.) (Contributed by Mario Carneiro, 4-May-2015.)
𝐵 = (Base‘𝑅)    &    · = (.r𝑅)       ((𝑅 ∈ Ring ∧ 𝑋𝐵) → (𝑥𝐵 ↦ (𝑋 · 𝑥)) ∈ (𝑅 GrpHom 𝑅))
 
Theoremringrghm 20336* Right-multiplication in a ring by a fixed element of the ring is a group homomorphism. (It is not usually a ring homomorphism.) (Contributed by Mario Carneiro, 4-May-2015.)
𝐵 = (Base‘𝑅)    &    · = (.r𝑅)       ((𝑅 ∈ Ring ∧ 𝑋𝐵) → (𝑥𝐵 ↦ (𝑥 · 𝑋)) ∈ (𝑅 GrpHom 𝑅))
 
Theoremgsummulc1OLD 20337* Obsolete version of gsummulc1 20339 as of 7-Mar-2025. (Contributed by Mario Carneiro, 19-Dec-2014.) (Revised by AV, 10-Jul-2019.) (Proof modification is discouraged.) (New usage is discouraged.)
𝐵 = (Base‘𝑅)    &    0 = (0g𝑅)    &    + = (+g𝑅)    &    · = (.r𝑅)    &   (𝜑𝑅 ∈ Ring)    &   (𝜑𝐴𝑉)    &   (𝜑𝑌𝐵)    &   ((𝜑𝑘𝐴) → 𝑋𝐵)    &   (𝜑 → (𝑘𝐴𝑋) finSupp 0 )       (𝜑 → (𝑅 Σg (𝑘𝐴 ↦ (𝑋 · 𝑌))) = ((𝑅 Σg (𝑘𝐴𝑋)) · 𝑌))
 
Theoremgsummulc2OLD 20338* Obsolete version of gsummulc2 20340 as of 7-Mar-2025. (Contributed by Mario Carneiro, 19-Dec-2014.) (Revised by AV, 10-Jul-2019.) (Proof modification is discouraged.) (New usage is discouraged.)
𝐵 = (Base‘𝑅)    &    0 = (0g𝑅)    &    + = (+g𝑅)    &    · = (.r𝑅)    &   (𝜑𝑅 ∈ Ring)    &   (𝜑𝐴𝑉)    &   (𝜑𝑌𝐵)    &   ((𝜑𝑘𝐴) → 𝑋𝐵)    &   (𝜑 → (𝑘𝐴𝑋) finSupp 0 )       (𝜑 → (𝑅 Σg (𝑘𝐴 ↦ (𝑌 · 𝑋))) = (𝑌 · (𝑅 Σg (𝑘𝐴𝑋))))
 
Theoremgsummulc1 20339* A finite ring sum multiplied by a constant. (Contributed by Mario Carneiro, 19-Dec-2014.) (Revised by AV, 10-Jul-2019.) Remove unused hypothesis. (Revised by SN, 7-Mar-2025.)
𝐵 = (Base‘𝑅)    &    0 = (0g𝑅)    &    · = (.r𝑅)    &   (𝜑𝑅 ∈ Ring)    &   (𝜑𝐴𝑉)    &   (𝜑𝑌𝐵)    &   ((𝜑𝑘𝐴) → 𝑋𝐵)    &   (𝜑 → (𝑘𝐴𝑋) finSupp 0 )       (𝜑 → (𝑅 Σg (𝑘𝐴 ↦ (𝑋 · 𝑌))) = ((𝑅 Σg (𝑘𝐴𝑋)) · 𝑌))
 
Theoremgsummulc2 20340* A finite ring sum multiplied by a constant. (Contributed by Mario Carneiro, 19-Dec-2014.) (Revised by AV, 10-Jul-2019.) Remove unused hypothesis. (Revised by SN, 7-Mar-2025.)
𝐵 = (Base‘𝑅)    &    0 = (0g𝑅)    &    · = (.r𝑅)    &   (𝜑𝑅 ∈ Ring)    &   (𝜑𝐴𝑉)    &   (𝜑𝑌𝐵)    &   ((𝜑𝑘𝐴) → 𝑋𝐵)    &   (𝜑 → (𝑘𝐴𝑋) finSupp 0 )       (𝜑 → (𝑅 Σg (𝑘𝐴 ↦ (𝑌 · 𝑋))) = (𝑌 · (𝑅 Σg (𝑘𝐴𝑋))))
 
Theoremgsummgp0 20341* If one factor in a finite group sum of the multiplicative group of a commutative ring is 0, the whole "sum" (i.e. product) is 0. (Contributed by AV, 3-Jan-2019.)
𝐺 = (mulGrp‘𝑅)    &    0 = (0g𝑅)    &   (𝜑𝑅 ∈ CRing)    &   (𝜑𝑁 ∈ Fin)    &   ((𝜑𝑛𝑁) → 𝐴 ∈ (Base‘𝑅))    &   ((𝜑𝑛 = 𝑖) → 𝐴 = 𝐵)    &   (𝜑 → ∃𝑖𝑁 𝐵 = 0 )       (𝜑 → (𝐺 Σg (𝑛𝑁𝐴)) = 0 )
 
Theoremgsumdixp 20342* Distribute a binary product of sums to a sum of binary products in a ring. (Contributed by Mario Carneiro, 8-Mar-2015.) (Revised by AV, 10-Jul-2019.)
𝐵 = (Base‘𝑅)    &    · = (.r𝑅)    &    0 = (0g𝑅)    &   (𝜑𝐼𝑉)    &   (𝜑𝐽𝑊)    &   (𝜑𝑅 ∈ Ring)    &   ((𝜑𝑥𝐼) → 𝑋𝐵)    &   ((𝜑𝑦𝐽) → 𝑌𝐵)    &   (𝜑 → (𝑥𝐼𝑋) finSupp 0 )    &   (𝜑 → (𝑦𝐽𝑌) finSupp 0 )       (𝜑 → ((𝑅 Σg (𝑥𝐼𝑋)) · (𝑅 Σg (𝑦𝐽𝑌))) = (𝑅 Σg (𝑥𝐼, 𝑦𝐽 ↦ (𝑋 · 𝑌))))
 
Theoremprdsmulrcl 20343 A structure product of rings has closed binary operation. (Contributed by Mario Carneiro, 11-Mar-2015.) (Proof shortened by AV, 30-Mar-2025.)
𝑌 = (𝑆Xs𝑅)    &   𝐵 = (Base‘𝑌)    &    · = (.r𝑌)    &   (𝜑𝑆𝑉)    &   (𝜑𝐼𝑊)    &   (𝜑𝑅:𝐼⟶Ring)    &   (𝜑𝐹𝐵)    &   (𝜑𝐺𝐵)       (𝜑 → (𝐹 · 𝐺) ∈ 𝐵)
 
Theoremprdsringd 20344 A product of rings is a ring. (Contributed by Mario Carneiro, 11-Mar-2015.)
𝑌 = (𝑆Xs𝑅)    &   (𝜑𝐼𝑊)    &   (𝜑𝑆𝑉)    &   (𝜑𝑅:𝐼⟶Ring)       (𝜑𝑌 ∈ Ring)
 
Theoremprdscrngd 20345 A product of commutative rings is a commutative ring. Since the resulting ring will have zero divisors in all nontrivial cases, this cannot be strengthened much further. (Contributed by Mario Carneiro, 11-Mar-2015.)
𝑌 = (𝑆Xs𝑅)    &   (𝜑𝐼𝑊)    &   (𝜑𝑆𝑉)    &   (𝜑𝑅:𝐼⟶CRing)       (𝜑𝑌 ∈ CRing)
 
Theoremprds1 20346 Value of the ring unity in a structure family product. (Contributed by Mario Carneiro, 11-Mar-2015.)
𝑌 = (𝑆Xs𝑅)    &   (𝜑𝐼𝑊)    &   (𝜑𝑆𝑉)    &   (𝜑𝑅:𝐼⟶Ring)       (𝜑 → (1r𝑅) = (1r𝑌))
 
Theorempwsring 20347 A structure power of a ring is a ring. (Contributed by Mario Carneiro, 11-Mar-2015.)
𝑌 = (𝑅s 𝐼)       ((𝑅 ∈ Ring ∧ 𝐼𝑉) → 𝑌 ∈ Ring)
 
Theorempws1 20348 Value of the ring unity in a structure power. (Contributed by Mario Carneiro, 11-Mar-2015.)
𝑌 = (𝑅s 𝐼)    &    1 = (1r𝑅)       ((𝑅 ∈ Ring ∧ 𝐼𝑉) → (𝐼 × { 1 }) = (1r𝑌))
 
Theorempwscrng 20349 A structure power of a commutative ring is a commutative ring. (Contributed by Mario Carneiro, 11-Mar-2015.)
𝑌 = (𝑅s 𝐼)       ((𝑅 ∈ CRing ∧ 𝐼𝑉) → 𝑌 ∈ CRing)
 
Theorempwsmgp 20350 The multiplicative group of the power structure resembles the power of the multiplicative group. (Contributed by Mario Carneiro, 12-Mar-2015.)
𝑌 = (𝑅s 𝐼)    &   𝑀 = (mulGrp‘𝑅)    &   𝑍 = (𝑀s 𝐼)    &   𝑁 = (mulGrp‘𝑌)    &   𝐵 = (Base‘𝑁)    &   𝐶 = (Base‘𝑍)    &    + = (+g𝑁)    &    = (+g𝑍)       ((𝑅𝑉𝐼𝑊) → (𝐵 = 𝐶+ = ))
 
Theorempwspjmhmmgpd 20351* The projection given by pwspjmhm 18865 is also a monoid homomorphism between the respective multiplicative groups. (Contributed by SN, 30-Jul-2024.)
𝑌 = (𝑅s 𝐼)    &   𝐵 = (Base‘𝑌)    &   𝑀 = (mulGrp‘𝑌)    &   𝑇 = (mulGrp‘𝑅)    &   (𝜑𝑅 ∈ Ring)    &   (𝜑𝐼𝑉)    &   (𝜑𝐴𝐼)       (𝜑 → (𝑥𝐵 ↦ (𝑥𝐴)) ∈ (𝑀 MndHom 𝑇))
 
Theorempwsexpg 20352 Value of a group exponentiation in a structure power. Compare pwsmulg 19159. (Contributed by SN, 30-Jul-2024.)
𝑌 = (𝑅s 𝐼)    &   𝐵 = (Base‘𝑌)    &   𝑀 = (mulGrp‘𝑌)    &   𝑇 = (mulGrp‘𝑅)    &    = (.g𝑀)    &    · = (.g𝑇)    &   (𝜑𝑅 ∈ Ring)    &   (𝜑𝐼𝑉)    &   (𝜑𝑁 ∈ ℕ0)    &   (𝜑𝑋𝐵)    &   (𝜑𝐴𝐼)       (𝜑 → ((𝑁 𝑋)‘𝐴) = (𝑁 · (𝑋𝐴)))
 
Theoremimasring 20353* The image structure of a ring is a ring. (Contributed by Mario Carneiro, 14-Jun-2015.)
(𝜑𝑈 = (𝐹s 𝑅))    &   (𝜑𝑉 = (Base‘𝑅))    &    + = (+g𝑅)    &    · = (.r𝑅)    &    1 = (1r𝑅)    &   (𝜑𝐹:𝑉onto𝐵)    &   ((𝜑 ∧ (𝑎𝑉𝑏𝑉) ∧ (𝑝𝑉𝑞𝑉)) → (((𝐹𝑎) = (𝐹𝑝) ∧ (𝐹𝑏) = (𝐹𝑞)) → (𝐹‘(𝑎 + 𝑏)) = (𝐹‘(𝑝 + 𝑞))))    &   ((𝜑 ∧ (𝑎𝑉𝑏𝑉) ∧ (𝑝𝑉𝑞𝑉)) → (((𝐹𝑎) = (𝐹𝑝) ∧ (𝐹𝑏) = (𝐹𝑞)) → (𝐹‘(𝑎 · 𝑏)) = (𝐹‘(𝑝 · 𝑞))))    &   (𝜑𝑅 ∈ Ring)       (𝜑 → (𝑈 ∈ Ring ∧ (𝐹1 ) = (1r𝑈)))
 
Theoremimasringf1 20354 The image of a ring under an injection is a ring (imasmndf1 18811 analog). (Contributed by AV, 27-Feb-2025.)
𝑈 = (𝐹s 𝑅)    &   𝑉 = (Base‘𝑅)       ((𝐹:𝑉1-1𝐵𝑅 ∈ Ring) → 𝑈 ∈ Ring)
 
Theoremxpsringd 20355 A product of two rings is a ring (xpsmnd 18812 analog). (Contributed by AV, 28-Feb-2025.)
𝑌 = (𝑆 ×s 𝑅)    &   (𝜑𝑆 ∈ Ring)    &   (𝜑𝑅 ∈ Ring)       (𝜑𝑌 ∈ Ring)
 
Theoremxpsring1d 20356 The multiplicative identity element of a binary product of rings. (Contributed by AV, 16-Mar-2025.)
𝑌 = (𝑆 ×s 𝑅)    &   (𝜑𝑆 ∈ Ring)    &   (𝜑𝑅 ∈ Ring)       (𝜑 → (1r𝑌) = ⟨(1r𝑆), (1r𝑅)⟩)
 
Theoremqusring2 20357* The quotient structure of a ring is a ring. (Contributed by Mario Carneiro, 14-Jun-2015.)
(𝜑𝑈 = (𝑅 /s ))    &   (𝜑𝑉 = (Base‘𝑅))    &    + = (+g𝑅)    &    · = (.r𝑅)    &    1 = (1r𝑅)    &   (𝜑 Er 𝑉)    &   (𝜑 → ((𝑎 𝑝𝑏 𝑞) → (𝑎 + 𝑏) (𝑝 + 𝑞)))    &   (𝜑 → ((𝑎 𝑝𝑏 𝑞) → (𝑎 · 𝑏) (𝑝 · 𝑞)))    &   (𝜑𝑅 ∈ Ring)       (𝜑 → (𝑈 ∈ Ring ∧ [ 1 ] = (1r𝑈)))
 
Theoremcrngbinom 20358* The binomial theorem for commutative rings (special case of csrgbinom 20259): (𝐴 + 𝐵)↑𝑁 is the sum from 𝑘 = 0 to 𝑁 of (𝑁C𝑘) · ((𝐴𝑘) · (𝐵↑(𝑁𝑘)). (Contributed by AV, 24-Aug-2019.)
𝑆 = (Base‘𝑅)    &    × = (.r𝑅)    &    · = (.g𝑅)    &    + = (+g𝑅)    &   𝐺 = (mulGrp‘𝑅)    &    = (.g𝐺)       (((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0) ∧ (𝐴𝑆𝐵𝑆)) → (𝑁 (𝐴 + 𝐵)) = (𝑅 Σg (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · (((𝑁𝑘) 𝐴) × (𝑘 𝐵))))))
 
10.3.6  Opposite ring
 
Syntaxcoppr 20359 The opposite ring operation.
class oppr
 
Definitiondf-oppr 20360 Define an opposite ring, which is the same as the original ring but with multiplication written the other way around. (Contributed by Mario Carneiro, 1-Dec-2014.)
oppr = (𝑓 ∈ V ↦ (𝑓 sSet ⟨(.r‘ndx), tpos (.r𝑓)⟩))
 
Theoremopprval 20361 Value of the opposite ring. (Contributed by Mario Carneiro, 1-Dec-2014.)
𝐵 = (Base‘𝑅)    &    · = (.r𝑅)    &   𝑂 = (oppr𝑅)       𝑂 = (𝑅 sSet ⟨(.r‘ndx), tpos · ⟩)
 
Theoremopprmulfval 20362 Value of the multiplication operation of an opposite ring. (Contributed by Mario Carneiro, 1-Dec-2014.)
𝐵 = (Base‘𝑅)    &    · = (.r𝑅)    &   𝑂 = (oppr𝑅)    &    = (.r𝑂)        = tpos ·
 
Theoremopprmul 20363 Value of the multiplication operation of an opposite ring. Hypotheses eliminated by a suggestion of Stefan O'Rear, 30-Aug-2015. (Contributed by Mario Carneiro, 1-Dec-2014.) (Revised by Mario Carneiro, 30-Aug-2015.)
𝐵 = (Base‘𝑅)    &    · = (.r𝑅)    &   𝑂 = (oppr𝑅)    &    = (.r𝑂)       (𝑋 𝑌) = (𝑌 · 𝑋)
 
Theoremcrngoppr 20364 In a commutative ring, the opposite ring is equivalent to the original ring (for theorems like unitpropd 20443). (Contributed by Mario Carneiro, 14-Jun-2015.)
𝐵 = (Base‘𝑅)    &    · = (.r𝑅)    &   𝑂 = (oppr𝑅)    &    = (.r𝑂)       ((𝑅 ∈ CRing ∧ 𝑋𝐵𝑌𝐵) → (𝑋 · 𝑌) = (𝑋 𝑌))
 
Theoremopprlem 20365 Lemma for opprbas 20367 and oppradd 20369. (Contributed by Mario Carneiro, 1-Dec-2014.) (Revised by AV, 6-Nov-2024.)
𝑂 = (oppr𝑅)    &   𝐸 = Slot (𝐸‘ndx)    &   (𝐸‘ndx) ≠ (.r‘ndx)       (𝐸𝑅) = (𝐸𝑂)
 
TheoremopprlemOLD 20366 Obsolete version of opprlem 20365 as of 6-Nov-2024. Lemma for opprbas 20367 and oppradd 20369. (Contributed by Mario Carneiro, 1-Dec-2014.) (New usage is discouraged.) (Proof modification is discouraged.)
𝑂 = (oppr𝑅)    &   𝐸 = Slot 𝑁    &   𝑁 ∈ ℕ    &   𝑁 < 3       (𝐸𝑅) = (𝐸𝑂)
 
Theoremopprbas 20367 Base set of an opposite ring. (Contributed by Mario Carneiro, 1-Dec-2014.) (Proof shortened by AV, 6-Nov-2024.)
𝑂 = (oppr𝑅)    &   𝐵 = (Base‘𝑅)       𝐵 = (Base‘𝑂)
 
TheoremopprbasOLD 20368 Obsolete proof of opprbas 20367 as of 6-Nov-2024. Base set of an opposite ring. (Contributed by Mario Carneiro, 1-Dec-2014.) (New usage is discouraged.) (Proof modification is discouraged.)
𝑂 = (oppr𝑅)    &   𝐵 = (Base‘𝑅)       𝐵 = (Base‘𝑂)
 
Theoremoppradd 20369 Addition operation of an opposite ring. (Contributed by Mario Carneiro, 1-Dec-2014.) (Proof shortened by AV, 6-Nov-2024.)
𝑂 = (oppr𝑅)    &    + = (+g𝑅)        + = (+g𝑂)
 
TheoremoppraddOLD 20370 Obsolete proof of opprbas 20367 as of 6-Nov-2024. Addition operation of an opposite ring. (Contributed by Mario Carneiro, 1-Dec-2014.) (New usage is discouraged.) (Proof modification is discouraged.)
𝑂 = (oppr𝑅)    &    + = (+g𝑅)        + = (+g𝑂)
 
Theoremopprrng 20371 An opposite non-unital ring is a non-unital ring. (Contributed by AV, 15-Feb-2025.)
𝑂 = (oppr𝑅)       (𝑅 ∈ Rng → 𝑂 ∈ Rng)
 
Theoremopprrngb 20372 A class is a non-unital ring if and only if its opposite is a non-unital ring. Bidirectional form of opprrng 20371. (Contributed by AV, 15-Feb-2025.)
𝑂 = (oppr𝑅)       (𝑅 ∈ Rng ↔ 𝑂 ∈ Rng)
 
Theoremopprring 20373 An opposite ring is a ring. (Contributed by Mario Carneiro, 1-Dec-2014.) (Revised by Mario Carneiro, 30-Aug-2015.) (Proof shortened by AV, 30-Mar-2025.)
𝑂 = (oppr𝑅)       (𝑅 ∈ Ring → 𝑂 ∈ Ring)
 
Theoremopprringb 20374 Bidirectional form of opprring 20373. (Contributed by Mario Carneiro, 6-Dec-2014.)
𝑂 = (oppr𝑅)       (𝑅 ∈ Ring ↔ 𝑂 ∈ Ring)
 
Theoremoppr0 20375 Additive identity of an opposite ring. (Contributed by Mario Carneiro, 1-Dec-2014.)
𝑂 = (oppr𝑅)    &    0 = (0g𝑅)        0 = (0g𝑂)
 
Theoremoppr1 20376 Multiplicative identity of an opposite ring. (Contributed by Mario Carneiro, 1-Dec-2014.)
𝑂 = (oppr𝑅)    &    1 = (1r𝑅)        1 = (1r𝑂)
 
Theoremopprneg 20377 The negative function in an opposite ring. (Contributed by Mario Carneiro, 5-Dec-2014.) (Revised by Mario Carneiro, 2-Oct-2015.)
𝑂 = (oppr𝑅)    &   𝑁 = (invg𝑅)       𝑁 = (invg𝑂)
 
Theoremopprsubg 20378 Being a subgroup is a symmetric property. (Contributed by Mario Carneiro, 6-Dec-2014.)
𝑂 = (oppr𝑅)       (SubGrp‘𝑅) = (SubGrp‘𝑂)
 
Theoremmulgass3 20379 An associative property between group multiple and ring multiplication. (Contributed by Mario Carneiro, 14-Jun-2015.)
𝐵 = (Base‘𝑅)    &    · = (.g𝑅)    &    × = (.r𝑅)       ((𝑅 ∈ Ring ∧ (𝑁 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → (𝑋 × (𝑁 · 𝑌)) = (𝑁 · (𝑋 × 𝑌)))
 
10.3.7  Divisibility
 
Syntaxcdsr 20380 Ring divisibility relation.
class r
 
Syntaxcui 20381 Units in a ring.
class Unit
 
Syntaxcir 20382 Ring irreducibles.
class Irred
 
Definitiondf-dvdsr 20383* Define the (right) divisibility relation in a ring. Access to the left divisibility relation is available through (∥r‘(oppr𝑅)). (Contributed by Mario Carneiro, 1-Dec-2014.)
r = (𝑤 ∈ V ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (Base‘𝑤) ∧ ∃𝑧 ∈ (Base‘𝑤)(𝑧(.r𝑤)𝑥) = 𝑦)})
 
Definitiondf-unit 20384 Define the set of units in a ring, that is, all elements with a left and right multiplicative inverse. (Contributed by Mario Carneiro, 1-Dec-2014.)
Unit = (𝑤 ∈ V ↦ (((∥r𝑤) ∩ (∥r‘(oppr𝑤))) “ {(1r𝑤)}))
 
Definitiondf-irred 20385* Define the set of irreducible elements in a ring. (Contributed by Mario Carneiro, 4-Dec-2014.)
Irred = (𝑤 ∈ V ↦ ((Base‘𝑤) ∖ (Unit‘𝑤)) / 𝑏{𝑧𝑏 ∣ ∀𝑥𝑏𝑦𝑏 (𝑥(.r𝑤)𝑦) ≠ 𝑧})
 
Theoremreldvdsr 20386 The divides relation is a relation. (Contributed by Mario Carneiro, 1-Dec-2014.)
= (∥r𝑅)       Rel
 
Theoremdvdsrval 20387* Value of the divides relation. (Contributed by Mario Carneiro, 1-Dec-2014.) (Revised by Mario Carneiro, 6-Jan-2015.)
𝐵 = (Base‘𝑅)    &    = (∥r𝑅)    &    · = (.r𝑅)        = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐵 ∧ ∃𝑧𝐵 (𝑧 · 𝑥) = 𝑦)}
 
Theoremdvdsr 20388* Value of the divides relation. (Contributed by Mario Carneiro, 1-Dec-2014.)
𝐵 = (Base‘𝑅)    &    = (∥r𝑅)    &    · = (.r𝑅)       (𝑋 𝑌 ↔ (𝑋𝐵 ∧ ∃𝑧𝐵 (𝑧 · 𝑋) = 𝑌))
 
Theoremdvdsr2 20389* Value of the divides relation. (Contributed by Mario Carneiro, 1-Dec-2014.)
𝐵 = (Base‘𝑅)    &    = (∥r𝑅)    &    · = (.r𝑅)       (𝑋𝐵 → (𝑋 𝑌 ↔ ∃𝑧𝐵 (𝑧 · 𝑋) = 𝑌))
 
Theoremdvdsrmul 20390 A left-multiple of 𝑋 is divisible by 𝑋. (Contributed by Mario Carneiro, 1-Dec-2014.)
𝐵 = (Base‘𝑅)    &    = (∥r𝑅)    &    · = (.r𝑅)       ((𝑋𝐵𝑌𝐵) → 𝑋 (𝑌 · 𝑋))
 
Theoremdvdsrcl 20391 Closure of a dividing element. (Contributed by Mario Carneiro, 5-Dec-2014.)
𝐵 = (Base‘𝑅)    &    = (∥r𝑅)       (𝑋 𝑌𝑋𝐵)
 
Theoremdvdsrcl2 20392 Closure of a dividing element. (Contributed by Mario Carneiro, 5-Dec-2014.)
𝐵 = (Base‘𝑅)    &    = (∥r𝑅)       ((𝑅 ∈ Ring ∧ 𝑋 𝑌) → 𝑌𝐵)
 
Theoremdvdsrid 20393 An element in a (unital) ring divides itself. (Contributed by Mario Carneiro, 1-Dec-2014.) (Revised by Mario Carneiro, 30-Apr-2015.)
𝐵 = (Base‘𝑅)    &    = (∥r𝑅)       ((𝑅 ∈ Ring ∧ 𝑋𝐵) → 𝑋 𝑋)
 
Theoremdvdsrtr 20394 Divisibility is transitive. (Contributed by Mario Carneiro, 1-Dec-2014.)
𝐵 = (Base‘𝑅)    &    = (∥r𝑅)       ((𝑅 ∈ Ring ∧ 𝑌 𝑍𝑍 𝑋) → 𝑌 𝑋)
 
Theoremdvdsrmul1 20395 The divisibility relation is preserved under right-multiplication. (Contributed by Mario Carneiro, 1-Dec-2014.)
𝐵 = (Base‘𝑅)    &    = (∥r𝑅)    &    · = (.r𝑅)       ((𝑅 ∈ Ring ∧ 𝑍𝐵𝑋 𝑌) → (𝑋 · 𝑍) (𝑌 · 𝑍))
 
Theoremdvdsrneg 20396 An element divides its negative. (Contributed by Mario Carneiro, 1-Dec-2014.)
𝐵 = (Base‘𝑅)    &    = (∥r𝑅)    &   𝑁 = (invg𝑅)       ((𝑅 ∈ Ring ∧ 𝑋𝐵) → 𝑋 (𝑁𝑋))
 
Theoremdvdsr01 20397 In a ring, zero is divisible by all elements. ("Zero divisor" as a term has a somewhat different meaning, see df-rlreg 20716.) (Contributed by Stefan O'Rear, 29-Mar-2015.)
𝐵 = (Base‘𝑅)    &    = (∥r𝑅)    &    0 = (0g𝑅)       ((𝑅 ∈ Ring ∧ 𝑋𝐵) → 𝑋 0 )
 
Theoremdvdsr02 20398 Only zero is divisible by zero. (Contributed by Stefan O'Rear, 29-Mar-2015.)
𝐵 = (Base‘𝑅)    &    = (∥r𝑅)    &    0 = (0g𝑅)       ((𝑅 ∈ Ring ∧ 𝑋𝐵) → ( 0 𝑋𝑋 = 0 ))
 
Theoremisunit 20399 Property of being a unit of a ring. A unit is an element that left- and right-divides one. (Contributed by Mario Carneiro, 1-Dec-2014.) (Revised by Mario Carneiro, 8-Dec-2015.)
𝑈 = (Unit‘𝑅)    &    1 = (1r𝑅)    &    = (∥r𝑅)    &   𝑆 = (oppr𝑅)    &   𝐸 = (∥r𝑆)       (𝑋𝑈 ↔ (𝑋 1𝑋𝐸 1 ))
 
Theorem1unit 20400 The multiplicative identity is a unit. (Contributed by Mario Carneiro, 1-Dec-2014.)
𝑈 = (Unit‘𝑅)    &    1 = (1r𝑅)       (𝑅 ∈ Ring → 1𝑈)
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42600 427 42601-42700 428 42701-42800 429 42801-42900 430 42901-43000 431 43001-43100 432 43101-43200 433 43201-43300 434 43301-43400 435 43401-43500 436 43501-43600 437 43601-43700 438 43701-43800 439 43801-43900 440 43901-44000 441 44001-44100 442 44101-44200 443 44201-44300 444 44301-44400 445 44401-44500 446 44501-44600 447 44601-44700 448 44701-44800 449 44801-44900 450 44901-45000 451 45001-45100 452 45101-45200 453 45201-45300 454 45301-45400 455 45401-45500 456 45501-45600 457 45601-45700 458 45701-45800 459 45801-45900 460 45901-46000 461 46001-46100 462 46101-46200 463 46201-46300 464 46301-46400 465 46401-46500 466 46501-46600 467 46601-46700 468 46701-46800 469 46801-46900 470 46901-47000 471 47001-47100 472 47101-47200 473 47201-47300 474 47301-47400 475 47401-47500 476 47501-47600 477 47601-47700 478 47701-47800 479 47801-47900 480 47901-48000 481 48001-48100 482 48101-48200 483 48201-48300 484 48301-48400 485 48401-48500 486 48501-48600 487 48601-48700 488 48701-48800 489 48801-48899
  Copyright terms: Public domain < Previous  Next >