| Metamath
Proof Explorer Theorem List (p. 204 of 498) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30847) |
(30848-32370) |
(32371-49794) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | ringinvcl 20301 | The inverse of a unit is an element of the ring. (Contributed by Mario Carneiro, 2-Dec-2014.) |
| ⊢ 𝑈 = (Unit‘𝑅) & ⊢ 𝐼 = (invr‘𝑅) & ⊢ 𝐵 = (Base‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈) → (𝐼‘𝑋) ∈ 𝐵) | ||
| Theorem | unitlinv 20302 | A unit times its inverse is the ring unity. (Contributed by Mario Carneiro, 2-Dec-2014.) |
| ⊢ 𝑈 = (Unit‘𝑅) & ⊢ 𝐼 = (invr‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 1 = (1r‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈) → ((𝐼‘𝑋) · 𝑋) = 1 ) | ||
| Theorem | unitrinv 20303 | A unit times its inverse is the ring unity. (Contributed by Mario Carneiro, 2-Dec-2014.) |
| ⊢ 𝑈 = (Unit‘𝑅) & ⊢ 𝐼 = (invr‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 1 = (1r‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈) → (𝑋 · (𝐼‘𝑋)) = 1 ) | ||
| Theorem | 1rinv 20304 | The inverse of the ring unity is the ring unity. (Contributed by Mario Carneiro, 18-Jun-2015.) |
| ⊢ 𝐼 = (invr‘𝑅) & ⊢ 1 = (1r‘𝑅) ⇒ ⊢ (𝑅 ∈ Ring → (𝐼‘ 1 ) = 1 ) | ||
| Theorem | 0unit 20305 | The additive identity is a unit if and only if 1 = 0, i.e. we are in the zero ring. (Contributed by Mario Carneiro, 4-Dec-2014.) |
| ⊢ 𝑈 = (Unit‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 1 = (1r‘𝑅) ⇒ ⊢ (𝑅 ∈ Ring → ( 0 ∈ 𝑈 ↔ 1 = 0 )) | ||
| Theorem | unitnegcl 20306 | The negative of a unit is a unit. (Contributed by Mario Carneiro, 4-Dec-2014.) |
| ⊢ 𝑈 = (Unit‘𝑅) & ⊢ 𝑁 = (invg‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈) → (𝑁‘𝑋) ∈ 𝑈) | ||
| Theorem | ringunitnzdiv 20307 | In a unitary ring, a unit is not a zero divisor. (Contributed by AV, 7-Mar-2025.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑋 ∈ (Unit‘𝑅)) ⇒ ⊢ (𝜑 → ((𝑋 · 𝑌) = 0 ↔ 𝑌 = 0 )) | ||
| Theorem | ring1nzdiv 20308 | In a unitary ring, the ring unity is not a zero divisor. (Contributed by AV, 7-Mar-2025.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ 1 = (1r‘𝑅) ⇒ ⊢ (𝜑 → (( 1 · 𝑌) = 0 ↔ 𝑌 = 0 )) | ||
| Syntax | cdvr 20309 | Extend class notation with ring division. |
| class /r | ||
| Definition | df-dvr 20310* | Define ring division. (Contributed by Mario Carneiro, 2-Jul-2014.) |
| ⊢ /r = (𝑟 ∈ V ↦ (𝑥 ∈ (Base‘𝑟), 𝑦 ∈ (Unit‘𝑟) ↦ (𝑥(.r‘𝑟)((invr‘𝑟)‘𝑦)))) | ||
| Theorem | dvrfval 20311* | Division operation in a ring. (Contributed by Mario Carneiro, 2-Jul-2014.) (Revised by Mario Carneiro, 2-Dec-2014.) (Proof shortened by AV, 2-Mar-2024.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 𝑈 = (Unit‘𝑅) & ⊢ 𝐼 = (invr‘𝑅) & ⊢ / = (/r‘𝑅) ⇒ ⊢ / = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝑈 ↦ (𝑥 · (𝐼‘𝑦))) | ||
| Theorem | dvrval 20312 | Division operation in a ring. (Contributed by Mario Carneiro, 2-Jul-2014.) (Revised by Mario Carneiro, 2-Dec-2014.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 𝑈 = (Unit‘𝑅) & ⊢ 𝐼 = (invr‘𝑅) & ⊢ / = (/r‘𝑅) ⇒ ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈) → (𝑋 / 𝑌) = (𝑋 · (𝐼‘𝑌))) | ||
| Theorem | dvrcl 20313 | Closure of division operation. (Contributed by Mario Carneiro, 2-Jul-2014.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝑈 = (Unit‘𝑅) & ⊢ / = (/r‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈) → (𝑋 / 𝑌) ∈ 𝐵) | ||
| Theorem | unitdvcl 20314 | The units are closed under division. (Contributed by Mario Carneiro, 2-Jul-2014.) |
| ⊢ 𝑈 = (Unit‘𝑅) & ⊢ / = (/r‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈) → (𝑋 / 𝑌) ∈ 𝑈) | ||
| Theorem | dvrid 20315 | A ring element divided by itself is the ring unity. (divid 11868 analog.) (Contributed by Mario Carneiro, 18-Jun-2015.) |
| ⊢ 𝑈 = (Unit‘𝑅) & ⊢ / = (/r‘𝑅) & ⊢ 1 = (1r‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈) → (𝑋 / 𝑋) = 1 ) | ||
| Theorem | dvr1 20316 | A ring element divided by the ring unity is itself. (div1 11872 analog.) (Contributed by Mario Carneiro, 18-Jun-2015.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ / = (/r‘𝑅) & ⊢ 1 = (1r‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → (𝑋 / 1 ) = 𝑋) | ||
| Theorem | dvrass 20317 | An associative law for division. (divass 11855 analog.) (Contributed by Mario Carneiro, 4-Dec-2014.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝑈 = (Unit‘𝑅) & ⊢ / = (/r‘𝑅) & ⊢ · = (.r‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝑈)) → ((𝑋 · 𝑌) / 𝑍) = (𝑋 · (𝑌 / 𝑍))) | ||
| Theorem | dvrcan1 20318 | A cancellation law for division. (divcan1 11846 analog.) (Contributed by Mario Carneiro, 2-Jul-2014.) (Revised by Mario Carneiro, 2-Dec-2014.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝑈 = (Unit‘𝑅) & ⊢ / = (/r‘𝑅) & ⊢ · = (.r‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈) → ((𝑋 / 𝑌) · 𝑌) = 𝑋) | ||
| Theorem | dvrcan3 20319 | A cancellation law for division. (divcan3 11863 analog.) (Contributed by Mario Carneiro, 2-Jul-2014.) (Revised by Mario Carneiro, 18-Jun-2015.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝑈 = (Unit‘𝑅) & ⊢ / = (/r‘𝑅) & ⊢ · = (.r‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈) → ((𝑋 · 𝑌) / 𝑌) = 𝑋) | ||
| Theorem | dvreq1 20320 | Equality in terms of ratio equal to ring unity. (diveq1 11867 analog.) (Contributed by Mario Carneiro, 28-Apr-2016.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝑈 = (Unit‘𝑅) & ⊢ / = (/r‘𝑅) & ⊢ 1 = (1r‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈) → ((𝑋 / 𝑌) = 1 ↔ 𝑋 = 𝑌)) | ||
| Theorem | dvrdir 20321 | Distributive law for the division operation of a ring. (Contributed by Thierry Arnoux, 30-Oct-2017.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝑈 = (Unit‘𝑅) & ⊢ + = (+g‘𝑅) & ⊢ / = (/r‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝑈)) → ((𝑋 + 𝑌) / 𝑍) = ((𝑋 / 𝑍) + (𝑌 / 𝑍))) | ||
| Theorem | rdivmuldivd 20322 | Multiplication of two ratios. Theorem I.14 of [Apostol] p. 18. (Contributed by Thierry Arnoux, 30-Oct-2017.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝑈 = (Unit‘𝑅) & ⊢ + = (+g‘𝑅) & ⊢ / = (/r‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ CRing) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝑈) & ⊢ (𝜑 → 𝑍 ∈ 𝐵) & ⊢ (𝜑 → 𝑊 ∈ 𝑈) ⇒ ⊢ (𝜑 → ((𝑋 / 𝑌) · (𝑍 / 𝑊)) = ((𝑋 · 𝑍) / (𝑌 · 𝑊))) | ||
| Theorem | ringinvdv 20323 | Write the inverse function in terms of division. (Contributed by Mario Carneiro, 2-Jul-2014.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝑈 = (Unit‘𝑅) & ⊢ / = (/r‘𝑅) & ⊢ 1 = (1r‘𝑅) & ⊢ 𝐼 = (invr‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈) → (𝐼‘𝑋) = ( 1 / 𝑋)) | ||
| Theorem | rngidpropd 20324* | The ring unity depends only on the ring's base set and multiplication operation. (Contributed by Mario Carneiro, 26-Dec-2014.) |
| ⊢ (𝜑 → 𝐵 = (Base‘𝐾)) & ⊢ (𝜑 → 𝐵 = (Base‘𝐿)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(.r‘𝐾)𝑦) = (𝑥(.r‘𝐿)𝑦)) ⇒ ⊢ (𝜑 → (1r‘𝐾) = (1r‘𝐿)) | ||
| Theorem | dvdsrpropd 20325* | The divisibility relation depends only on the ring's base set and multiplication operation. (Contributed by Mario Carneiro, 26-Dec-2014.) |
| ⊢ (𝜑 → 𝐵 = (Base‘𝐾)) & ⊢ (𝜑 → 𝐵 = (Base‘𝐿)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(.r‘𝐾)𝑦) = (𝑥(.r‘𝐿)𝑦)) ⇒ ⊢ (𝜑 → (∥r‘𝐾) = (∥r‘𝐿)) | ||
| Theorem | unitpropd 20326* | The set of units depends only on the ring's base set and multiplication operation. (Contributed by Mario Carneiro, 26-Dec-2014.) |
| ⊢ (𝜑 → 𝐵 = (Base‘𝐾)) & ⊢ (𝜑 → 𝐵 = (Base‘𝐿)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(.r‘𝐾)𝑦) = (𝑥(.r‘𝐿)𝑦)) ⇒ ⊢ (𝜑 → (Unit‘𝐾) = (Unit‘𝐿)) | ||
| Theorem | invrpropd 20327* | The ring inverse function depends only on the ring's base set and multiplication operation. (Contributed by Mario Carneiro, 26-Dec-2014.) (Revised by Mario Carneiro, 5-Oct-2015.) |
| ⊢ (𝜑 → 𝐵 = (Base‘𝐾)) & ⊢ (𝜑 → 𝐵 = (Base‘𝐿)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(.r‘𝐾)𝑦) = (𝑥(.r‘𝐿)𝑦)) ⇒ ⊢ (𝜑 → (invr‘𝐾) = (invr‘𝐿)) | ||
| Theorem | isirred 20328* | An irreducible element of a ring is a non-unit that is not the product of two non-units. (Contributed by Mario Carneiro, 4-Dec-2014.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝑈 = (Unit‘𝑅) & ⊢ 𝐼 = (Irred‘𝑅) & ⊢ 𝑁 = (𝐵 ∖ 𝑈) & ⊢ · = (.r‘𝑅) ⇒ ⊢ (𝑋 ∈ 𝐼 ↔ (𝑋 ∈ 𝑁 ∧ ∀𝑥 ∈ 𝑁 ∀𝑦 ∈ 𝑁 (𝑥 · 𝑦) ≠ 𝑋)) | ||
| Theorem | isnirred 20329* | The property of being a non-irreducible (reducible) element in a ring. (Contributed by Mario Carneiro, 4-Dec-2014.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝑈 = (Unit‘𝑅) & ⊢ 𝐼 = (Irred‘𝑅) & ⊢ 𝑁 = (𝐵 ∖ 𝑈) & ⊢ · = (.r‘𝑅) ⇒ ⊢ (𝑋 ∈ 𝐵 → (¬ 𝑋 ∈ 𝐼 ↔ (𝑋 ∈ 𝑈 ∨ ∃𝑥 ∈ 𝑁 ∃𝑦 ∈ 𝑁 (𝑥 · 𝑦) = 𝑋))) | ||
| Theorem | isirred2 20330* | Expand out the class difference from isirred 20328. (Contributed by Mario Carneiro, 4-Dec-2014.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝑈 = (Unit‘𝑅) & ⊢ 𝐼 = (Irred‘𝑅) & ⊢ · = (.r‘𝑅) ⇒ ⊢ (𝑋 ∈ 𝐼 ↔ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ∈ 𝑈 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑥 · 𝑦) = 𝑋 → (𝑥 ∈ 𝑈 ∨ 𝑦 ∈ 𝑈)))) | ||
| Theorem | opprirred 20331 | Irreducibility is symmetric, so the irreducible elements of the opposite ring are the same as the original ring. (Contributed by Mario Carneiro, 4-Dec-2014.) |
| ⊢ 𝑆 = (oppr‘𝑅) & ⊢ 𝐼 = (Irred‘𝑅) ⇒ ⊢ 𝐼 = (Irred‘𝑆) | ||
| Theorem | irredn0 20332 | The additive identity is not irreducible. (Contributed by Mario Carneiro, 4-Dec-2014.) |
| ⊢ 𝐼 = (Irred‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐼) → 𝑋 ≠ 0 ) | ||
| Theorem | irredcl 20333 | An irreducible element is in the ring. (Contributed by Mario Carneiro, 4-Dec-2014.) |
| ⊢ 𝐼 = (Irred‘𝑅) & ⊢ 𝐵 = (Base‘𝑅) ⇒ ⊢ (𝑋 ∈ 𝐼 → 𝑋 ∈ 𝐵) | ||
| Theorem | irrednu 20334 | An irreducible element is not a unit. (Contributed by Mario Carneiro, 4-Dec-2014.) |
| ⊢ 𝐼 = (Irred‘𝑅) & ⊢ 𝑈 = (Unit‘𝑅) ⇒ ⊢ (𝑋 ∈ 𝐼 → ¬ 𝑋 ∈ 𝑈) | ||
| Theorem | irredn1 20335 | The multiplicative identity is not irreducible. (Contributed by Mario Carneiro, 4-Dec-2014.) |
| ⊢ 𝐼 = (Irred‘𝑅) & ⊢ 1 = (1r‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐼) → 𝑋 ≠ 1 ) | ||
| Theorem | irredrmul 20336 | The product of an irreducible element and a unit is irreducible. (Contributed by Mario Carneiro, 4-Dec-2014.) |
| ⊢ 𝐼 = (Irred‘𝑅) & ⊢ 𝑈 = (Unit‘𝑅) & ⊢ · = (.r‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐼 ∧ 𝑌 ∈ 𝑈) → (𝑋 · 𝑌) ∈ 𝐼) | ||
| Theorem | irredlmul 20337 | The product of a unit and an irreducible element is irreducible. (Contributed by Mario Carneiro, 4-Dec-2014.) |
| ⊢ 𝐼 = (Irred‘𝑅) & ⊢ 𝑈 = (Unit‘𝑅) & ⊢ · = (.r‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝐼) → (𝑋 · 𝑌) ∈ 𝐼) | ||
| Theorem | irredmul 20338 | If product of two elements is irreducible, then one of the elements must be a unit. (Contributed by Mario Carneiro, 4-Dec-2014.) |
| ⊢ 𝐼 = (Irred‘𝑅) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝑈 = (Unit‘𝑅) & ⊢ · = (.r‘𝑅) ⇒ ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ (𝑋 · 𝑌) ∈ 𝐼) → (𝑋 ∈ 𝑈 ∨ 𝑌 ∈ 𝑈)) | ||
| Theorem | irredneg 20339 | The negative of an irreducible element is irreducible. (Contributed by Mario Carneiro, 4-Dec-2014.) |
| ⊢ 𝐼 = (Irred‘𝑅) & ⊢ 𝑁 = (invg‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐼) → (𝑁‘𝑋) ∈ 𝐼) | ||
| Theorem | irrednegb 20340 | An element is irreducible iff its negative is. (Contributed by Mario Carneiro, 4-Dec-2014.) |
| ⊢ 𝐼 = (Irred‘𝑅) & ⊢ 𝑁 = (invg‘𝑅) & ⊢ 𝐵 = (Base‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → (𝑋 ∈ 𝐼 ↔ (𝑁‘𝑋) ∈ 𝐼)) | ||
| Syntax | crpm 20341 | Syntax for the ring primes function. |
| class RPrime | ||
| Definition | df-rprm 20342* | Define the function associating with a ring its set of prime elements. A prime element is a nonzero non-unit that satisfies an equivalent of Euclid's lemma euclemma 16683. Prime elements are closely related to irreducible elements (see df-irred 20268). (Contributed by Mario Carneiro, 17-Feb-2015.) |
| ⊢ RPrime = (𝑤 ∈ V ↦ ⦋(Base‘𝑤) / 𝑏⦌{𝑝 ∈ (𝑏 ∖ ((Unit‘𝑤) ∪ {(0g‘𝑤)})) ∣ ∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 [(∥r‘𝑤) / 𝑑](𝑝𝑑(𝑥(.r‘𝑤)𝑦) → (𝑝𝑑𝑥 ∨ 𝑝𝑑𝑦))}) | ||
| Syntax | crnghm 20343 | non-unital ring homomorphisms. |
| class RngHom | ||
| Syntax | crngim 20344 | non-unital ring isomorphisms. |
| class RngIso | ||
| Definition | df-rnghm 20345* | Define the set of non-unital ring homomorphisms from 𝑟 to 𝑠. (Contributed by AV, 20-Feb-2020.) |
| ⊢ RngHom = (𝑟 ∈ Rng, 𝑠 ∈ Rng ↦ ⦋(Base‘𝑟) / 𝑣⦌⦋(Base‘𝑠) / 𝑤⦌{𝑓 ∈ (𝑤 ↑m 𝑣) ∣ ∀𝑥 ∈ 𝑣 ∀𝑦 ∈ 𝑣 ((𝑓‘(𝑥(+g‘𝑟)𝑦)) = ((𝑓‘𝑥)(+g‘𝑠)(𝑓‘𝑦)) ∧ (𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥)(.r‘𝑠)(𝑓‘𝑦)))}) | ||
| Definition | df-rngim 20346* | Define the set of non-unital ring isomorphisms from 𝑟 to 𝑠. (Contributed by AV, 20-Feb-2020.) |
| ⊢ RngIso = (𝑟 ∈ V, 𝑠 ∈ V ↦ {𝑓 ∈ (𝑟 RngHom 𝑠) ∣ ◡𝑓 ∈ (𝑠 RngHom 𝑟)}) | ||
| Theorem | rnghmrcl 20347 | Reverse closure of a non-unital ring homomorphism. (Contributed by AV, 22-Feb-2020.) |
| ⊢ (𝐹 ∈ (𝑅 RngHom 𝑆) → (𝑅 ∈ Rng ∧ 𝑆 ∈ Rng)) | ||
| Theorem | rnghmfn 20348 | The mapping of two non-unital rings to the non-unital ring homomorphisms between them is a function. (Contributed by AV, 1-Mar-2020.) |
| ⊢ RngHom Fn (Rng × Rng) | ||
| Theorem | rnghmval 20349* | The set of the non-unital ring homomorphisms between two non-unital rings. (Contributed by AV, 22-Feb-2020.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ ∗ = (.r‘𝑆) & ⊢ 𝐶 = (Base‘𝑆) & ⊢ + = (+g‘𝑅) & ⊢ ✚ = (+g‘𝑆) ⇒ ⊢ ((𝑅 ∈ Rng ∧ 𝑆 ∈ Rng) → (𝑅 RngHom 𝑆) = {𝑓 ∈ (𝐶 ↑m 𝐵) ∣ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑓‘(𝑥 + 𝑦)) = ((𝑓‘𝑥) ✚ (𝑓‘𝑦)) ∧ (𝑓‘(𝑥 · 𝑦)) = ((𝑓‘𝑥) ∗ (𝑓‘𝑦)))}) | ||
| Theorem | isrnghm 20350* | A function is a non-unital ring homomorphism iff it is a group homomorphism and preserves multiplication. (Contributed by AV, 22-Feb-2020.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ ∗ = (.r‘𝑆) ⇒ ⊢ (𝐹 ∈ (𝑅 RngHom 𝑆) ↔ ((𝑅 ∈ Rng ∧ 𝑆 ∈ Rng) ∧ (𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝐹‘(𝑥 · 𝑦)) = ((𝐹‘𝑥) ∗ (𝐹‘𝑦))))) | ||
| Theorem | isrnghmmul 20351 | A function is a non-unital ring homomorphism iff it preserves both addition and multiplication. (Contributed by AV, 27-Feb-2020.) |
| ⊢ 𝑀 = (mulGrp‘𝑅) & ⊢ 𝑁 = (mulGrp‘𝑆) ⇒ ⊢ (𝐹 ∈ (𝑅 RngHom 𝑆) ↔ ((𝑅 ∈ Rng ∧ 𝑆 ∈ Rng) ∧ (𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹 ∈ (𝑀 MgmHom 𝑁)))) | ||
| Theorem | rnghmmgmhm 20352 | A non-unital ring homomorphism is a homomorphism of multiplicative magmas. (Contributed by AV, 27-Feb-2020.) |
| ⊢ 𝑀 = (mulGrp‘𝑅) & ⊢ 𝑁 = (mulGrp‘𝑆) ⇒ ⊢ (𝐹 ∈ (𝑅 RngHom 𝑆) → 𝐹 ∈ (𝑀 MgmHom 𝑁)) | ||
| Theorem | rnghmval2 20353 | The non-unital ring homomorphisms between two non-unital rings. (Contributed by AV, 1-Mar-2020.) |
| ⊢ ((𝑅 ∈ Rng ∧ 𝑆 ∈ Rng) → (𝑅 RngHom 𝑆) = ((𝑅 GrpHom 𝑆) ∩ ((mulGrp‘𝑅) MgmHom (mulGrp‘𝑆)))) | ||
| Theorem | isrngim 20354 | An isomorphism of non-unital rings is a homomorphism whose converse is also a homomorphism. (Contributed by AV, 22-Feb-2020.) |
| ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) → (𝐹 ∈ (𝑅 RngIso 𝑆) ↔ (𝐹 ∈ (𝑅 RngHom 𝑆) ∧ ◡𝐹 ∈ (𝑆 RngHom 𝑅)))) | ||
| Theorem | rngimrcl 20355 | Reverse closure for an isomorphism of non-unital rings. (Contributed by AV, 22-Feb-2020.) |
| ⊢ (𝐹 ∈ (𝑅 RngIso 𝑆) → (𝑅 ∈ V ∧ 𝑆 ∈ V)) | ||
| Theorem | rnghmghm 20356 | A non-unital ring homomorphism is an additive group homomorphism. (Contributed by AV, 23-Feb-2020.) |
| ⊢ (𝐹 ∈ (𝑅 RngHom 𝑆) → 𝐹 ∈ (𝑅 GrpHom 𝑆)) | ||
| Theorem | rnghmf 20357 | A ring homomorphism is a function. (Contributed by AV, 23-Feb-2020.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝐶 = (Base‘𝑆) ⇒ ⊢ (𝐹 ∈ (𝑅 RngHom 𝑆) → 𝐹:𝐵⟶𝐶) | ||
| Theorem | rnghmmul 20358 | A homomorphism of non-unital rings preserves multiplication. (Contributed by AV, 23-Feb-2020.) |
| ⊢ 𝑋 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ × = (.r‘𝑆) ⇒ ⊢ ((𝐹 ∈ (𝑅 RngHom 𝑆) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐹‘(𝐴 · 𝐵)) = ((𝐹‘𝐴) × (𝐹‘𝐵))) | ||
| Theorem | isrnghm2d 20359* | Demonstration of non-unital ring homomorphism. (Contributed by AV, 23-Feb-2020.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ × = (.r‘𝑆) & ⊢ (𝜑 → 𝑅 ∈ Rng) & ⊢ (𝜑 → 𝑆 ∈ Rng) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝐹‘(𝑥 · 𝑦)) = ((𝐹‘𝑥) × (𝐹‘𝑦))) & ⊢ (𝜑 → 𝐹 ∈ (𝑅 GrpHom 𝑆)) ⇒ ⊢ (𝜑 → 𝐹 ∈ (𝑅 RngHom 𝑆)) | ||
| Theorem | isrnghmd 20360* | Demonstration of non-unital ring homomorphism. (Contributed by AV, 23-Feb-2020.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ × = (.r‘𝑆) & ⊢ (𝜑 → 𝑅 ∈ Rng) & ⊢ (𝜑 → 𝑆 ∈ Rng) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝐹‘(𝑥 · 𝑦)) = ((𝐹‘𝑥) × (𝐹‘𝑦))) & ⊢ 𝐶 = (Base‘𝑆) & ⊢ + = (+g‘𝑅) & ⊢ ⨣ = (+g‘𝑆) & ⊢ (𝜑 → 𝐹:𝐵⟶𝐶) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ⨣ (𝐹‘𝑦))) ⇒ ⊢ (𝜑 → 𝐹 ∈ (𝑅 RngHom 𝑆)) | ||
| Theorem | rnghmf1o 20361 | A non-unital ring homomorphism is bijective iff its converse is also a non-unital ring homomorphism. (Contributed by AV, 27-Feb-2020.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝐶 = (Base‘𝑆) ⇒ ⊢ (𝐹 ∈ (𝑅 RngHom 𝑆) → (𝐹:𝐵–1-1-onto→𝐶 ↔ ◡𝐹 ∈ (𝑆 RngHom 𝑅))) | ||
| Theorem | isrngim2 20362 | An isomorphism of non-unital rings is a bijective homomorphism. (Contributed by AV, 23-Feb-2020.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝐶 = (Base‘𝑆) ⇒ ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) → (𝐹 ∈ (𝑅 RngIso 𝑆) ↔ (𝐹 ∈ (𝑅 RngHom 𝑆) ∧ 𝐹:𝐵–1-1-onto→𝐶))) | ||
| Theorem | rngimf1o 20363 | An isomorphism of non-unital rings is a bijection. (Contributed by AV, 23-Feb-2020.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝐶 = (Base‘𝑆) ⇒ ⊢ (𝐹 ∈ (𝑅 RngIso 𝑆) → 𝐹:𝐵–1-1-onto→𝐶) | ||
| Theorem | rngimrnghm 20364 | An isomorphism of non-unital rings is a homomorphism. (Contributed by AV, 23-Feb-2020.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝐶 = (Base‘𝑆) ⇒ ⊢ (𝐹 ∈ (𝑅 RngIso 𝑆) → 𝐹 ∈ (𝑅 RngHom 𝑆)) | ||
| Theorem | rngimcnv 20365 | The converse of an isomorphism of non-unital rings is an isomorphism of non-unital rings. (Contributed by AV, 27-Feb-2025.) |
| ⊢ (𝐹 ∈ (𝑆 RngIso 𝑇) → ◡𝐹 ∈ (𝑇 RngIso 𝑆)) | ||
| Theorem | rnghmco 20366 | The composition of non-unital ring homomorphisms is a homomorphism. (Contributed by AV, 27-Feb-2020.) |
| ⊢ ((𝐹 ∈ (𝑇 RngHom 𝑈) ∧ 𝐺 ∈ (𝑆 RngHom 𝑇)) → (𝐹 ∘ 𝐺) ∈ (𝑆 RngHom 𝑈)) | ||
| Theorem | idrnghm 20367 | The identity homomorphism on a non-unital ring. (Contributed by AV, 27-Feb-2020.) |
| ⊢ 𝐵 = (Base‘𝑅) ⇒ ⊢ (𝑅 ∈ Rng → ( I ↾ 𝐵) ∈ (𝑅 RngHom 𝑅)) | ||
| Theorem | c0mgm 20368* | The constant mapping to zero is a magma homomorphism into a monoid. Remark: Instead of the assumption that T is a monoid, it would be sufficient that T is a magma with a right or left identity. (Contributed by AV, 17-Apr-2020.) |
| ⊢ 𝐵 = (Base‘𝑆) & ⊢ 0 = (0g‘𝑇) & ⊢ 𝐻 = (𝑥 ∈ 𝐵 ↦ 0 ) ⇒ ⊢ ((𝑆 ∈ Mgm ∧ 𝑇 ∈ Mnd) → 𝐻 ∈ (𝑆 MgmHom 𝑇)) | ||
| Theorem | c0mhm 20369* | The constant mapping to zero is a monoid homomorphism. (Contributed by AV, 16-Apr-2020.) |
| ⊢ 𝐵 = (Base‘𝑆) & ⊢ 0 = (0g‘𝑇) & ⊢ 𝐻 = (𝑥 ∈ 𝐵 ↦ 0 ) ⇒ ⊢ ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) → 𝐻 ∈ (𝑆 MndHom 𝑇)) | ||
| Theorem | c0ghm 20370* | The constant mapping to zero is a group homomorphism. (Contributed by AV, 16-Apr-2020.) |
| ⊢ 𝐵 = (Base‘𝑆) & ⊢ 0 = (0g‘𝑇) & ⊢ 𝐻 = (𝑥 ∈ 𝐵 ↦ 0 ) ⇒ ⊢ ((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) → 𝐻 ∈ (𝑆 GrpHom 𝑇)) | ||
| Theorem | c0snmgmhm 20371* | The constant mapping to zero is a magma homomorphism from a magma with one element to any monoid. (Contributed by AV, 17-Apr-2020.) |
| ⊢ 𝐵 = (Base‘𝑇) & ⊢ 0 = (0g‘𝑆) & ⊢ 𝐻 = (𝑥 ∈ 𝐵 ↦ 0 ) ⇒ ⊢ ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm ∧ (♯‘𝐵) = 1) → 𝐻 ∈ (𝑇 MgmHom 𝑆)) | ||
| Theorem | c0snmhm 20372* | The constant mapping to zero is a monoid homomorphism from the trivial monoid (consisting of the zero only) to any monoid. (Contributed by AV, 17-Apr-2020.) |
| ⊢ 𝐵 = (Base‘𝑇) & ⊢ 0 = (0g‘𝑆) & ⊢ 𝐻 = (𝑥 ∈ 𝐵 ↦ 0 ) & ⊢ 𝑍 = (0g‘𝑇) ⇒ ⊢ ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd ∧ 𝐵 = {𝑍}) → 𝐻 ∈ (𝑇 MndHom 𝑆)) | ||
| Theorem | c0snghm 20373* | The constant mapping to zero is a group homomorphism from the trivial group (consisting of the zero only) to any group. (Contributed by AV, 17-Apr-2020.) |
| ⊢ 𝐵 = (Base‘𝑇) & ⊢ 0 = (0g‘𝑆) & ⊢ 𝐻 = (𝑥 ∈ 𝐵 ↦ 0 ) & ⊢ 𝑍 = (0g‘𝑇) ⇒ ⊢ ((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp ∧ 𝐵 = {𝑍}) → 𝐻 ∈ (𝑇 GrpHom 𝑆)) | ||
| Theorem | rngisomfv1 20374 | If there is a non-unital ring isomorphism between a unital ring and a non-unital ring, then the function value of the ring unity of the unital ring is an element of the base set of the non-unital ring. (Contributed by AV, 27-Feb-2025.) |
| ⊢ 1 = (1r‘𝑅) & ⊢ 𝐵 = (Base‘𝑆) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) → (𝐹‘ 1 ) ∈ 𝐵) | ||
| Theorem | rngisom1 20375* | If there is a non-unital ring isomorphism between a unital ring and a non-unital ring, then the function value of the ring unity of the unital ring is a ring unity of the non-unital ring. (Contributed by AV, 27-Feb-2025.) |
| ⊢ 1 = (1r‘𝑅) & ⊢ 𝐵 = (Base‘𝑆) & ⊢ · = (.r‘𝑆) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) → ∀𝑥 ∈ 𝐵 (((𝐹‘ 1 ) · 𝑥) = 𝑥 ∧ (𝑥 · (𝐹‘ 1 )) = 𝑥)) | ||
| Theorem | rngisomring 20376 | If there is a non-unital ring isomorphism between a unital ring and a non-unital ring, then both rings are unital. (Contributed by AV, 27-Feb-2025.) |
| ⊢ ((𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) → 𝑆 ∈ Ring) | ||
| Theorem | rngisomring1 20377 | If there is a non-unital ring isomorphism between a unital ring and a non-unital ring, then the ring unity of the second ring is the function value of the ring unity of the first ring for the isomorphism. (Contributed by AV, 16-Mar-2025.) |
| ⊢ ((𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) → (1r‘𝑆) = (𝐹‘(1r‘𝑅))) | ||
| Syntax | crh 20378 | Extend class notation with the ring homomorphisms. |
| class RingHom | ||
| Syntax | crs 20379 | Extend class notation with the ring isomorphisms. |
| class RingIso | ||
| Syntax | cric 20380 | Extend class notation with the ring isomorphism relation. |
| class ≃𝑟 | ||
| Definition | df-rhm 20381* | Define the set of ring homomorphisms from 𝑟 to 𝑠. (Contributed by Stefan O'Rear, 7-Mar-2015.) |
| ⊢ RingHom = (𝑟 ∈ Ring, 𝑠 ∈ Ring ↦ ⦋(Base‘𝑟) / 𝑣⦌⦋(Base‘𝑠) / 𝑤⦌{𝑓 ∈ (𝑤 ↑m 𝑣) ∣ ((𝑓‘(1r‘𝑟)) = (1r‘𝑠) ∧ ∀𝑥 ∈ 𝑣 ∀𝑦 ∈ 𝑣 ((𝑓‘(𝑥(+g‘𝑟)𝑦)) = ((𝑓‘𝑥)(+g‘𝑠)(𝑓‘𝑦)) ∧ (𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥)(.r‘𝑠)(𝑓‘𝑦))))}) | ||
| Definition | df-rim 20382* | Define the set of ring isomorphisms from 𝑟 to 𝑠. (Contributed by Stefan O'Rear, 7-Mar-2015.) |
| ⊢ RingIso = (𝑟 ∈ V, 𝑠 ∈ V ↦ {𝑓 ∈ (𝑟 RingHom 𝑠) ∣ ◡𝑓 ∈ (𝑠 RingHom 𝑟)}) | ||
| Theorem | dfrhm2 20383* | The property of a ring homomorphism can be decomposed into separate homomorphic conditions for addition and multiplication. (Contributed by Stefan O'Rear, 7-Mar-2015.) |
| ⊢ RingHom = (𝑟 ∈ Ring, 𝑠 ∈ Ring ↦ ((𝑟 GrpHom 𝑠) ∩ ((mulGrp‘𝑟) MndHom (mulGrp‘𝑠)))) | ||
| Definition | df-ric 20384 | Define the ring isomorphism relation, analogous to df-gic 19192: Two (unital) rings are said to be isomorphic iff they are connected by at least one isomorphism. Isomorphic rings share all global ring properties, but to relate local properties requires knowledge of a specific isomorphism. (Contributed by AV, 24-Dec-2019.) |
| ⊢ ≃𝑟 = (◡ RingIso “ (V ∖ 1o)) | ||
| Theorem | rhmrcl1 20385 | Reverse closure of a ring homomorphism. (Contributed by Stefan O'Rear, 7-Mar-2015.) |
| ⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝑅 ∈ Ring) | ||
| Theorem | rhmrcl2 20386 | Reverse closure of a ring homomorphism. (Contributed by Stefan O'Rear, 7-Mar-2015.) |
| ⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝑆 ∈ Ring) | ||
| Theorem | isrhm 20387 | A function is a ring homomorphism iff it preserves both addition and multiplication. (Contributed by Stefan O'Rear, 7-Mar-2015.) |
| ⊢ 𝑀 = (mulGrp‘𝑅) & ⊢ 𝑁 = (mulGrp‘𝑆) ⇒ ⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) ↔ ((𝑅 ∈ Ring ∧ 𝑆 ∈ Ring) ∧ (𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹 ∈ (𝑀 MndHom 𝑁)))) | ||
| Theorem | rhmmhm 20388 | A ring homomorphism is a homomorphism of multiplicative monoids. (Contributed by Stefan O'Rear, 7-Mar-2015.) |
| ⊢ 𝑀 = (mulGrp‘𝑅) & ⊢ 𝑁 = (mulGrp‘𝑆) ⇒ ⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝐹 ∈ (𝑀 MndHom 𝑁)) | ||
| Theorem | rhmisrnghm 20389 | Each unital ring homomorphism is a non-unital ring homomorphism. (Contributed by AV, 29-Feb-2020.) |
| ⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝐹 ∈ (𝑅 RngHom 𝑆)) | ||
| Theorem | isrim0OLD 20390 | Obsolete version of isrim0 20392 as of 12-Jan-2025. (Contributed by AV, 22-Oct-2019.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) → (𝐹 ∈ (𝑅 RingIso 𝑆) ↔ (𝐹 ∈ (𝑅 RingHom 𝑆) ∧ ◡𝐹 ∈ (𝑆 RingHom 𝑅)))) | ||
| Theorem | rimrcl 20391 | Reverse closure for an isomorphism of rings. (Contributed by AV, 22-Oct-2019.) |
| ⊢ (𝐹 ∈ (𝑅 RingIso 𝑆) → (𝑅 ∈ V ∧ 𝑆 ∈ V)) | ||
| Theorem | isrim0 20392 | A ring isomorphism is a homomorphism whose converse is also a homomorphism. Compare isgim2 19197. (Contributed by AV, 22-Oct-2019.) Remove sethood antecedent. (Revised by SN, 10-Jan-2025.) |
| ⊢ (𝐹 ∈ (𝑅 RingIso 𝑆) ↔ (𝐹 ∈ (𝑅 RingHom 𝑆) ∧ ◡𝐹 ∈ (𝑆 RingHom 𝑅))) | ||
| Theorem | rhmghm 20393 | A ring homomorphism is an additive group homomorphism. (Contributed by Stefan O'Rear, 7-Mar-2015.) |
| ⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝐹 ∈ (𝑅 GrpHom 𝑆)) | ||
| Theorem | rhmf 20394 | A ring homomorphism is a function. (Contributed by Stefan O'Rear, 8-Mar-2015.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝐶 = (Base‘𝑆) ⇒ ⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝐹:𝐵⟶𝐶) | ||
| Theorem | rhmmul 20395 | A homomorphism of rings preserves multiplication. (Contributed by Mario Carneiro, 12-Jun-2015.) |
| ⊢ 𝑋 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ × = (.r‘𝑆) ⇒ ⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐹‘(𝐴 · 𝐵)) = ((𝐹‘𝐴) × (𝐹‘𝐵))) | ||
| Theorem | isrhm2d 20396* | Demonstration of ring homomorphism. (Contributed by Mario Carneiro, 13-Jun-2015.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ 1 = (1r‘𝑅) & ⊢ 𝑁 = (1r‘𝑆) & ⊢ · = (.r‘𝑅) & ⊢ × = (.r‘𝑆) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝑆 ∈ Ring) & ⊢ (𝜑 → (𝐹‘ 1 ) = 𝑁) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝐹‘(𝑥 · 𝑦)) = ((𝐹‘𝑥) × (𝐹‘𝑦))) & ⊢ (𝜑 → 𝐹 ∈ (𝑅 GrpHom 𝑆)) ⇒ ⊢ (𝜑 → 𝐹 ∈ (𝑅 RingHom 𝑆)) | ||
| Theorem | isrhmd 20397* | Demonstration of ring homomorphism. (Contributed by Stefan O'Rear, 8-Mar-2015.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ 1 = (1r‘𝑅) & ⊢ 𝑁 = (1r‘𝑆) & ⊢ · = (.r‘𝑅) & ⊢ × = (.r‘𝑆) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝑆 ∈ Ring) & ⊢ (𝜑 → (𝐹‘ 1 ) = 𝑁) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝐹‘(𝑥 · 𝑦)) = ((𝐹‘𝑥) × (𝐹‘𝑦))) & ⊢ 𝐶 = (Base‘𝑆) & ⊢ + = (+g‘𝑅) & ⊢ ⨣ = (+g‘𝑆) & ⊢ (𝜑 → 𝐹:𝐵⟶𝐶) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ⨣ (𝐹‘𝑦))) ⇒ ⊢ (𝜑 → 𝐹 ∈ (𝑅 RingHom 𝑆)) | ||
| Theorem | rhm1 20398 | Ring homomorphisms are required to fix 1. (Contributed by Stefan O'Rear, 8-Mar-2015.) |
| ⊢ 1 = (1r‘𝑅) & ⊢ 𝑁 = (1r‘𝑆) ⇒ ⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → (𝐹‘ 1 ) = 𝑁) | ||
| Theorem | idrhm 20399 | The identity homomorphism on a ring. (Contributed by AV, 14-Feb-2020.) |
| ⊢ 𝐵 = (Base‘𝑅) ⇒ ⊢ (𝑅 ∈ Ring → ( I ↾ 𝐵) ∈ (𝑅 RingHom 𝑅)) | ||
| Theorem | rhmf1o 20400 | A ring homomorphism is bijective iff its converse is also a ring homomorphism. (Contributed by AV, 22-Oct-2019.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝐶 = (Base‘𝑆) ⇒ ⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → (𝐹:𝐵–1-1-onto→𝐶 ↔ ◡𝐹 ∈ (𝑆 RingHom 𝑅))) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |