![]() |
Metamath
Proof Explorer Theorem List (p. 204 of 473) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-29860) |
![]() (29861-31383) |
![]() (31384-47242) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | abvpropd 20301* | If two structures have the same ring components, they have the same collection of absolute values. (Contributed by Mario Carneiro, 4-Oct-2015.) |
⊢ (𝜑 → 𝐵 = (Base‘𝐾)) & ⊢ (𝜑 → 𝐵 = (Base‘𝐿)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝐿)𝑦)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(.r‘𝐾)𝑦) = (𝑥(.r‘𝐿)𝑦)) ⇒ ⊢ (𝜑 → (AbsVal‘𝐾) = (AbsVal‘𝐿)) | ||
Syntax | cstf 20302 | Extend class notation with the functionalization of the *-ring involution. |
class *rf | ||
Syntax | csr 20303 | Extend class notation with class of all *-rings. |
class *-Ring | ||
Definition | df-staf 20304* | Define the functionalization of the involution in a star ring. This is not strictly necessary but by having *𝑟 as an actual function we can state the principal properties of an involution much more cleanly. (Contributed by Mario Carneiro, 6-Oct-2015.) |
⊢ *rf = (𝑓 ∈ V ↦ (𝑥 ∈ (Base‘𝑓) ↦ ((*𝑟‘𝑓)‘𝑥))) | ||
Definition | df-srng 20305* | Define class of all star rings. A star ring is a ring with an involution (conjugation) function. Involution (unlike say the ring zero) is not unique and therefore must be added as a new component to the ring. For example, two possible involutions for complex numbers are the identity function and complex conjugation. Definition of involution in [Holland95] p. 204. (Contributed by NM, 22-Sep-2011.) (Revised by Mario Carneiro, 6-Oct-2015.) |
⊢ *-Ring = {𝑓 ∣ [(*rf‘𝑓) / 𝑖](𝑖 ∈ (𝑓 RingHom (oppr‘𝑓)) ∧ 𝑖 = ◡𝑖)} | ||
Theorem | staffval 20306* | The functionalization of the involution component of a structure. (Contributed by Mario Carneiro, 6-Oct-2015.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ ∗ = (*𝑟‘𝑅) & ⊢ ∙ = (*rf‘𝑅) ⇒ ⊢ ∙ = (𝑥 ∈ 𝐵 ↦ ( ∗ ‘𝑥)) | ||
Theorem | stafval 20307 | The functionalization of the involution component of a structure. (Contributed by Mario Carneiro, 6-Oct-2015.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ ∗ = (*𝑟‘𝑅) & ⊢ ∙ = (*rf‘𝑅) ⇒ ⊢ (𝐴 ∈ 𝐵 → ( ∙ ‘𝐴) = ( ∗ ‘𝐴)) | ||
Theorem | staffn 20308 | The functionalization is equal to the original function, if it is a function on the right base set. (Contributed by Mario Carneiro, 6-Oct-2015.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ ∗ = (*𝑟‘𝑅) & ⊢ ∙ = (*rf‘𝑅) ⇒ ⊢ ( ∗ Fn 𝐵 → ∙ = ∗ ) | ||
Theorem | issrng 20309 | The predicate "is a star ring". (Contributed by NM, 22-Sep-2011.) (Revised by Mario Carneiro, 6-Oct-2015.) |
⊢ 𝑂 = (oppr‘𝑅) & ⊢ ∗ = (*rf‘𝑅) ⇒ ⊢ (𝑅 ∈ *-Ring ↔ ( ∗ ∈ (𝑅 RingHom 𝑂) ∧ ∗ = ◡ ∗ )) | ||
Theorem | srngrhm 20310 | The involution function in a star ring is an antiautomorphism. (Contributed by Mario Carneiro, 6-Oct-2015.) |
⊢ 𝑂 = (oppr‘𝑅) & ⊢ ∗ = (*rf‘𝑅) ⇒ ⊢ (𝑅 ∈ *-Ring → ∗ ∈ (𝑅 RingHom 𝑂)) | ||
Theorem | srngring 20311 | A star ring is a ring. (Contributed by Mario Carneiro, 6-Oct-2015.) |
⊢ (𝑅 ∈ *-Ring → 𝑅 ∈ Ring) | ||
Theorem | srngcnv 20312 | The involution function in a star ring is its own inverse function. (Contributed by Mario Carneiro, 6-Oct-2015.) |
⊢ ∗ = (*rf‘𝑅) ⇒ ⊢ (𝑅 ∈ *-Ring → ∗ = ◡ ∗ ) | ||
Theorem | srngf1o 20313 | The involution function in a star ring is a bijection. (Contributed by Mario Carneiro, 6-Oct-2015.) |
⊢ ∗ = (*rf‘𝑅) & ⊢ 𝐵 = (Base‘𝑅) ⇒ ⊢ (𝑅 ∈ *-Ring → ∗ :𝐵–1-1-onto→𝐵) | ||
Theorem | srngcl 20314 | The involution function in a star ring is closed in the ring. (Contributed by Mario Carneiro, 6-Oct-2015.) |
⊢ ∗ = (*𝑟‘𝑅) & ⊢ 𝐵 = (Base‘𝑅) ⇒ ⊢ ((𝑅 ∈ *-Ring ∧ 𝑋 ∈ 𝐵) → ( ∗ ‘𝑋) ∈ 𝐵) | ||
Theorem | srngnvl 20315 | The involution function in a star ring is an involution. (Contributed by Mario Carneiro, 6-Oct-2015.) |
⊢ ∗ = (*𝑟‘𝑅) & ⊢ 𝐵 = (Base‘𝑅) ⇒ ⊢ ((𝑅 ∈ *-Ring ∧ 𝑋 ∈ 𝐵) → ( ∗ ‘( ∗ ‘𝑋)) = 𝑋) | ||
Theorem | srngadd 20316 | The involution function in a star ring distributes over addition. (Contributed by Mario Carneiro, 6-Oct-2015.) |
⊢ ∗ = (*𝑟‘𝑅) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ + = (+g‘𝑅) ⇒ ⊢ ((𝑅 ∈ *-Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ( ∗ ‘(𝑋 + 𝑌)) = (( ∗ ‘𝑋) + ( ∗ ‘𝑌))) | ||
Theorem | srngmul 20317 | The involution function in a star ring distributes over multiplication, with a change in the order of the factors. (Contributed by Mario Carneiro, 6-Oct-2015.) |
⊢ ∗ = (*𝑟‘𝑅) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) ⇒ ⊢ ((𝑅 ∈ *-Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ( ∗ ‘(𝑋 · 𝑌)) = (( ∗ ‘𝑌) · ( ∗ ‘𝑋))) | ||
Theorem | srng1 20318 | The conjugate of the ring identity is the identity. (This is sometimes taken as an axiom, and indeed the proof here follows because we defined *𝑟 to be a ring homomorphism, which preserves 1; nevertheless, it is redundant, as can be seen from the proof of issrngd 20320.) (Contributed by Mario Carneiro, 6-Oct-2015.) |
⊢ ∗ = (*𝑟‘𝑅) & ⊢ 1 = (1r‘𝑅) ⇒ ⊢ (𝑅 ∈ *-Ring → ( ∗ ‘ 1 ) = 1 ) | ||
Theorem | srng0 20319 | The conjugate of the ring zero is zero. (Contributed by Mario Carneiro, 7-Oct-2015.) |
⊢ ∗ = (*𝑟‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ (𝑅 ∈ *-Ring → ( ∗ ‘ 0 ) = 0 ) | ||
Theorem | issrngd 20320* | Properties that determine a star ring. (Contributed by Mario Carneiro, 18-Nov-2013.) (Revised by Mario Carneiro, 6-Oct-2015.) |
⊢ (𝜑 → 𝐾 = (Base‘𝑅)) & ⊢ (𝜑 → + = (+g‘𝑅)) & ⊢ (𝜑 → · = (.r‘𝑅)) & ⊢ (𝜑 → ∗ = (*𝑟‘𝑅)) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐾) → ( ∗ ‘𝑥) ∈ 𝐾) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾) → ( ∗ ‘(𝑥 + 𝑦)) = (( ∗ ‘𝑥) + ( ∗ ‘𝑦))) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾) → ( ∗ ‘(𝑥 · 𝑦)) = (( ∗ ‘𝑦) · ( ∗ ‘𝑥))) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐾) → ( ∗ ‘( ∗ ‘𝑥)) = 𝑥) ⇒ ⊢ (𝜑 → 𝑅 ∈ *-Ring) | ||
Theorem | idsrngd 20321* | A commutative ring is a star ring when the conjugate operation is the identity. (Contributed by Thierry Arnoux, 19-Apr-2019.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ ∗ = (*𝑟‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ CRing) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ( ∗ ‘𝑥) = 𝑥) ⇒ ⊢ (𝜑 → 𝑅 ∈ *-Ring) | ||
Syntax | clmod 20322 | Extend class notation with class of all left modules. |
class LMod | ||
Syntax | cscaf 20323 | The functionalization of the scalar multiplication operation. |
class ·sf | ||
Definition | df-lmod 20324* | Define the class of all left modules, which are generalizations of left vector spaces. A left module over a ring is an (Abelian) group (vectors) together with a ring (scalars) and a left scalar product connecting them. (Contributed by NM, 4-Nov-2013.) |
⊢ LMod = {𝑔 ∈ Grp ∣ [(Base‘𝑔) / 𝑣][(+g‘𝑔) / 𝑎][(Scalar‘𝑔) / 𝑓][( ·𝑠 ‘𝑔) / 𝑠][(Base‘𝑓) / 𝑘][(+g‘𝑓) / 𝑝][(.r‘𝑓) / 𝑡](𝑓 ∈ Ring ∧ ∀𝑞 ∈ 𝑘 ∀𝑟 ∈ 𝑘 ∀𝑥 ∈ 𝑣 ∀𝑤 ∈ 𝑣 (((𝑟𝑠𝑤) ∈ 𝑣 ∧ (𝑟𝑠(𝑤𝑎𝑥)) = ((𝑟𝑠𝑤)𝑎(𝑟𝑠𝑥)) ∧ ((𝑞𝑝𝑟)𝑠𝑤) = ((𝑞𝑠𝑤)𝑎(𝑟𝑠𝑤))) ∧ (((𝑞𝑡𝑟)𝑠𝑤) = (𝑞𝑠(𝑟𝑠𝑤)) ∧ ((1r‘𝑓)𝑠𝑤) = 𝑤)))} | ||
Definition | df-scaf 20325* | Define the functionalization of the ·𝑠 operator. This restricts the value of ·𝑠 to the stated domain, which is necessary when working with restricted structures, whose operations may be defined on a larger set than the true base. (Contributed by Mario Carneiro, 5-Oct-2015.) |
⊢ ·sf = (𝑔 ∈ V ↦ (𝑥 ∈ (Base‘(Scalar‘𝑔)), 𝑦 ∈ (Base‘𝑔) ↦ (𝑥( ·𝑠 ‘𝑔)𝑦))) | ||
Theorem | islmod 20326* | The predicate "is a left module". (Contributed by NM, 4-Nov-2013.) (Revised by Mario Carneiro, 19-Jun-2014.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ + = (+g‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) & ⊢ ⨣ = (+g‘𝐹) & ⊢ × = (.r‘𝐹) & ⊢ 1 = (1r‘𝐹) ⇒ ⊢ (𝑊 ∈ LMod ↔ (𝑊 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑞 ∈ 𝐾 ∀𝑟 ∈ 𝐾 ∀𝑥 ∈ 𝑉 ∀𝑤 ∈ 𝑉 (((𝑟 · 𝑤) ∈ 𝑉 ∧ (𝑟 · (𝑤 + 𝑥)) = ((𝑟 · 𝑤) + (𝑟 · 𝑥)) ∧ ((𝑞 ⨣ 𝑟) · 𝑤) = ((𝑞 · 𝑤) + (𝑟 · 𝑤))) ∧ (((𝑞 × 𝑟) · 𝑤) = (𝑞 · (𝑟 · 𝑤)) ∧ ( 1 · 𝑤) = 𝑤)))) | ||
Theorem | lmodlema 20327 | Lemma for properties of a left module. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ + = (+g‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) & ⊢ ⨣ = (+g‘𝐹) & ⊢ × = (.r‘𝐹) & ⊢ 1 = (1r‘𝐹) ⇒ ⊢ ((𝑊 ∈ LMod ∧ (𝑄 ∈ 𝐾 ∧ 𝑅 ∈ 𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → (((𝑅 · 𝑌) ∈ 𝑉 ∧ (𝑅 · (𝑌 + 𝑋)) = ((𝑅 · 𝑌) + (𝑅 · 𝑋)) ∧ ((𝑄 ⨣ 𝑅) · 𝑌) = ((𝑄 · 𝑌) + (𝑅 · 𝑌))) ∧ (((𝑄 × 𝑅) · 𝑌) = (𝑄 · (𝑅 · 𝑌)) ∧ ( 1 · 𝑌) = 𝑌))) | ||
Theorem | islmodd 20328* | Properties that determine a left module. See note in isgrpd2 18770 regarding the 𝜑 on hypotheses that name structure components. (Contributed by Mario Carneiro, 22-Jun-2014.) |
⊢ (𝜑 → 𝑉 = (Base‘𝑊)) & ⊢ (𝜑 → + = (+g‘𝑊)) & ⊢ (𝜑 → 𝐹 = (Scalar‘𝑊)) & ⊢ (𝜑 → · = ( ·𝑠 ‘𝑊)) & ⊢ (𝜑 → 𝐵 = (Base‘𝐹)) & ⊢ (𝜑 → ⨣ = (+g‘𝐹)) & ⊢ (𝜑 → × = (.r‘𝐹)) & ⊢ (𝜑 → 1 = (1r‘𝐹)) & ⊢ (𝜑 → 𝐹 ∈ Ring) & ⊢ (𝜑 → 𝑊 ∈ Grp) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝑉) → (𝑥 · 𝑦) ∈ 𝑉) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → (𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧))) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝑉)) → ((𝑥 ⨣ 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧))) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝑉)) → ((𝑥 × 𝑦) · 𝑧) = (𝑥 · (𝑦 · 𝑧))) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉) → ( 1 · 𝑥) = 𝑥) ⇒ ⊢ (𝜑 → 𝑊 ∈ LMod) | ||
Theorem | lmodgrp 20329 | A left module is a group. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 25-Jun-2014.) |
⊢ (𝑊 ∈ LMod → 𝑊 ∈ Grp) | ||
Theorem | lmodring 20330 | The scalar component of a left module is a ring. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.) |
⊢ 𝐹 = (Scalar‘𝑊) ⇒ ⊢ (𝑊 ∈ LMod → 𝐹 ∈ Ring) | ||
Theorem | lmodfgrp 20331 | The scalar component of a left module is an additive group. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.) |
⊢ 𝐹 = (Scalar‘𝑊) ⇒ ⊢ (𝑊 ∈ LMod → 𝐹 ∈ Grp) | ||
Theorem | lmodbn0 20332 | The base set of a left module is nonempty. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.) |
⊢ 𝐵 = (Base‘𝑊) ⇒ ⊢ (𝑊 ∈ LMod → 𝐵 ≠ ∅) | ||
Theorem | lmodacl 20333 | Closure of ring addition for a left module. (Contributed by NM, 14-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.) |
⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) & ⊢ + = (+g‘𝐹) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾) → (𝑋 + 𝑌) ∈ 𝐾) | ||
Theorem | lmodmcl 20334 | Closure of ring multiplication for a left module. (Contributed by NM, 14-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.) |
⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) & ⊢ · = (.r‘𝐹) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾) → (𝑋 · 𝑌) ∈ 𝐾) | ||
Theorem | lmodsn0 20335 | The set of scalars in a left module is nonempty. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.) |
⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐵 = (Base‘𝐹) ⇒ ⊢ (𝑊 ∈ LMod → 𝐵 ≠ ∅) | ||
Theorem | lmodvacl 20336 | Closure of vector addition for a left module. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ + = (+g‘𝑊) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → (𝑋 + 𝑌) ∈ 𝑉) | ||
Theorem | lmodass 20337 | Left module vector sum is associative. (Contributed by NM, 10-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ + = (+g‘𝑊) ⇒ ⊢ ((𝑊 ∈ LMod ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑉)) → ((𝑋 + 𝑌) + 𝑍) = (𝑋 + (𝑌 + 𝑍))) | ||
Theorem | lmodlcan 20338 | Left cancellation law for vector sum. (Contributed by NM, 12-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ + = (+g‘𝑊) ⇒ ⊢ ((𝑊 ∈ LMod ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑉)) → ((𝑍 + 𝑋) = (𝑍 + 𝑌) ↔ 𝑋 = 𝑌)) | ||
Theorem | lmodvscl 20339 | Closure of scalar product for a left module. (hvmulcl 29955 analog.) (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉) → (𝑅 · 𝑋) ∈ 𝑉) | ||
Theorem | scaffval 20340* | The scalar multiplication operation as a function. (Contributed by Mario Carneiro, 5-Oct-2015.) (Proof shortened by AV, 2-Mar-2024.) |
⊢ 𝐵 = (Base‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) & ⊢ ∙ = ( ·sf ‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) ⇒ ⊢ ∙ = (𝑥 ∈ 𝐾, 𝑦 ∈ 𝐵 ↦ (𝑥 · 𝑦)) | ||
Theorem | scafval 20341 | The scalar multiplication operation as a function. (Contributed by Mario Carneiro, 5-Oct-2015.) |
⊢ 𝐵 = (Base‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) & ⊢ ∙ = ( ·sf ‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) ⇒ ⊢ ((𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∙ 𝑌) = (𝑋 · 𝑌)) | ||
Theorem | scafeq 20342 | If the scalar multiplication operation is already a function, the functionalization of it is equal to the original operation. (Contributed by Mario Carneiro, 5-Oct-2015.) |
⊢ 𝐵 = (Base‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) & ⊢ ∙ = ( ·sf ‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) ⇒ ⊢ ( · Fn (𝐾 × 𝐵) → ∙ = · ) | ||
Theorem | scaffn 20343 | The scalar multiplication operation is a function. (Contributed by Mario Carneiro, 5-Oct-2015.) |
⊢ 𝐵 = (Base‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) & ⊢ ∙ = ( ·sf ‘𝑊) ⇒ ⊢ ∙ Fn (𝐾 × 𝐵) | ||
Theorem | lmodscaf 20344 | The scalar multiplication operation is a function. (Contributed by Mario Carneiro, 5-Oct-2015.) |
⊢ 𝐵 = (Base‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) & ⊢ ∙ = ( ·sf ‘𝑊) ⇒ ⊢ (𝑊 ∈ LMod → ∙ :(𝐾 × 𝐵)⟶𝐵) | ||
Theorem | lmodvsdi 20345 | Distributive law for scalar product (left-distributivity). (ax-hvdistr1 29950 analog.) (Contributed by NM, 10-Jan-2014.) (Revised by Mario Carneiro, 22-Sep-2015.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ + = (+g‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) ⇒ ⊢ ((𝑊 ∈ LMod ∧ (𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → (𝑅 · (𝑋 + 𝑌)) = ((𝑅 · 𝑋) + (𝑅 · 𝑌))) | ||
Theorem | lmodvsdir 20346 | Distributive law for scalar product (right-distributivity). (ax-hvdistr1 29950 analog.) (Contributed by NM, 10-Jan-2014.) (Revised by Mario Carneiro, 22-Sep-2015.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ + = (+g‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) & ⊢ ⨣ = (+g‘𝐹) ⇒ ⊢ ((𝑊 ∈ LMod ∧ (𝑄 ∈ 𝐾 ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉)) → ((𝑄 ⨣ 𝑅) · 𝑋) = ((𝑄 · 𝑋) + (𝑅 · 𝑋))) | ||
Theorem | lmodvsass 20347 | Associative law for scalar product. (ax-hvmulass 29949 analog.) (Contributed by NM, 10-Jan-2014.) (Revised by Mario Carneiro, 22-Sep-2015.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) & ⊢ × = (.r‘𝐹) ⇒ ⊢ ((𝑊 ∈ LMod ∧ (𝑄 ∈ 𝐾 ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉)) → ((𝑄 × 𝑅) · 𝑋) = (𝑄 · (𝑅 · 𝑋))) | ||
Theorem | lmod0cl 20348 | The ring zero in a left module belongs to the ring base set. (Contributed by NM, 11-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.) |
⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) & ⊢ 0 = (0g‘𝐹) ⇒ ⊢ (𝑊 ∈ LMod → 0 ∈ 𝐾) | ||
Theorem | lmod1cl 20349 | The ring unity in a left module belongs to the ring base set. (Contributed by NM, 11-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.) |
⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) & ⊢ 1 = (1r‘𝐹) ⇒ ⊢ (𝑊 ∈ LMod → 1 ∈ 𝐾) | ||
Theorem | lmodvs1 20350 | Scalar product with the ring unity. (ax-hvmulid 29948 analog.) (Contributed by NM, 10-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 1 = (1r‘𝐹) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → ( 1 · 𝑋) = 𝑋) | ||
Theorem | lmod0vcl 20351 | The zero vector is a vector. (ax-hv0cl 29945 analog.) (Contributed by NM, 10-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ 0 = (0g‘𝑊) ⇒ ⊢ (𝑊 ∈ LMod → 0 ∈ 𝑉) | ||
Theorem | lmod0vlid 20352 | Left identity law for the zero vector. (hvaddid2 29965 analog.) (Contributed by NM, 10-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ + = (+g‘𝑊) & ⊢ 0 = (0g‘𝑊) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → ( 0 + 𝑋) = 𝑋) | ||
Theorem | lmod0vrid 20353 | Right identity law for the zero vector. (ax-hvaddid 29946 analog.) (Contributed by NM, 10-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ + = (+g‘𝑊) & ⊢ 0 = (0g‘𝑊) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → (𝑋 + 0 ) = 𝑋) | ||
Theorem | lmod0vid 20354 | Identity equivalent to the value of the zero vector. Provides a convenient way to compute the value. (Contributed by NM, 9-Mar-2014.) (Revised by Mario Carneiro, 19-Jun-2014.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ + = (+g‘𝑊) & ⊢ 0 = (0g‘𝑊) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → ((𝑋 + 𝑋) = 𝑋 ↔ 0 = 𝑋)) | ||
Theorem | lmod0vs 20355 | Zero times a vector is the zero vector. Equation 1a of [Kreyszig] p. 51. (ax-hvmul0 29952 analog.) (Contributed by NM, 12-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 𝑂 = (0g‘𝐹) & ⊢ 0 = (0g‘𝑊) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → (𝑂 · 𝑋) = 0 ) | ||
Theorem | lmodvs0 20356 | Anything times the zero vector is the zero vector. Equation 1b of [Kreyszig] p. 51. (hvmul0 29966 analog.) (Contributed by NM, 12-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.) |
⊢ 𝐹 = (Scalar‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) & ⊢ 0 = (0g‘𝑊) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝐾) → (𝑋 · 0 ) = 0 ) | ||
Theorem | lmodvsmmulgdi 20357 | Distributive law for a group multiple of a scalar multiplication. (Contributed by AV, 2-Sep-2019.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) & ⊢ ↑ = (.g‘𝑊) & ⊢ 𝐸 = (.g‘𝐹) ⇒ ⊢ ((𝑊 ∈ LMod ∧ (𝐶 ∈ 𝐾 ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝑉)) → (𝑁 ↑ (𝐶 · 𝑋)) = ((𝑁𝐸𝐶) · 𝑋)) | ||
Theorem | lmodfopnelem1 20358 | Lemma 1 for lmodfopne 20360. (Contributed by AV, 2-Oct-2021.) |
⊢ · = ( ·sf ‘𝑊) & ⊢ + = (+𝑓‘𝑊) & ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝑆 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝑆) ⇒ ⊢ ((𝑊 ∈ LMod ∧ + = · ) → 𝑉 = 𝐾) | ||
Theorem | lmodfopnelem2 20359 | Lemma 2 for lmodfopne 20360. (Contributed by AV, 2-Oct-2021.) |
⊢ · = ( ·sf ‘𝑊) & ⊢ + = (+𝑓‘𝑊) & ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝑆 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝑆) & ⊢ 0 = (0g‘𝑆) & ⊢ 1 = (1r‘𝑆) ⇒ ⊢ ((𝑊 ∈ LMod ∧ + = · ) → ( 0 ∈ 𝑉 ∧ 1 ∈ 𝑉)) | ||
Theorem | lmodfopne 20360 | The (functionalized) operations of a left module (over a nonzero ring) cannot be identical. (Contributed by NM, 31-May-2008.) (Revised by AV, 2-Oct-2021.) |
⊢ · = ( ·sf ‘𝑊) & ⊢ + = (+𝑓‘𝑊) & ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝑆 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝑆) & ⊢ 0 = (0g‘𝑆) & ⊢ 1 = (1r‘𝑆) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 1 ≠ 0 ) → + ≠ · ) | ||
Theorem | lcomf 20361 | A linear-combination sum is a function. (Contributed by Stefan O'Rear, 28-Feb-2015.) |
⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 𝐵 = (Base‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝐺:𝐼⟶𝐾) & ⊢ (𝜑 → 𝐻:𝐼⟶𝐵) & ⊢ (𝜑 → 𝐼 ∈ 𝑉) ⇒ ⊢ (𝜑 → (𝐺 ∘f · 𝐻):𝐼⟶𝐵) | ||
Theorem | lcomfsupp 20362 | A linear-combination sum is finitely supported if the coefficients are. (Contributed by Stefan O'Rear, 28-Feb-2015.) (Revised by AV, 15-Jul-2019.) |
⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 𝐵 = (Base‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝐺:𝐼⟶𝐾) & ⊢ (𝜑 → 𝐻:𝐼⟶𝐵) & ⊢ (𝜑 → 𝐼 ∈ 𝑉) & ⊢ 0 = (0g‘𝑊) & ⊢ 𝑌 = (0g‘𝐹) & ⊢ (𝜑 → 𝐺 finSupp 𝑌) ⇒ ⊢ (𝜑 → (𝐺 ∘f · 𝐻) finSupp 0 ) | ||
Theorem | lmodvnegcl 20363 | Closure of vector negative. (Contributed by NM, 18-Apr-2014.) (Revised by Mario Carneiro, 19-Jun-2014.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝑁 = (invg‘𝑊) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → (𝑁‘𝑋) ∈ 𝑉) | ||
Theorem | lmodvnegid 20364 | Addition of a vector with its negative. (Contributed by NM, 18-Apr-2014.) (Revised by Mario Carneiro, 19-Jun-2014.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ + = (+g‘𝑊) & ⊢ 0 = (0g‘𝑊) & ⊢ 𝑁 = (invg‘𝑊) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → (𝑋 + (𝑁‘𝑋)) = 0 ) | ||
Theorem | lmodvneg1 20365 | Minus 1 times a vector is the negative of the vector. Equation 2 of [Kreyszig] p. 51. (Contributed by NM, 18-Apr-2014.) (Revised by Mario Carneiro, 19-Jun-2014.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝑁 = (invg‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 1 = (1r‘𝐹) & ⊢ 𝑀 = (invg‘𝐹) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → ((𝑀‘ 1 ) · 𝑋) = (𝑁‘𝑋)) | ||
Theorem | lmodvsneg 20366 | Multiplication of a vector by a negated scalar. (Contributed by Stefan O'Rear, 28-Feb-2015.) |
⊢ 𝐵 = (Base‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 𝑁 = (invg‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) & ⊢ 𝑀 = (invg‘𝐹) & ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑅 ∈ 𝐾) ⇒ ⊢ (𝜑 → (𝑁‘(𝑅 · 𝑋)) = ((𝑀‘𝑅) · 𝑋)) | ||
Theorem | lmodvsubcl 20367 | Closure of vector subtraction. (hvsubcl 29959 analog.) (Contributed by NM, 31-Mar-2014.) (Revised by Mario Carneiro, 19-Jun-2014.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ − = (-g‘𝑊) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → (𝑋 − 𝑌) ∈ 𝑉) | ||
Theorem | lmodcom 20368 | Left module vector sum is commutative. (Contributed by Gérard Lang, 25-Jun-2014.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ + = (+g‘𝑊) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → (𝑋 + 𝑌) = (𝑌 + 𝑋)) | ||
Theorem | lmodabl 20369 | A left module is an abelian group (of vectors, under addition). (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 25-Jun-2014.) |
⊢ (𝑊 ∈ LMod → 𝑊 ∈ Abel) | ||
Theorem | lmodcmn 20370 | A left module is a commutative monoid under addition. (Contributed by NM, 7-Jan-2015.) |
⊢ (𝑊 ∈ LMod → 𝑊 ∈ CMnd) | ||
Theorem | lmodnegadd 20371 | Distribute negation through addition of scalar products. (Contributed by NM, 9-Apr-2015.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ + = (+g‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 𝑁 = (invg‘𝑊) & ⊢ 𝑅 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ 𝐼 = (invg‘𝑅) & ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝐴 ∈ 𝐾) & ⊢ (𝜑 → 𝐵 ∈ 𝐾) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) ⇒ ⊢ (𝜑 → (𝑁‘((𝐴 · 𝑋) + (𝐵 · 𝑌))) = (((𝐼‘𝐴) · 𝑋) + ((𝐼‘𝐵) · 𝑌))) | ||
Theorem | lmod4 20372 | Commutative/associative law for left module vector sum. (Contributed by NM, 4-Feb-2014.) (Revised by Mario Carneiro, 19-Jun-2014.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ + = (+g‘𝑊) ⇒ ⊢ ((𝑊 ∈ LMod ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) ∧ (𝑍 ∈ 𝑉 ∧ 𝑈 ∈ 𝑉)) → ((𝑋 + 𝑌) + (𝑍 + 𝑈)) = ((𝑋 + 𝑍) + (𝑌 + 𝑈))) | ||
Theorem | lmodvsubadd 20373 | Relationship between vector subtraction and addition. (hvsubadd 30019 analog.) (Contributed by NM, 31-Mar-2014.) (Revised by Mario Carneiro, 19-Jun-2014.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ + = (+g‘𝑊) & ⊢ − = (-g‘𝑊) ⇒ ⊢ ((𝑊 ∈ LMod ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → ((𝐴 − 𝐵) = 𝐶 ↔ (𝐵 + 𝐶) = 𝐴)) | ||
Theorem | lmodvaddsub4 20374 | Vector addition/subtraction law. (Contributed by NM, 31-Mar-2014.) (Revised by Mario Carneiro, 19-Jun-2014.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ + = (+g‘𝑊) & ⊢ − = (-g‘𝑊) ⇒ ⊢ ((𝑊 ∈ LMod ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉)) → ((𝐴 + 𝐵) = (𝐶 + 𝐷) ↔ (𝐴 − 𝐶) = (𝐷 − 𝐵))) | ||
Theorem | lmodvpncan 20375 | Addition/subtraction cancellation law for vectors. (hvpncan 29981 analog.) (Contributed by NM, 16-Apr-2014.) (Revised by Mario Carneiro, 19-Jun-2014.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ + = (+g‘𝑊) & ⊢ − = (-g‘𝑊) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → ((𝐴 + 𝐵) − 𝐵) = 𝐴) | ||
Theorem | lmodvnpcan 20376 | Cancellation law for vector subtraction (npcan 11410 analog). (Contributed by NM, 19-Apr-2014.) (Revised by Mario Carneiro, 19-Jun-2014.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ + = (+g‘𝑊) & ⊢ − = (-g‘𝑊) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → ((𝐴 − 𝐵) + 𝐵) = 𝐴) | ||
Theorem | lmodvsubval2 20377 | Value of vector subtraction in terms of addition. (hvsubval 29958 analog.) (Contributed by NM, 31-Mar-2014.) (Proof shortened by Mario Carneiro, 19-Jun-2014.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ + = (+g‘𝑊) & ⊢ − = (-g‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 𝑁 = (invg‘𝐹) & ⊢ 1 = (1r‘𝐹) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → (𝐴 − 𝐵) = (𝐴 + ((𝑁‘ 1 ) · 𝐵))) | ||
Theorem | lmodsubvs 20378 | Subtraction of a scalar product in terms of addition. (Contributed by NM, 9-Apr-2015.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ + = (+g‘𝑊) & ⊢ − = (-g‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) & ⊢ 𝑁 = (invg‘𝐹) & ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝐴 ∈ 𝐾) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) ⇒ ⊢ (𝜑 → (𝑋 − (𝐴 · 𝑌)) = (𝑋 + ((𝑁‘𝐴) · 𝑌))) | ||
Theorem | lmodsubdi 20379 | Scalar multiplication distributive law for subtraction. (hvsubdistr1 29991 analogue, with longer proof since our scalar multiplication is not commutative.) (Contributed by NM, 2-Jul-2014.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) & ⊢ − = (-g‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝐴 ∈ 𝐾) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) ⇒ ⊢ (𝜑 → (𝐴 · (𝑋 − 𝑌)) = ((𝐴 · 𝑋) − (𝐴 · 𝑌))) | ||
Theorem | lmodsubdir 20380 | Scalar multiplication distributive law for subtraction. (hvsubdistr2 29992 analog.) (Contributed by NM, 2-Jul-2014.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) & ⊢ − = (-g‘𝑊) & ⊢ 𝑆 = (-g‘𝐹) & ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝐴 ∈ 𝐾) & ⊢ (𝜑 → 𝐵 ∈ 𝐾) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) ⇒ ⊢ (𝜑 → ((𝐴𝑆𝐵) · 𝑋) = ((𝐴 · 𝑋) − (𝐵 · 𝑋))) | ||
Theorem | lmodsubeq0 20381 | If the difference between two vectors is zero, they are equal. (hvsubeq0 30010 analog.) (Contributed by NM, 31-Mar-2014.) (Revised by Mario Carneiro, 19-Jun-2014.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ 0 = (0g‘𝑊) & ⊢ − = (-g‘𝑊) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → ((𝐴 − 𝐵) = 0 ↔ 𝐴 = 𝐵)) | ||
Theorem | lmodsubid 20382 | Subtraction of a vector from itself. (hvsubid 29968 analog.) (Contributed by NM, 16-Apr-2014.) (Revised by Mario Carneiro, 19-Jun-2014.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ 0 = (0g‘𝑊) & ⊢ − = (-g‘𝑊) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝐴 ∈ 𝑉) → (𝐴 − 𝐴) = 0 ) | ||
Theorem | lmodvsghm 20383* | Scalar multiplication of the vector space by a fixed scalar is an endomorphism of the additive group of vectors. (Contributed by Mario Carneiro, 5-May-2015.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝑅 ∈ 𝐾) → (𝑥 ∈ 𝑉 ↦ (𝑅 · 𝑥)) ∈ (𝑊 GrpHom 𝑊)) | ||
Theorem | lmodprop2d 20384* | If two structures have the same components (properties), one is a left module iff the other one is. This version of lmodpropd 20385 also breaks up the components of the scalar ring. (Contributed by Mario Carneiro, 27-Jun-2015.) |
⊢ (𝜑 → 𝐵 = (Base‘𝐾)) & ⊢ (𝜑 → 𝐵 = (Base‘𝐿)) & ⊢ 𝐹 = (Scalar‘𝐾) & ⊢ 𝐺 = (Scalar‘𝐿) & ⊢ (𝜑 → 𝑃 = (Base‘𝐹)) & ⊢ (𝜑 → 𝑃 = (Base‘𝐺)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝐿)𝑦)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑃)) → (𝑥(+g‘𝐹)𝑦) = (𝑥(+g‘𝐺)𝑦)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑃)) → (𝑥(.r‘𝐹)𝑦) = (𝑥(.r‘𝐺)𝑦)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝐵)) → (𝑥( ·𝑠 ‘𝐾)𝑦) = (𝑥( ·𝑠 ‘𝐿)𝑦)) ⇒ ⊢ (𝜑 → (𝐾 ∈ LMod ↔ 𝐿 ∈ LMod)) | ||
Theorem | lmodpropd 20385* | If two structures have the same components (properties), one is a left module iff the other one is. (Contributed by Mario Carneiro, 8-Feb-2015.) (Revised by Mario Carneiro, 27-Jun-2015.) |
⊢ (𝜑 → 𝐵 = (Base‘𝐾)) & ⊢ (𝜑 → 𝐵 = (Base‘𝐿)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝐿)𝑦)) & ⊢ (𝜑 → 𝐹 = (Scalar‘𝐾)) & ⊢ (𝜑 → 𝐹 = (Scalar‘𝐿)) & ⊢ 𝑃 = (Base‘𝐹) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝐵)) → (𝑥( ·𝑠 ‘𝐾)𝑦) = (𝑥( ·𝑠 ‘𝐿)𝑦)) ⇒ ⊢ (𝜑 → (𝐾 ∈ LMod ↔ 𝐿 ∈ LMod)) | ||
Theorem | gsumvsmul 20386* | Pull a scalar multiplication out of a sum of vectors. This theorem properly generalizes gsummulc2 20031, since every ring is a left module over itself. (Contributed by Stefan O'Rear, 6-Feb-2015.) (Revised by Mario Carneiro, 5-May-2015.) (Revised by AV, 10-Jul-2019.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝑆 = (Scalar‘𝑅) & ⊢ 𝐾 = (Base‘𝑆) & ⊢ 0 = (0g‘𝑅) & ⊢ + = (+g‘𝑅) & ⊢ · = ( ·𝑠 ‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ LMod) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝑋 ∈ 𝐾) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ 𝑌) finSupp 0 ) ⇒ ⊢ (𝜑 → (𝑅 Σg (𝑘 ∈ 𝐴 ↦ (𝑋 · 𝑌))) = (𝑋 · (𝑅 Σg (𝑘 ∈ 𝐴 ↦ 𝑌)))) | ||
Theorem | mptscmfsupp0 20387* | A mapping to a scalar product is finitely supported if the mapping to the scalar is finitely supported. (Contributed by AV, 5-Oct-2019.) |
⊢ (𝜑 → 𝐷 ∈ 𝑉) & ⊢ (𝜑 → 𝑄 ∈ LMod) & ⊢ (𝜑 → 𝑅 = (Scalar‘𝑄)) & ⊢ 𝐾 = (Base‘𝑄) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐷) → 𝑆 ∈ 𝐵) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐷) → 𝑊 ∈ 𝐾) & ⊢ 0 = (0g‘𝑄) & ⊢ 𝑍 = (0g‘𝑅) & ⊢ ∗ = ( ·𝑠 ‘𝑄) & ⊢ (𝜑 → (𝑘 ∈ 𝐷 ↦ 𝑆) finSupp 𝑍) ⇒ ⊢ (𝜑 → (𝑘 ∈ 𝐷 ↦ (𝑆 ∗ 𝑊)) finSupp 0 ) | ||
Theorem | mptscmfsuppd 20388* | A function mapping to a scalar product in which one factor is finitely supported is finitely supported. Formerly part of proof for ply1coe 21667. (Contributed by Stefan O'Rear, 21-Mar-2015.) (Revised by AV, 8-Aug-2019.) (Proof shortened by AV, 18-Oct-2019.) |
⊢ 𝐵 = (Base‘𝑃) & ⊢ 𝑆 = (Scalar‘𝑃) & ⊢ · = ( ·𝑠 ‘𝑃) & ⊢ (𝜑 → 𝑃 ∈ LMod) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → 𝑍 ∈ 𝐵) & ⊢ (𝜑 → 𝐴:𝑋⟶𝑌) & ⊢ (𝜑 → 𝐴 finSupp (0g‘𝑆)) ⇒ ⊢ (𝜑 → (𝑘 ∈ 𝑋 ↦ ((𝐴‘𝑘) · 𝑍)) finSupp (0g‘𝑃)) | ||
Theorem | rmodislmodlem 20389* | Lemma for rmodislmod 20390. This is the part of the proof of rmodislmod 20390 which requires the scalar ring to be commutative. (Contributed by AV, 3-Dec-2021.) |
⊢ 𝑉 = (Base‘𝑅) & ⊢ + = (+g‘𝑅) & ⊢ · = ( ·𝑠 ‘𝑅) & ⊢ 𝐹 = (Scalar‘𝑅) & ⊢ 𝐾 = (Base‘𝐹) & ⊢ ⨣ = (+g‘𝐹) & ⊢ × = (.r‘𝐹) & ⊢ 1 = (1r‘𝐹) & ⊢ (𝑅 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑞 ∈ 𝐾 ∀𝑟 ∈ 𝐾 ∀𝑥 ∈ 𝑉 ∀𝑤 ∈ 𝑉 (((𝑤 · 𝑟) ∈ 𝑉 ∧ ((𝑤 + 𝑥) · 𝑟) = ((𝑤 · 𝑟) + (𝑥 · 𝑟)) ∧ (𝑤 · (𝑞 ⨣ 𝑟)) = ((𝑤 · 𝑞) + (𝑤 · 𝑟))) ∧ ((𝑤 · (𝑞 × 𝑟)) = ((𝑤 · 𝑞) · 𝑟) ∧ (𝑤 · 1 ) = 𝑤))) & ⊢ ∗ = (𝑠 ∈ 𝐾, 𝑣 ∈ 𝑉 ↦ (𝑣 · 𝑠)) & ⊢ 𝐿 = (𝑅 sSet 〈( ·𝑠 ‘ndx), ∗ 〉) ⇒ ⊢ ((𝐹 ∈ CRing ∧ (𝑎 ∈ 𝐾 ∧ 𝑏 ∈ 𝐾 ∧ 𝑐 ∈ 𝑉)) → ((𝑎 × 𝑏) ∗ 𝑐) = (𝑎 ∗ (𝑏 ∗ 𝑐))) | ||
Theorem | rmodislmod 20390* | The right module 𝑅 induces a left module 𝐿 by replacing the scalar multiplication with a reversed multiplication if the scalar ring is commutative. The hypothesis "rmodislmod.r" is a definition of a right module analogous to Definition df-lmod 20324 of a left module, see also islmod 20326. (Contributed by AV, 3-Dec-2021.) (Proof shortened by AV, 18-Oct-2024.) |
⊢ 𝑉 = (Base‘𝑅) & ⊢ + = (+g‘𝑅) & ⊢ · = ( ·𝑠 ‘𝑅) & ⊢ 𝐹 = (Scalar‘𝑅) & ⊢ 𝐾 = (Base‘𝐹) & ⊢ ⨣ = (+g‘𝐹) & ⊢ × = (.r‘𝐹) & ⊢ 1 = (1r‘𝐹) & ⊢ (𝑅 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑞 ∈ 𝐾 ∀𝑟 ∈ 𝐾 ∀𝑥 ∈ 𝑉 ∀𝑤 ∈ 𝑉 (((𝑤 · 𝑟) ∈ 𝑉 ∧ ((𝑤 + 𝑥) · 𝑟) = ((𝑤 · 𝑟) + (𝑥 · 𝑟)) ∧ (𝑤 · (𝑞 ⨣ 𝑟)) = ((𝑤 · 𝑞) + (𝑤 · 𝑟))) ∧ ((𝑤 · (𝑞 × 𝑟)) = ((𝑤 · 𝑞) · 𝑟) ∧ (𝑤 · 1 ) = 𝑤))) & ⊢ ∗ = (𝑠 ∈ 𝐾, 𝑣 ∈ 𝑉 ↦ (𝑣 · 𝑠)) & ⊢ 𝐿 = (𝑅 sSet 〈( ·𝑠 ‘ndx), ∗ 〉) ⇒ ⊢ (𝐹 ∈ CRing → 𝐿 ∈ LMod) | ||
Theorem | rmodislmodOLD 20391* | Obsolete version of rmodislmod 20390 as of 18-Oct-2024. The right module 𝑅 induces a left module 𝐿 by replacing the scalar multiplication with a reversed multiplication if the scalar ring is commutative. The hypothesis "rmodislmod.r" is a definition of a right module analogous to Definition df-lmod 20324 of a left module, see also islmod 20326. (Contributed by AV, 3-Dec-2021.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ 𝑉 = (Base‘𝑅) & ⊢ + = (+g‘𝑅) & ⊢ · = ( ·𝑠 ‘𝑅) & ⊢ 𝐹 = (Scalar‘𝑅) & ⊢ 𝐾 = (Base‘𝐹) & ⊢ ⨣ = (+g‘𝐹) & ⊢ × = (.r‘𝐹) & ⊢ 1 = (1r‘𝐹) & ⊢ (𝑅 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑞 ∈ 𝐾 ∀𝑟 ∈ 𝐾 ∀𝑥 ∈ 𝑉 ∀𝑤 ∈ 𝑉 (((𝑤 · 𝑟) ∈ 𝑉 ∧ ((𝑤 + 𝑥) · 𝑟) = ((𝑤 · 𝑟) + (𝑥 · 𝑟)) ∧ (𝑤 · (𝑞 ⨣ 𝑟)) = ((𝑤 · 𝑞) + (𝑤 · 𝑟))) ∧ ((𝑤 · (𝑞 × 𝑟)) = ((𝑤 · 𝑞) · 𝑟) ∧ (𝑤 · 1 ) = 𝑤))) & ⊢ ∗ = (𝑠 ∈ 𝐾, 𝑣 ∈ 𝑉 ↦ (𝑣 · 𝑠)) & ⊢ 𝐿 = (𝑅 sSet 〈( ·𝑠 ‘ndx), ∗ 〉) ⇒ ⊢ (𝐹 ∈ CRing → 𝐿 ∈ LMod) | ||
Syntax | clss 20392 | Extend class notation with linear subspaces of a left module or left vector space. |
class LSubSp | ||
Definition | df-lss 20393* | Define the set of linear subspaces of a left module or left vector space. (Contributed by NM, 8-Dec-2013.) |
⊢ LSubSp = (𝑤 ∈ V ↦ {𝑠 ∈ (𝒫 (Base‘𝑤) ∖ {∅}) ∣ ∀𝑥 ∈ (Base‘(Scalar‘𝑤))∀𝑎 ∈ 𝑠 ∀𝑏 ∈ 𝑠 ((𝑥( ·𝑠 ‘𝑤)𝑎)(+g‘𝑤)𝑏) ∈ 𝑠}) | ||
Theorem | lssset 20394* | The set of all (not necessarily closed) linear subspaces of a left module or left vector space. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 15-Jul-2014.) |
⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐵 = (Base‘𝐹) & ⊢ 𝑉 = (Base‘𝑊) & ⊢ + = (+g‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 𝑆 = (LSubSp‘𝑊) ⇒ ⊢ (𝑊 ∈ 𝑋 → 𝑆 = {𝑠 ∈ (𝒫 𝑉 ∖ {∅}) ∣ ∀𝑥 ∈ 𝐵 ∀𝑎 ∈ 𝑠 ∀𝑏 ∈ 𝑠 ((𝑥 · 𝑎) + 𝑏) ∈ 𝑠}) | ||
Theorem | islss 20395* | The predicate "is a subspace" (of a left module or left vector space). (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 8-Jan-2015.) |
⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐵 = (Base‘𝐹) & ⊢ 𝑉 = (Base‘𝑊) & ⊢ + = (+g‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 𝑆 = (LSubSp‘𝑊) ⇒ ⊢ (𝑈 ∈ 𝑆 ↔ (𝑈 ⊆ 𝑉 ∧ 𝑈 ≠ ∅ ∧ ∀𝑥 ∈ 𝐵 ∀𝑎 ∈ 𝑈 ∀𝑏 ∈ 𝑈 ((𝑥 · 𝑎) + 𝑏) ∈ 𝑈)) | ||
Theorem | islssd 20396* | Properties that determine a subspace of a left module or left vector space. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 8-Jan-2015.) |
⊢ (𝜑 → 𝐹 = (Scalar‘𝑊)) & ⊢ (𝜑 → 𝐵 = (Base‘𝐹)) & ⊢ (𝜑 → 𝑉 = (Base‘𝑊)) & ⊢ (𝜑 → + = (+g‘𝑊)) & ⊢ (𝜑 → · = ( ·𝑠 ‘𝑊)) & ⊢ (𝜑 → 𝑆 = (LSubSp‘𝑊)) & ⊢ (𝜑 → 𝑈 ⊆ 𝑉) & ⊢ (𝜑 → 𝑈 ≠ ∅) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑎 ∈ 𝑈 ∧ 𝑏 ∈ 𝑈)) → ((𝑥 · 𝑎) + 𝑏) ∈ 𝑈) ⇒ ⊢ (𝜑 → 𝑈 ∈ 𝑆) | ||
Theorem | lssss 20397 | A subspace is a set of vectors. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 8-Jan-2015.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝑆 = (LSubSp‘𝑊) ⇒ ⊢ (𝑈 ∈ 𝑆 → 𝑈 ⊆ 𝑉) | ||
Theorem | lssel 20398 | A subspace member is a vector. (Contributed by NM, 11-Jan-2014.) (Revised by Mario Carneiro, 8-Jan-2015.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝑆 = (LSubSp‘𝑊) ⇒ ⊢ ((𝑈 ∈ 𝑆 ∧ 𝑋 ∈ 𝑈) → 𝑋 ∈ 𝑉) | ||
Theorem | lss1 20399 | The set of vectors in a left module is a subspace. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝑆 = (LSubSp‘𝑊) ⇒ ⊢ (𝑊 ∈ LMod → 𝑉 ∈ 𝑆) | ||
Theorem | lssuni 20400 | The union of all subspaces is the vector space. (Contributed by NM, 13-Mar-2015.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝑆 = (LSubSp‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LMod) ⇒ ⊢ (𝜑 → ∪ 𝑆 = 𝑉) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |