HomeHome Metamath Proof Explorer
Theorem List (p. 204 of 464)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-29181)
  Hilbert Space Explorer  Hilbert Space Explorer
(29182-30704)
  Users' Mathboxes  Users' Mathboxes
(30705-46395)
 

Theorem List for Metamath Proof Explorer - 20301-20400   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremlspsnel4 20301 A member of the span of the singleton of a vector is a member of a subspace containing the vector. (elspansn4 29836 analog.) (Contributed by NM, 4-Jul-2014.)
𝑉 = (Base‘𝑊)    &    0 = (0g𝑊)    &   𝑆 = (LSubSp‘𝑊)    &   𝑁 = (LSpan‘𝑊)    &   (𝜑𝑊 ∈ LVec)    &   (𝜑𝑈𝑆)    &   (𝜑𝑋𝑉)    &   (𝜑𝑌 ∈ (𝑁‘{𝑋}))    &   (𝜑𝑌0 )       (𝜑 → (𝑋𝑈𝑌𝑈))
 
Theoremlspdisj 20302 The span of a vector not in a subspace is disjoint with the subspace. (Contributed by NM, 6-Apr-2015.)
𝑉 = (Base‘𝑊)    &    0 = (0g𝑊)    &   𝑁 = (LSpan‘𝑊)    &   𝑆 = (LSubSp‘𝑊)    &   (𝜑𝑊 ∈ LVec)    &   (𝜑𝑈𝑆)    &   (𝜑𝑋𝑉)    &   (𝜑 → ¬ 𝑋𝑈)       (𝜑 → ((𝑁‘{𝑋}) ∩ 𝑈) = { 0 })
 
Theoremlspdisjb 20303 A nonzero vector is not in a subspace iff its span is disjoint with the subspace. (Contributed by NM, 23-Apr-2015.)
𝑉 = (Base‘𝑊)    &    0 = (0g𝑊)    &   𝑁 = (LSpan‘𝑊)    &   𝑆 = (LSubSp‘𝑊)    &   (𝜑𝑊 ∈ LVec)    &   (𝜑𝑈𝑆)    &   (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))       (𝜑 → (¬ 𝑋𝑈 ↔ ((𝑁‘{𝑋}) ∩ 𝑈) = { 0 }))
 
Theoremlspdisj2 20304 Unequal spans are disjoint (share only the zero vector). (Contributed by NM, 22-Mar-2015.)
𝑉 = (Base‘𝑊)    &    0 = (0g𝑊)    &   𝑁 = (LSpan‘𝑊)    &   (𝜑𝑊 ∈ LVec)    &   (𝜑𝑋𝑉)    &   (𝜑𝑌𝑉)    &   (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))       (𝜑 → ((𝑁‘{𝑋}) ∩ (𝑁‘{𝑌})) = { 0 })
 
Theoremlspfixed 20305* Show membership in the span of the sum of two vectors, one of which (𝑌) is fixed in advance. (Contributed by NM, 27-May-2015.) (Revised by AV, 12-Jul-2022.)
𝑉 = (Base‘𝑊)    &    + = (+g𝑊)    &    0 = (0g𝑊)    &   𝑁 = (LSpan‘𝑊)    &   (𝜑𝑊 ∈ LVec)    &   (𝜑𝑌𝑉)    &   (𝜑𝑍𝑉)    &   (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌}))    &   (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑍}))    &   (𝜑𝑋 ∈ (𝑁‘{𝑌, 𝑍}))       (𝜑 → ∃𝑧 ∈ ((𝑁‘{𝑍}) ∖ { 0 })𝑋 ∈ (𝑁‘{(𝑌 + 𝑧)}))
 
Theoremlspexch 20306 Exchange property for span of a pair. TODO: see if a version with Y,Z and X,Z reversed will shorten proofs (analogous to lspexchn1 20307 versus lspexchn2 20308); look for lspexch 20306 and prcom 4665 in same proof. TODO: would a hypothesis of ¬ 𝑋 ∈ (𝑁‘{𝑍}) instead of (𝑁‘{𝑋}) ≠ (𝑁‘{𝑍}) be better overall? This would be shorter and also satisfy the 𝑋0 condition. Here and also lspindp* and all proofs affected by them (all in NM's mathbox); there are 58 hypotheses with the pattern as of 24-May-2015. (Contributed by NM, 11-Apr-2015.)
𝑉 = (Base‘𝑊)    &    0 = (0g𝑊)    &   𝑁 = (LSpan‘𝑊)    &   (𝜑𝑊 ∈ LVec)    &   (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))    &   (𝜑𝑌𝑉)    &   (𝜑𝑍𝑉)    &   (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑍}))    &   (𝜑𝑋 ∈ (𝑁‘{𝑌, 𝑍}))       (𝜑𝑌 ∈ (𝑁‘{𝑋, 𝑍}))
 
Theoremlspexchn1 20307 Exchange property for span of a pair with negated membership. TODO: look at uses of lspexch 20306 to see if this will shorten proofs. (Contributed by NM, 20-May-2015.)
𝑉 = (Base‘𝑊)    &   𝑁 = (LSpan‘𝑊)    &   (𝜑𝑊 ∈ LVec)    &   (𝜑𝑋𝑉)    &   (𝜑𝑌𝑉)    &   (𝜑𝑍𝑉)    &   (𝜑 → ¬ 𝑌 ∈ (𝑁‘{𝑍}))    &   (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍}))       (𝜑 → ¬ 𝑌 ∈ (𝑁‘{𝑋, 𝑍}))
 
Theoremlspexchn2 20308 Exchange property for span of a pair with negated membership. TODO: look at uses of lspexch 20306 to see if this will shorten proofs. (Contributed by NM, 24-May-2015.)
𝑉 = (Base‘𝑊)    &   𝑁 = (LSpan‘𝑊)    &   (𝜑𝑊 ∈ LVec)    &   (𝜑𝑋𝑉)    &   (𝜑𝑌𝑉)    &   (𝜑𝑍𝑉)    &   (𝜑 → ¬ 𝑌 ∈ (𝑁‘{𝑍}))    &   (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑍, 𝑌}))       (𝜑 → ¬ 𝑌 ∈ (𝑁‘{𝑍, 𝑋}))
 
Theoremlspindpi 20309 Partial independence property. (Contributed by NM, 23-Apr-2015.)
𝑉 = (Base‘𝑊)    &   𝑁 = (LSpan‘𝑊)    &   (𝜑𝑊 ∈ LVec)    &   (𝜑𝑋𝑉)    &   (𝜑𝑌𝑉)    &   (𝜑𝑍𝑉)    &   (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍}))       (𝜑 → ((𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}) ∧ (𝑁‘{𝑋}) ≠ (𝑁‘{𝑍})))
 
Theoremlspindp1 20310 Alternate way to say 3 vectors are mutually independent (swap 1st and 2nd). (Contributed by NM, 11-Apr-2015.)
𝑉 = (Base‘𝑊)    &    0 = (0g𝑊)    &   𝑁 = (LSpan‘𝑊)    &   (𝜑𝑊 ∈ LVec)    &   (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))    &   (𝜑𝑌𝑉)    &   (𝜑𝑍𝑉)    &   (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))    &   (𝜑 → ¬ 𝑍 ∈ (𝑁‘{𝑋, 𝑌}))       (𝜑 → ((𝑁‘{𝑍}) ≠ (𝑁‘{𝑌}) ∧ ¬ 𝑋 ∈ (𝑁‘{𝑍, 𝑌})))
 
Theoremlspindp2l 20311 Alternate way to say 3 vectors are mutually independent (rotate left). (Contributed by NM, 10-May-2015.)
𝑉 = (Base‘𝑊)    &    0 = (0g𝑊)    &   𝑁 = (LSpan‘𝑊)    &   (𝜑𝑊 ∈ LVec)    &   (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))    &   (𝜑𝑌𝑉)    &   (𝜑𝑍𝑉)    &   (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))    &   (𝜑 → ¬ 𝑍 ∈ (𝑁‘{𝑋, 𝑌}))       (𝜑 → ((𝑁‘{𝑌}) ≠ (𝑁‘{𝑍}) ∧ ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍})))
 
Theoremlspindp2 20312 Alternate way to say 3 vectors are mutually independent (rotate right). (Contributed by NM, 12-Apr-2015.)
𝑉 = (Base‘𝑊)    &    0 = (0g𝑊)    &   𝑁 = (LSpan‘𝑊)    &   (𝜑𝑊 ∈ LVec)    &   (𝜑𝑋𝑉)    &   (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))    &   (𝜑𝑍𝑉)    &   (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))    &   (𝜑 → ¬ 𝑍 ∈ (𝑁‘{𝑋, 𝑌}))       (𝜑 → ((𝑁‘{𝑍}) ≠ (𝑁‘{𝑋}) ∧ ¬ 𝑌 ∈ (𝑁‘{𝑍, 𝑋})))
 
Theoremlspindp3 20313 Independence of 2 vectors is preserved by vector sum. (Contributed by NM, 26-Apr-2015.)
𝑉 = (Base‘𝑊)    &    + = (+g𝑊)    &    0 = (0g𝑊)    &   𝑁 = (LSpan‘𝑊)    &   (𝜑𝑊 ∈ LVec)    &   (𝜑𝑋𝑉)    &   (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))    &   (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))       (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{(𝑋 + 𝑌)}))
 
Theoremlspindp4 20314 (Partial) independence of 3 vectors is preserved by vector sum. (Contributed by NM, 26-Apr-2015.)
𝑉 = (Base‘𝑊)    &    + = (+g𝑊)    &   𝑁 = (LSpan‘𝑊)    &   (𝜑𝑊 ∈ LMod)    &   (𝜑𝑋𝑉)    &   (𝜑𝑌𝑉)    &   (𝜑𝑍𝑉)    &   (𝜑 → ¬ 𝑍 ∈ (𝑁‘{𝑋, 𝑌}))       (𝜑 → ¬ 𝑍 ∈ (𝑁‘{𝑋, (𝑋 + 𝑌)}))
 
Theoremlvecindp 20315 Compute the 𝑋 coefficient in a sum with an independent vector 𝑋 (first conjunct), which can then be removed to continue with the remaining vectors summed in expressions 𝑌 and 𝑍 (second conjunct). Typically, 𝑈 is the span of the remaining vectors. (Contributed by NM, 5-Apr-2015.) (Revised by Mario Carneiro, 21-Apr-2016.) (Proof shortened by AV, 19-Jul-2022.)
𝑉 = (Base‘𝑊)    &    + = (+g𝑊)    &   𝐹 = (Scalar‘𝑊)    &   𝐾 = (Base‘𝐹)    &    · = ( ·𝑠𝑊)    &   𝑆 = (LSubSp‘𝑊)    &   (𝜑𝑊 ∈ LVec)    &   (𝜑𝑈𝑆)    &   (𝜑𝑋𝑉)    &   (𝜑 → ¬ 𝑋𝑈)    &   (𝜑𝑌𝑈)    &   (𝜑𝑍𝑈)    &   (𝜑𝐴𝐾)    &   (𝜑𝐵𝐾)    &   (𝜑 → ((𝐴 · 𝑋) + 𝑌) = ((𝐵 · 𝑋) + 𝑍))       (𝜑 → (𝐴 = 𝐵𝑌 = 𝑍))
 
Theoremlvecindp2 20316 Sums of independent vectors must have equal coefficients. (Contributed by NM, 22-Mar-2015.)
𝑉 = (Base‘𝑊)    &    + = (+g𝑊)    &   𝐹 = (Scalar‘𝑊)    &   𝐾 = (Base‘𝐹)    &    · = ( ·𝑠𝑊)    &    0 = (0g𝑊)    &   𝑁 = (LSpan‘𝑊)    &   (𝜑𝑊 ∈ LVec)    &   (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))    &   (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))    &   (𝜑𝐴𝐾)    &   (𝜑𝐵𝐾)    &   (𝜑𝐶𝐾)    &   (𝜑𝐷𝐾)    &   (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))    &   (𝜑 → ((𝐴 · 𝑋) + (𝐵 · 𝑌)) = ((𝐶 · 𝑋) + (𝐷 · 𝑌)))       (𝜑 → (𝐴 = 𝐶𝐵 = 𝐷))
 
Theoremlspsnsubn0 20317 Unequal singleton spans imply nonzero vector subtraction. (Contributed by NM, 19-Mar-2015.)
𝑉 = (Base‘𝑊)    &    0 = (0g𝑊)    &    = (-g𝑊)    &   (𝜑𝑊 ∈ LMod)    &   (𝜑𝑋𝑉)    &   (𝜑𝑌𝑉)    &   (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))       (𝜑 → (𝑋 𝑌) ≠ 0 )
 
Theoremlsmcv 20318 Subspace sum has the covering property (using spans of singletons to represent atoms). Similar to Exercise 5 of [Kalmbach] p. 153. (spansncvi 29915 analog.) TODO: ugly proof; can it be shortened? (Contributed by NM, 2-Oct-2014.)
𝑉 = (Base‘𝑊)    &   𝑆 = (LSubSp‘𝑊)    &   𝑁 = (LSpan‘𝑊)    &    = (LSSum‘𝑊)    &   (𝜑𝑊 ∈ LVec)    &   (𝜑𝑇𝑆)    &   (𝜑𝑈𝑆)    &   (𝜑𝑋𝑉)       ((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) → 𝑈 = (𝑇 (𝑁‘{𝑋})))
 
Theoremlspsolvlem 20319* Lemma for lspsolv 20320. (Contributed by Mario Carneiro, 25-Jun-2014.)
𝑉 = (Base‘𝑊)    &   𝑆 = (LSubSp‘𝑊)    &   𝑁 = (LSpan‘𝑊)    &   𝐹 = (Scalar‘𝑊)    &   𝐵 = (Base‘𝐹)    &    + = (+g𝑊)    &    · = ( ·𝑠𝑊)    &   𝑄 = {𝑧𝑉 ∣ ∃𝑟𝐵 (𝑧 + (𝑟 · 𝑌)) ∈ (𝑁𝐴)}    &   (𝜑𝑊 ∈ LMod)    &   (𝜑𝐴𝑉)    &   (𝜑𝑌𝑉)    &   (𝜑𝑋 ∈ (𝑁‘(𝐴 ∪ {𝑌})))       (𝜑 → ∃𝑟𝐵 (𝑋 + (𝑟 · 𝑌)) ∈ (𝑁𝐴))
 
Theoremlspsolv 20320 If 𝑋 is in the span of 𝐴 ∪ {𝑌} but not 𝐴, then 𝑌 is in the span of 𝐴 ∪ {𝑋}. (Contributed by Mario Carneiro, 25-Jun-2014.)
𝑉 = (Base‘𝑊)    &   𝑆 = (LSubSp‘𝑊)    &   𝑁 = (LSpan‘𝑊)       ((𝑊 ∈ LVec ∧ (𝐴𝑉𝑌𝑉𝑋 ∈ ((𝑁‘(𝐴 ∪ {𝑌})) ∖ (𝑁𝐴)))) → 𝑌 ∈ (𝑁‘(𝐴 ∪ {𝑋})))
 
Theoremlssacsex 20321* In a vector space, subspaces form an algebraic closure system whose closure operator has the exchange property. Strengthening of lssacs 20144 by lspsolv 20320. (Contributed by David Moews, 1-May-2017.)
𝐴 = (LSubSp‘𝑊)    &   𝑁 = (mrCls‘𝐴)    &   𝑋 = (Base‘𝑊)       (𝑊 ∈ LVec → (𝐴 ∈ (ACS‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝑋𝑦𝑋𝑧 ∈ ((𝑁‘(𝑠 ∪ {𝑦})) ∖ (𝑁𝑠))𝑦 ∈ (𝑁‘(𝑠 ∪ {𝑧}))))
 
Theoremlspsnat 20322 There is no subspace strictly between the zero subspace and the span of a vector (i.e. a 1-dimensional subspace is an atom). (h1datomi 29844 analog.) (Contributed by NM, 20-Apr-2014.) (Proof shortened by Mario Carneiro, 22-Jun-2014.)
𝑉 = (Base‘𝑊)    &    0 = (0g𝑊)    &   𝑆 = (LSubSp‘𝑊)    &   𝑁 = (LSpan‘𝑊)       (((𝑊 ∈ LVec ∧ 𝑈𝑆𝑋𝑉) ∧ 𝑈 ⊆ (𝑁‘{𝑋})) → (𝑈 = (𝑁‘{𝑋}) ∨ 𝑈 = { 0 }))
 
Theoremlspsncv0 20323* The span of a singleton covers the zero subspace, using Definition 3.2.18 of [PtakPulmannova] p. 68 for "covers".) (Contributed by NM, 12-Aug-2014.) (Revised by AV, 13-Jul-2022.)
𝑉 = (Base‘𝑊)    &    0 = (0g𝑊)    &   𝑆 = (LSubSp‘𝑊)    &   𝑁 = (LSpan‘𝑊)    &   (𝜑𝑊 ∈ LVec)    &   (𝜑𝑋𝑉)       (𝜑 → ¬ ∃𝑦𝑆 ({ 0 } ⊊ 𝑦𝑦 ⊊ (𝑁‘{𝑋})))
 
Theoremlsppratlem1 20324 Lemma for lspprat 20330. Let 𝑥 ∈ (𝑈 ∖ {0}) (if there is no such 𝑥 then 𝑈 is the zero subspace), and let 𝑦 ∈ (𝑈 ∖ (𝑁‘{𝑥})) (assuming the conclusion is false). The goal is to write 𝑋, 𝑌 in terms of 𝑥, 𝑦, which would normally be done by solving the system of linear equations. The span equivalent of this process is lspsolv 20320 (hence the name), which we use extensively below. In this lemma, we show that since 𝑥 ∈ (𝑁‘{𝑋, 𝑌}), either 𝑥 ∈ (𝑁‘{𝑌}) or 𝑋 ∈ (𝑁‘{𝑥, 𝑌}). (Contributed by NM, 29-Aug-2014.)
𝑉 = (Base‘𝑊)    &   𝑆 = (LSubSp‘𝑊)    &   𝑁 = (LSpan‘𝑊)    &   (𝜑𝑊 ∈ LVec)    &   (𝜑𝑈𝑆)    &   (𝜑𝑋𝑉)    &   (𝜑𝑌𝑉)    &   (𝜑𝑈 ⊊ (𝑁‘{𝑋, 𝑌}))    &    0 = (0g𝑊)    &   (𝜑𝑥 ∈ (𝑈 ∖ { 0 }))    &   (𝜑𝑦 ∈ (𝑈 ∖ (𝑁‘{𝑥})))       (𝜑 → (𝑥 ∈ (𝑁‘{𝑌}) ∨ 𝑋 ∈ (𝑁‘{𝑥, 𝑌})))
 
Theoremlsppratlem2 20325 Lemma for lspprat 20330. Show that if 𝑋 and 𝑌 are both in (𝑁‘{𝑥, 𝑦}) (which will be our goal for each of the two cases above), then (𝑁‘{𝑋, 𝑌}) ⊆ 𝑈, contradicting the hypothesis for 𝑈. (Contributed by NM, 29-Aug-2014.) (Revised by Mario Carneiro, 5-Sep-2014.)
𝑉 = (Base‘𝑊)    &   𝑆 = (LSubSp‘𝑊)    &   𝑁 = (LSpan‘𝑊)    &   (𝜑𝑊 ∈ LVec)    &   (𝜑𝑈𝑆)    &   (𝜑𝑋𝑉)    &   (𝜑𝑌𝑉)    &   (𝜑𝑈 ⊊ (𝑁‘{𝑋, 𝑌}))    &    0 = (0g𝑊)    &   (𝜑𝑥 ∈ (𝑈 ∖ { 0 }))    &   (𝜑𝑦 ∈ (𝑈 ∖ (𝑁‘{𝑥})))    &   (𝜑𝑋 ∈ (𝑁‘{𝑥, 𝑦}))    &   (𝜑𝑌 ∈ (𝑁‘{𝑥, 𝑦}))       (𝜑 → (𝑁‘{𝑋, 𝑌}) ⊆ 𝑈)
 
Theoremlsppratlem3 20326 Lemma for lspprat 20330. In the first case of lsppratlem1 20324, since 𝑥 ∉ (𝑁‘∅), also 𝑌 ∈ (𝑁‘{𝑥}), and since 𝑦 ∈ (𝑁‘{𝑋, 𝑌}) ⊆ (𝑁‘{𝑋, 𝑥}) and 𝑦 ∉ (𝑁‘{𝑥}), we have 𝑋 ∈ (𝑁‘{𝑥, 𝑦}) as desired. (Contributed by NM, 29-Aug-2014.)
𝑉 = (Base‘𝑊)    &   𝑆 = (LSubSp‘𝑊)    &   𝑁 = (LSpan‘𝑊)    &   (𝜑𝑊 ∈ LVec)    &   (𝜑𝑈𝑆)    &   (𝜑𝑋𝑉)    &   (𝜑𝑌𝑉)    &   (𝜑𝑈 ⊊ (𝑁‘{𝑋, 𝑌}))    &    0 = (0g𝑊)    &   (𝜑𝑥 ∈ (𝑈 ∖ { 0 }))    &   (𝜑𝑦 ∈ (𝑈 ∖ (𝑁‘{𝑥})))    &   (𝜑𝑥 ∈ (𝑁‘{𝑌}))       (𝜑 → (𝑋 ∈ (𝑁‘{𝑥, 𝑦}) ∧ 𝑌 ∈ (𝑁‘{𝑥, 𝑦})))
 
Theoremlsppratlem4 20327 Lemma for lspprat 20330. In the second case of lsppratlem1 20324, 𝑦 ∈ (𝑁‘{𝑋, 𝑌}) ⊆ (𝑁‘{𝑥, 𝑌}) and 𝑦 ∉ (𝑁‘{𝑥}) implies 𝑌 ∈ (𝑁‘{𝑥, 𝑦}) and thus 𝑋 ∈ (𝑁‘{𝑥, 𝑌}) ⊆ (𝑁‘{𝑥, 𝑦}) as well. (Contributed by NM, 29-Aug-2014.)
𝑉 = (Base‘𝑊)    &   𝑆 = (LSubSp‘𝑊)    &   𝑁 = (LSpan‘𝑊)    &   (𝜑𝑊 ∈ LVec)    &   (𝜑𝑈𝑆)    &   (𝜑𝑋𝑉)    &   (𝜑𝑌𝑉)    &   (𝜑𝑈 ⊊ (𝑁‘{𝑋, 𝑌}))    &    0 = (0g𝑊)    &   (𝜑𝑥 ∈ (𝑈 ∖ { 0 }))    &   (𝜑𝑦 ∈ (𝑈 ∖ (𝑁‘{𝑥})))    &   (𝜑𝑋 ∈ (𝑁‘{𝑥, 𝑌}))       (𝜑 → (𝑋 ∈ (𝑁‘{𝑥, 𝑦}) ∧ 𝑌 ∈ (𝑁‘{𝑥, 𝑦})))
 
Theoremlsppratlem5 20328 Lemma for lspprat 20330. Combine the two cases and show a contradiction to 𝑈 ⊊ (𝑁‘{𝑋, 𝑌}) under the assumptions on 𝑥 and 𝑦. (Contributed by NM, 29-Aug-2014.)
𝑉 = (Base‘𝑊)    &   𝑆 = (LSubSp‘𝑊)    &   𝑁 = (LSpan‘𝑊)    &   (𝜑𝑊 ∈ LVec)    &   (𝜑𝑈𝑆)    &   (𝜑𝑋𝑉)    &   (𝜑𝑌𝑉)    &   (𝜑𝑈 ⊊ (𝑁‘{𝑋, 𝑌}))    &    0 = (0g𝑊)    &   (𝜑𝑥 ∈ (𝑈 ∖ { 0 }))    &   (𝜑𝑦 ∈ (𝑈 ∖ (𝑁‘{𝑥})))       (𝜑 → (𝑁‘{𝑋, 𝑌}) ⊆ 𝑈)
 
Theoremlsppratlem6 20329 Lemma for lspprat 20330. Negating the assumption on 𝑦, we arrive close to the desired conclusion. (Contributed by NM, 29-Aug-2014.)
𝑉 = (Base‘𝑊)    &   𝑆 = (LSubSp‘𝑊)    &   𝑁 = (LSpan‘𝑊)    &   (𝜑𝑊 ∈ LVec)    &   (𝜑𝑈𝑆)    &   (𝜑𝑋𝑉)    &   (𝜑𝑌𝑉)    &   (𝜑𝑈 ⊊ (𝑁‘{𝑋, 𝑌}))    &    0 = (0g𝑊)       (𝜑 → (𝑥 ∈ (𝑈 ∖ { 0 }) → 𝑈 = (𝑁‘{𝑥})))
 
Theoremlspprat 20330* A proper subspace of the span of a pair of vectors is the span of a singleton (an atom) or the zero subspace (if 𝑧 is zero). Proof suggested by Mario Carneiro, 28-Aug-2014. (Contributed by NM, 29-Aug-2014.)
𝑉 = (Base‘𝑊)    &   𝑆 = (LSubSp‘𝑊)    &   𝑁 = (LSpan‘𝑊)    &   (𝜑𝑊 ∈ LVec)    &   (𝜑𝑈𝑆)    &   (𝜑𝑋𝑉)    &   (𝜑𝑌𝑉)    &   (𝜑𝑈 ⊊ (𝑁‘{𝑋, 𝑌}))       (𝜑 → ∃𝑧𝑉 𝑈 = (𝑁‘{𝑧}))
 
Theoremislbs2 20331* An equivalent formulation of the basis predicate in a vector space: a subset is a basis iff no element is in the span of the rest of the set. (Contributed by Mario Carneiro, 14-Jan-2015.)
𝑉 = (Base‘𝑊)    &   𝐽 = (LBasis‘𝑊)    &   𝑁 = (LSpan‘𝑊)       (𝑊 ∈ LVec → (𝐵𝐽 ↔ (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑥𝐵 ¬ 𝑥 ∈ (𝑁‘(𝐵 ∖ {𝑥})))))
 
Theoremislbs3 20332* An equivalent formulation of the basis predicate: a subset is a basis iff it is a minimal spanning set. (Contributed by Mario Carneiro, 25-Jun-2014.)
𝑉 = (Base‘𝑊)    &   𝐽 = (LBasis‘𝑊)    &   𝑁 = (LSpan‘𝑊)       (𝑊 ∈ LVec → (𝐵𝐽 ↔ (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑠(𝑠𝐵 → (𝑁𝑠) ⊊ 𝑉))))
 
Theoremlbsacsbs 20333 Being a basis in a vector space is equivalent to being a basis in the associated algebraic closure system. Equivalent to islbs2 20331. (Contributed by David Moews, 1-May-2017.)
𝐴 = (LSubSp‘𝑊)    &   𝑁 = (mrCls‘𝐴)    &   𝑋 = (Base‘𝑊)    &   𝐼 = (mrInd‘𝐴)    &   𝐽 = (LBasis‘𝑊)       (𝑊 ∈ LVec → (𝑆𝐽 ↔ (𝑆𝐼 ∧ (𝑁𝑆) = 𝑋)))
 
Theoremlvecdim 20334 The dimension theorem for vector spaces: any two bases of the same vector space are equinumerous. Proven by using lssacsex 20321 and lbsacsbs 20333 to show that being a basis for a vector space is equivalent to being a basis for the associated algebraic closure system, and then using acsexdimd 18192. (Contributed by David Moews, 1-May-2017.)
𝐽 = (LBasis‘𝑊)       ((𝑊 ∈ LVec ∧ 𝑆𝐽𝑇𝐽) → 𝑆𝑇)
 
Theoremlbsextlem1 20335* Lemma for lbsext 20340. The set 𝑆 is the set of all linearly independent sets containing 𝐶; we show here that it is nonempty. (Contributed by Mario Carneiro, 25-Jun-2014.)
𝑉 = (Base‘𝑊)    &   𝐽 = (LBasis‘𝑊)    &   𝑁 = (LSpan‘𝑊)    &   (𝜑𝑊 ∈ LVec)    &   (𝜑𝐶𝑉)    &   (𝜑 → ∀𝑥𝐶 ¬ 𝑥 ∈ (𝑁‘(𝐶 ∖ {𝑥})))    &   𝑆 = {𝑧 ∈ 𝒫 𝑉 ∣ (𝐶𝑧 ∧ ∀𝑥𝑧 ¬ 𝑥 ∈ (𝑁‘(𝑧 ∖ {𝑥})))}       (𝜑𝑆 ≠ ∅)
 
Theoremlbsextlem2 20336* Lemma for lbsext 20340. Since 𝐴 is a chain (actually, we only need it to be closed under binary union), the union 𝑇 of the spans of each individual element of 𝐴 is a subspace, and it contains all of 𝐴 (except for our target vector 𝑥- we are trying to make 𝑥 a linear combination of all the other vectors in some set from 𝐴). (Contributed by Mario Carneiro, 25-Jun-2014.)
𝑉 = (Base‘𝑊)    &   𝐽 = (LBasis‘𝑊)    &   𝑁 = (LSpan‘𝑊)    &   (𝜑𝑊 ∈ LVec)    &   (𝜑𝐶𝑉)    &   (𝜑 → ∀𝑥𝐶 ¬ 𝑥 ∈ (𝑁‘(𝐶 ∖ {𝑥})))    &   𝑆 = {𝑧 ∈ 𝒫 𝑉 ∣ (𝐶𝑧 ∧ ∀𝑥𝑧 ¬ 𝑥 ∈ (𝑁‘(𝑧 ∖ {𝑥})))}    &   𝑃 = (LSubSp‘𝑊)    &   (𝜑𝐴𝑆)    &   (𝜑𝐴 ≠ ∅)    &   (𝜑 → [] Or 𝐴)    &   𝑇 = 𝑢𝐴 (𝑁‘(𝑢 ∖ {𝑥}))       (𝜑 → (𝑇𝑃 ∧ ( 𝐴 ∖ {𝑥}) ⊆ 𝑇))
 
Theoremlbsextlem3 20337* Lemma for lbsext 20340. A chain in 𝑆 has an upper bound in 𝑆. (Contributed by Mario Carneiro, 25-Jun-2014.)
𝑉 = (Base‘𝑊)    &   𝐽 = (LBasis‘𝑊)    &   𝑁 = (LSpan‘𝑊)    &   (𝜑𝑊 ∈ LVec)    &   (𝜑𝐶𝑉)    &   (𝜑 → ∀𝑥𝐶 ¬ 𝑥 ∈ (𝑁‘(𝐶 ∖ {𝑥})))    &   𝑆 = {𝑧 ∈ 𝒫 𝑉 ∣ (𝐶𝑧 ∧ ∀𝑥𝑧 ¬ 𝑥 ∈ (𝑁‘(𝑧 ∖ {𝑥})))}    &   𝑃 = (LSubSp‘𝑊)    &   (𝜑𝐴𝑆)    &   (𝜑𝐴 ≠ ∅)    &   (𝜑 → [] Or 𝐴)    &   𝑇 = 𝑢𝐴 (𝑁‘(𝑢 ∖ {𝑥}))       (𝜑 𝐴𝑆)
 
Theoremlbsextlem4 20338* Lemma for lbsext 20340. lbsextlem3 20337 satisfies the conditions for the application of Zorn's lemma zorn 10194 (thus invoking AC), and so there is a maximal linearly independent set extending 𝐶. Here we prove that such a set is a basis. (Contributed by Mario Carneiro, 25-Jun-2014.)
𝑉 = (Base‘𝑊)    &   𝐽 = (LBasis‘𝑊)    &   𝑁 = (LSpan‘𝑊)    &   (𝜑𝑊 ∈ LVec)    &   (𝜑𝐶𝑉)    &   (𝜑 → ∀𝑥𝐶 ¬ 𝑥 ∈ (𝑁‘(𝐶 ∖ {𝑥})))    &   𝑆 = {𝑧 ∈ 𝒫 𝑉 ∣ (𝐶𝑧 ∧ ∀𝑥𝑧 ¬ 𝑥 ∈ (𝑁‘(𝑧 ∖ {𝑥})))}    &   (𝜑 → 𝒫 𝑉 ∈ dom card)       (𝜑 → ∃𝑠𝐽 𝐶𝑠)
 
Theoremlbsextg 20339* For any linearly independent subset 𝐶 of 𝑉, there is a basis containing the vectors in 𝐶. (Contributed by Mario Carneiro, 17-May-2015.)
𝐽 = (LBasis‘𝑊)    &   𝑉 = (Base‘𝑊)    &   𝑁 = (LSpan‘𝑊)       (((𝑊 ∈ LVec ∧ 𝒫 𝑉 ∈ dom card) ∧ 𝐶𝑉 ∧ ∀𝑥𝐶 ¬ 𝑥 ∈ (𝑁‘(𝐶 ∖ {𝑥}))) → ∃𝑠𝐽 𝐶𝑠)
 
Theoremlbsext 20340* For any linearly independent subset 𝐶 of 𝑉, there is a basis containing the vectors in 𝐶. (Contributed by Mario Carneiro, 25-Jun-2014.) (Revised by Mario Carneiro, 17-May-2015.)
𝐽 = (LBasis‘𝑊)    &   𝑉 = (Base‘𝑊)    &   𝑁 = (LSpan‘𝑊)       ((𝑊 ∈ LVec ∧ 𝐶𝑉 ∧ ∀𝑥𝐶 ¬ 𝑥 ∈ (𝑁‘(𝐶 ∖ {𝑥}))) → ∃𝑠𝐽 𝐶𝑠)
 
Theoremlbsexg 20341 Every vector space has a basis. This theorem is an AC equivalent; this is the forward implication. (Contributed by Mario Carneiro, 17-May-2015.)
𝐽 = (LBasis‘𝑊)       ((CHOICE𝑊 ∈ LVec) → 𝐽 ≠ ∅)
 
Theoremlbsex 20342 Every vector space has a basis. This theorem is an AC equivalent. (Contributed by Mario Carneiro, 25-Jun-2014.)
𝐽 = (LBasis‘𝑊)       (𝑊 ∈ LVec → 𝐽 ≠ ∅)
 
Theoremlvecprop2d 20343* If two structures have the same components (properties), one is a left vector space iff the other one is. This version of lvecpropd 20344 also breaks up the components of the scalar ring. (Contributed by Mario Carneiro, 27-Jun-2015.)
(𝜑𝐵 = (Base‘𝐾))    &   (𝜑𝐵 = (Base‘𝐿))    &   𝐹 = (Scalar‘𝐾)    &   𝐺 = (Scalar‘𝐿)    &   (𝜑𝑃 = (Base‘𝐹))    &   (𝜑𝑃 = (Base‘𝐺))    &   ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))    &   ((𝜑 ∧ (𝑥𝑃𝑦𝑃)) → (𝑥(+g𝐹)𝑦) = (𝑥(+g𝐺)𝑦))    &   ((𝜑 ∧ (𝑥𝑃𝑦𝑃)) → (𝑥(.r𝐹)𝑦) = (𝑥(.r𝐺)𝑦))    &   ((𝜑 ∧ (𝑥𝑃𝑦𝐵)) → (𝑥( ·𝑠𝐾)𝑦) = (𝑥( ·𝑠𝐿)𝑦))       (𝜑 → (𝐾 ∈ LVec ↔ 𝐿 ∈ LVec))
 
Theoremlvecpropd 20344* If two structures have the same components (properties), one is a left vector space iff the other one is. (Contributed by Mario Carneiro, 27-Jun-2015.)
(𝜑𝐵 = (Base‘𝐾))    &   (𝜑𝐵 = (Base‘𝐿))    &   ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))    &   (𝜑𝐹 = (Scalar‘𝐾))    &   (𝜑𝐹 = (Scalar‘𝐿))    &   𝑃 = (Base‘𝐹)    &   ((𝜑 ∧ (𝑥𝑃𝑦𝐵)) → (𝑥( ·𝑠𝐾)𝑦) = (𝑥( ·𝑠𝐿)𝑦))       (𝜑 → (𝐾 ∈ LVec ↔ 𝐿 ∈ LVec))
 
10.7  Ideals
 
10.7.1  The subring algebra; ideals
 
Syntaxcsra 20345 Extend class notation with the subring algebra generator.
class subringAlg
 
Syntaxcrglmod 20346 Extend class notation with the left module induced by a ring over itself.
class ringLMod
 
Syntaxclidl 20347 Ring left-ideal function.
class LIdeal
 
Syntaxcrsp 20348 Ring span function.
class RSpan
 
Definitiondf-sra 20349* Any ring can be regarded as a left algebra over any of its subrings. The function subringAlg associates with any ring and any of its subrings the left algebra consisting in the ring itself regarded as a left algebra over the subring. It has an inner product which is simply the ring product. (Contributed by Mario Carneiro, 27-Nov-2014.) (Revised by Thierry Arnoux, 16-Jun-2019.)
subringAlg = (𝑤 ∈ V ↦ (𝑠 ∈ 𝒫 (Base‘𝑤) ↦ (((𝑤 sSet ⟨(Scalar‘ndx), (𝑤s 𝑠)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑤)⟩) sSet ⟨(·𝑖‘ndx), (.r𝑤)⟩)))
 
Definitiondf-rgmod 20350 Any ring can be regarded as a left algebra over itself. The function ringLMod associates with any ring the left algebra consisting in the ring itself regarded as a left algebra over itself. It has an inner product which is simply the ring product. (Contributed by Stefan O'Rear, 6-Dec-2014.)
ringLMod = (𝑤 ∈ V ↦ ((subringAlg ‘𝑤)‘(Base‘𝑤)))
 
Definitiondf-lidl 20351 Define the class of left ideals of a given ring. An ideal is a submodule of the ring viewed as a module over itself. (Contributed by Stefan O'Rear, 31-Mar-2015.)
LIdeal = (LSubSp ∘ ringLMod)
 
Definitiondf-rsp 20352 Define the linear span function in a ring (Ideal generator). (Contributed by Stefan O'Rear, 4-Apr-2015.)
RSpan = (LSpan ∘ ringLMod)
 
Theoremsraval 20353 Lemma for srabase 20356 through sravsca 20363. (Contributed by Mario Carneiro, 27-Nov-2014.) (Revised by Thierry Arnoux, 16-Jun-2019.)
((𝑊𝑉𝑆 ⊆ (Base‘𝑊)) → ((subringAlg ‘𝑊)‘𝑆) = (((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) sSet ⟨(·𝑖‘ndx), (.r𝑊)⟩))
 
Theoremsralem 20354 Lemma for srabase 20356 and similar theorems. (Contributed by Mario Carneiro, 4-Oct-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.) (Revised by AV, 29-Oct-2024.)
(𝜑𝐴 = ((subringAlg ‘𝑊)‘𝑆))    &   (𝜑𝑆 ⊆ (Base‘𝑊))    &   𝐸 = Slot (𝐸‘ndx)    &   (Scalar‘ndx) ≠ (𝐸‘ndx)    &   ( ·𝑠 ‘ndx) ≠ (𝐸‘ndx)    &   (·𝑖‘ndx) ≠ (𝐸‘ndx)       (𝜑 → (𝐸𝑊) = (𝐸𝐴))
 
TheoremsralemOLD 20355 Obsolete version of sralem 20354 as of 29-Oct-2024. Lemma for srabase 20356 and similar theorems. (Contributed by Mario Carneiro, 4-Oct-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝜑𝐴 = ((subringAlg ‘𝑊)‘𝑆))    &   (𝜑𝑆 ⊆ (Base‘𝑊))    &   𝐸 = Slot 𝑁    &   𝑁 ∈ ℕ    &   (𝑁 < 5 ∨ 8 < 𝑁)       (𝜑 → (𝐸𝑊) = (𝐸𝐴))
 
Theoremsrabase 20356 Base set of a subring algebra. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 4-Oct-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.) (Revised by AV, 29-Oct-2024.)
(𝜑𝐴 = ((subringAlg ‘𝑊)‘𝑆))    &   (𝜑𝑆 ⊆ (Base‘𝑊))       (𝜑 → (Base‘𝑊) = (Base‘𝐴))
 
TheoremsrabaseOLD 20357 Obsolete proof of srabase 20356 as of 29-Oct-2024. Base set of a subring algebra. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 4-Oct-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝜑𝐴 = ((subringAlg ‘𝑊)‘𝑆))    &   (𝜑𝑆 ⊆ (Base‘𝑊))       (𝜑 → (Base‘𝑊) = (Base‘𝐴))
 
Theoremsraaddg 20358 Additive operation of a subring algebra. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 4-Oct-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.) (Revised by AV, 29-Oct-2024.)
(𝜑𝐴 = ((subringAlg ‘𝑊)‘𝑆))    &   (𝜑𝑆 ⊆ (Base‘𝑊))       (𝜑 → (+g𝑊) = (+g𝐴))
 
TheoremsraaddgOLD 20359 Obsolete proof of sraaddg 20358 as of 29-Oct-2024. Additive operation of a subring algebra. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 4-Oct-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝜑𝐴 = ((subringAlg ‘𝑊)‘𝑆))    &   (𝜑𝑆 ⊆ (Base‘𝑊))       (𝜑 → (+g𝑊) = (+g𝐴))
 
Theoremsramulr 20360 Multiplicative operation of a subring algebra. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 4-Oct-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.) (Revised by AV, 29-Oct-2024.)
(𝜑𝐴 = ((subringAlg ‘𝑊)‘𝑆))    &   (𝜑𝑆 ⊆ (Base‘𝑊))       (𝜑 → (.r𝑊) = (.r𝐴))
 
TheoremsramulrOLD 20361 Obsolete proof of sramulr 20360 as of 29-Oct-2024. Multiplicative operation of a subring algebra. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 4-Oct-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝜑𝐴 = ((subringAlg ‘𝑊)‘𝑆))    &   (𝜑𝑆 ⊆ (Base‘𝑊))       (𝜑 → (.r𝑊) = (.r𝐴))
 
Theoremsrasca 20362 The set of scalars of a subring algebra. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 4-Oct-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.)
(𝜑𝐴 = ((subringAlg ‘𝑊)‘𝑆))    &   (𝜑𝑆 ⊆ (Base‘𝑊))       (𝜑 → (𝑊s 𝑆) = (Scalar‘𝐴))
 
Theoremsravsca 20363 The scalar product operation of a subring algebra. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 4-Oct-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.)
(𝜑𝐴 = ((subringAlg ‘𝑊)‘𝑆))    &   (𝜑𝑆 ⊆ (Base‘𝑊))       (𝜑 → (.r𝑊) = ( ·𝑠𝐴))
 
Theoremsraip 20364 The inner product operation of a subring algebra. (Contributed by Thierry Arnoux, 16-Jun-2019.)
(𝜑𝐴 = ((subringAlg ‘𝑊)‘𝑆))    &   (𝜑𝑆 ⊆ (Base‘𝑊))       (𝜑 → (.r𝑊) = (·𝑖𝐴))
 
Theoremsratset 20365 Topology component of a subring algebra. (Contributed by Mario Carneiro, 4-Oct-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.) (Revised by AV, 29-Oct-2024.)
(𝜑𝐴 = ((subringAlg ‘𝑊)‘𝑆))    &   (𝜑𝑆 ⊆ (Base‘𝑊))       (𝜑 → (TopSet‘𝑊) = (TopSet‘𝐴))
 
TheoremsratsetOLD 20366 Obsolete proof of sratset 20365 as of 29-Oct-2024. Topology component of a subring algebra. (Contributed by Mario Carneiro, 4-Oct-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝜑𝐴 = ((subringAlg ‘𝑊)‘𝑆))    &   (𝜑𝑆 ⊆ (Base‘𝑊))       (𝜑 → (TopSet‘𝑊) = (TopSet‘𝐴))
 
Theoremsratopn 20367 Topology component of a subring algebra. (Contributed by Mario Carneiro, 4-Oct-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.)
(𝜑𝐴 = ((subringAlg ‘𝑊)‘𝑆))    &   (𝜑𝑆 ⊆ (Base‘𝑊))       (𝜑 → (TopOpen‘𝑊) = (TopOpen‘𝐴))
 
Theoremsrads 20368 Distance function of a subring algebra. (Contributed by Mario Carneiro, 4-Oct-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.) (Revised by AV, 29-Oct-2024.)
(𝜑𝐴 = ((subringAlg ‘𝑊)‘𝑆))    &   (𝜑𝑆 ⊆ (Base‘𝑊))       (𝜑 → (dist‘𝑊) = (dist‘𝐴))
 
TheoremsradsOLD 20369 Obsolete proof of srads 20368 as of 29-Oct-2024. Distance function of a subring algebra. (Contributed by Mario Carneiro, 4-Oct-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝜑𝐴 = ((subringAlg ‘𝑊)‘𝑆))    &   (𝜑𝑆 ⊆ (Base‘𝑊))       (𝜑 → (dist‘𝑊) = (dist‘𝐴))
 
Theoremsralmod 20370 The subring algebra is a left module. (Contributed by Stefan O'Rear, 27-Nov-2014.)
𝐴 = ((subringAlg ‘𝑊)‘𝑆)       (𝑆 ∈ (SubRing‘𝑊) → 𝐴 ∈ LMod)
 
Theoremsralmod0 20371 The subring module inherits a zero from its ring. (Contributed by Stefan O'Rear, 27-Dec-2014.)
(𝜑𝐴 = ((subringAlg ‘𝑊)‘𝑆))    &   (𝜑0 = (0g𝑊))    &   (𝜑𝑆 ⊆ (Base‘𝑊))       (𝜑0 = (0g𝐴))
 
Theoremissubrngd2 20372* Prove a subring by closure (definition version). (Contributed by Stefan O'Rear, 7-Dec-2014.)
(𝜑𝑆 = (𝐼s 𝐷))    &   (𝜑0 = (0g𝐼))    &   (𝜑+ = (+g𝐼))    &   (𝜑𝐷 ⊆ (Base‘𝐼))    &   (𝜑0𝐷)    &   ((𝜑𝑥𝐷𝑦𝐷) → (𝑥 + 𝑦) ∈ 𝐷)    &   ((𝜑𝑥𝐷) → ((invg𝐼)‘𝑥) ∈ 𝐷)    &   (𝜑1 = (1r𝐼))    &   (𝜑· = (.r𝐼))    &   (𝜑1𝐷)    &   ((𝜑𝑥𝐷𝑦𝐷) → (𝑥 · 𝑦) ∈ 𝐷)    &   (𝜑𝐼 ∈ Ring)       (𝜑𝐷 ∈ (SubRing‘𝐼))
 
Theoremrlmfn 20373 ringLMod is a function. (Contributed by Stefan O'Rear, 6-Dec-2014.)
ringLMod Fn V
 
Theoremrlmval 20374 Value of the ring module. (Contributed by Stefan O'Rear, 31-Mar-2015.)
(ringLMod‘𝑊) = ((subringAlg ‘𝑊)‘(Base‘𝑊))
 
Theoremlidlval 20375 Value of the set of ring ideals. (Contributed by Stefan O'Rear, 31-Mar-2015.)
(LIdeal‘𝑊) = (LSubSp‘(ringLMod‘𝑊))
 
Theoremrspval 20376 Value of the ring span function. (Contributed by Stefan O'Rear, 4-Apr-2015.)
(RSpan‘𝑊) = (LSpan‘(ringLMod‘𝑊))
 
Theoremrlmval2 20377 Value of the ring module extended. (Contributed by AV, 2-Dec-2018.) (Revised by Thierry Arnoux, 16-Jun-2019.)
(𝑊𝑋 → (ringLMod‘𝑊) = (((𝑊 sSet ⟨(Scalar‘ndx), 𝑊⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) sSet ⟨(·𝑖‘ndx), (.r𝑊)⟩))
 
Theoremrlmbas 20378 Base set of the ring module. (Contributed by Stefan O'Rear, 31-Mar-2015.)
(Base‘𝑅) = (Base‘(ringLMod‘𝑅))
 
Theoremrlmplusg 20379 Vector addition in the ring module. (Contributed by Stefan O'Rear, 31-Mar-2015.)
(+g𝑅) = (+g‘(ringLMod‘𝑅))
 
Theoremrlm0 20380 Zero vector in the ring module. (Contributed by Stefan O'Rear, 6-Dec-2014.) (Revised by Mario Carneiro, 2-Oct-2015.)
(0g𝑅) = (0g‘(ringLMod‘𝑅))
 
Theoremrlmsub 20381 Subtraction in the ring module. (Contributed by Thierry Arnoux, 30-Jun-2019.)
(-g𝑅) = (-g‘(ringLMod‘𝑅))
 
Theoremrlmmulr 20382 Ring multiplication in the ring module. (Contributed by Mario Carneiro, 6-Oct-2015.)
(.r𝑅) = (.r‘(ringLMod‘𝑅))
 
Theoremrlmsca 20383 Scalars in the ring module. (Contributed by Stefan O'Rear, 6-Dec-2014.)
(𝑅𝑋𝑅 = (Scalar‘(ringLMod‘𝑅)))
 
Theoremrlmsca2 20384 Scalars in the ring module. (Contributed by Stefan O'Rear, 1-Apr-2015.)
( I ‘𝑅) = (Scalar‘(ringLMod‘𝑅))
 
Theoremrlmvsca 20385 Scalar multiplication in the ring module. (Contributed by Stefan O'Rear, 31-Mar-2015.)
(.r𝑅) = ( ·𝑠 ‘(ringLMod‘𝑅))
 
Theoremrlmtopn 20386 Topology component of the ring module. (Contributed by Mario Carneiro, 6-Oct-2015.)
(TopOpen‘𝑅) = (TopOpen‘(ringLMod‘𝑅))
 
Theoremrlmds 20387 Metric component of the ring module. (Contributed by Mario Carneiro, 6-Oct-2015.)
(dist‘𝑅) = (dist‘(ringLMod‘𝑅))
 
Theoremrlmlmod 20388 The ring module is a module. (Contributed by Stefan O'Rear, 6-Dec-2014.)
(𝑅 ∈ Ring → (ringLMod‘𝑅) ∈ LMod)
 
Theoremrlmlvec 20389 The ring module over a division ring is a vector space. (Contributed by Mario Carneiro, 4-Oct-2015.)
(𝑅 ∈ DivRing → (ringLMod‘𝑅) ∈ LVec)
 
Theoremrlmlsm 20390 Subgroup sum of the ring module. (Contributed by Thierry Arnoux, 9-Apr-2024.)
(𝑅𝑉 → (LSSum‘𝑅) = (LSSum‘(ringLMod‘𝑅)))
 
Theoremrlmvneg 20391 Vector negation in the ring module. (Contributed by Stefan O'Rear, 6-Dec-2014.) (Revised by Mario Carneiro, 5-Jun-2015.)
(invg𝑅) = (invg‘(ringLMod‘𝑅))
 
Theoremrlmscaf 20392 Functionalized scalar multiplication in the ring module. (Contributed by Mario Carneiro, 6-Oct-2015.)
(+𝑓‘(mulGrp‘𝑅)) = ( ·sf ‘(ringLMod‘𝑅))
 
Theoremixpsnbasval 20393* The value of an infinite Cartesian product of the base of a left module over a ring with a singleton. (Contributed by AV, 3-Dec-2018.)
((𝑅𝑉𝑋𝑊) → X𝑥 ∈ {𝑋} (Base‘(({𝑋} × {(ringLMod‘𝑅)})‘𝑥)) = {𝑓 ∣ (𝑓 Fn {𝑋} ∧ (𝑓𝑋) ∈ (Base‘𝑅))})
 
Theoremlidlss 20394 An ideal is a subset of the base set. (Contributed by Stefan O'Rear, 28-Mar-2015.)
𝐵 = (Base‘𝑊)    &   𝐼 = (LIdeal‘𝑊)       (𝑈𝐼𝑈𝐵)
 
Theoremislidl 20395* Predicate of being a (left) ideal. (Contributed by Stefan O'Rear, 1-Apr-2015.)
𝑈 = (LIdeal‘𝑅)    &   𝐵 = (Base‘𝑅)    &    + = (+g𝑅)    &    · = (.r𝑅)       (𝐼𝑈 ↔ (𝐼𝐵𝐼 ≠ ∅ ∧ ∀𝑥𝐵𝑎𝐼𝑏𝐼 ((𝑥 · 𝑎) + 𝑏) ∈ 𝐼))
 
Theoremlidl0cl 20396 An ideal contains 0. (Contributed by Stefan O'Rear, 3-Jan-2015.)
𝑈 = (LIdeal‘𝑅)    &    0 = (0g𝑅)       ((𝑅 ∈ Ring ∧ 𝐼𝑈) → 0𝐼)
 
Theoremlidlacl 20397 An ideal is closed under addition. (Contributed by Stefan O'Rear, 3-Jan-2015.)
𝑈 = (LIdeal‘𝑅)    &    + = (+g𝑅)       (((𝑅 ∈ Ring ∧ 𝐼𝑈) ∧ (𝑋𝐼𝑌𝐼)) → (𝑋 + 𝑌) ∈ 𝐼)
 
Theoremlidlnegcl 20398 An ideal contains negatives. (Contributed by Stefan O'Rear, 3-Jan-2015.)
𝑈 = (LIdeal‘𝑅)    &   𝑁 = (invg𝑅)       ((𝑅 ∈ Ring ∧ 𝐼𝑈𝑋𝐼) → (𝑁𝑋) ∈ 𝐼)
 
Theoremlidlsubg 20399 An ideal is a subgroup of the additive group. (Contributed by Mario Carneiro, 14-Jun-2015.)
𝑈 = (LIdeal‘𝑅)       ((𝑅 ∈ Ring ∧ 𝐼𝑈) → 𝐼 ∈ (SubGrp‘𝑅))
 
Theoremlidlsubcl 20400 An ideal is closed under subtraction. (Contributed by Stefan O'Rear, 28-Mar-2015.) (Proof shortened by OpenAI, 25-Mar-2020.)
𝑈 = (LIdeal‘𝑅)    &    = (-g𝑅)       (((𝑅 ∈ Ring ∧ 𝐼𝑈) ∧ (𝑋𝐼𝑌𝐼)) → (𝑋 𝑌) ∈ 𝐼)
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42600 427 42601-42700 428 42701-42800 429 42801-42900 430 42901-43000 431 43001-43100 432 43101-43200 433 43201-43300 434 43301-43400 435 43401-43500 436 43501-43600 437 43601-43700 438 43701-43800 439 43801-43900 440 43901-44000 441 44001-44100 442 44101-44200 443 44201-44300 444 44301-44400 445 44401-44500 446 44501-44600 447 44601-44700 448 44701-44800 449 44801-44900 450 44901-45000 451 45001-45100 452 45101-45200 453 45201-45300 454 45301-45400 455 45401-45500 456 45501-45600 457 45601-45700 458 45701-45800 459 45801-45900 460 45901-46000 461 46001-46100 462 46101-46200 463 46201-46300 464 46301-46395
  Copyright terms: Public domain < Previous  Next >