Detailed syntax breakdown of Definition df-edring-rN
Step | Hyp | Ref
| Expression |
1 | | cedring-rN 38768 |
. 2
class
EDRingR |
2 | | vk |
. . 3
setvar 𝑘 |
3 | | cvv 3432 |
. . 3
class
V |
4 | | vw |
. . . 4
setvar 𝑤 |
5 | 2 | cv 1538 |
. . . . 5
class 𝑘 |
6 | | clh 37998 |
. . . . 5
class
LHyp |
7 | 5, 6 | cfv 6433 |
. . . 4
class
(LHyp‘𝑘) |
8 | | cnx 16894 |
. . . . . . 7
class
ndx |
9 | | cbs 16912 |
. . . . . . 7
class
Base |
10 | 8, 9 | cfv 6433 |
. . . . . 6
class
(Base‘ndx) |
11 | 4 | cv 1538 |
. . . . . . 7
class 𝑤 |
12 | | ctendo 38766 |
. . . . . . . 8
class
TEndo |
13 | 5, 12 | cfv 6433 |
. . . . . . 7
class
(TEndo‘𝑘) |
14 | 11, 13 | cfv 6433 |
. . . . . 6
class
((TEndo‘𝑘)‘𝑤) |
15 | 10, 14 | cop 4567 |
. . . . 5
class
〈(Base‘ndx), ((TEndo‘𝑘)‘𝑤)〉 |
16 | | cplusg 16962 |
. . . . . . 7
class
+g |
17 | 8, 16 | cfv 6433 |
. . . . . 6
class
(+g‘ndx) |
18 | | vs |
. . . . . . 7
setvar 𝑠 |
19 | | vt |
. . . . . . 7
setvar 𝑡 |
20 | | vf |
. . . . . . . 8
setvar 𝑓 |
21 | | cltrn 38115 |
. . . . . . . . . 10
class
LTrn |
22 | 5, 21 | cfv 6433 |
. . . . . . . . 9
class
(LTrn‘𝑘) |
23 | 11, 22 | cfv 6433 |
. . . . . . . 8
class
((LTrn‘𝑘)‘𝑤) |
24 | 20 | cv 1538 |
. . . . . . . . . 10
class 𝑓 |
25 | 18 | cv 1538 |
. . . . . . . . . 10
class 𝑠 |
26 | 24, 25 | cfv 6433 |
. . . . . . . . 9
class (𝑠‘𝑓) |
27 | 19 | cv 1538 |
. . . . . . . . . 10
class 𝑡 |
28 | 24, 27 | cfv 6433 |
. . . . . . . . 9
class (𝑡‘𝑓) |
29 | 26, 28 | ccom 5593 |
. . . . . . . 8
class ((𝑠‘𝑓) ∘ (𝑡‘𝑓)) |
30 | 20, 23, 29 | cmpt 5157 |
. . . . . . 7
class (𝑓 ∈ ((LTrn‘𝑘)‘𝑤) ↦ ((𝑠‘𝑓) ∘ (𝑡‘𝑓))) |
31 | 18, 19, 14, 14, 30 | cmpo 7277 |
. . . . . 6
class (𝑠 ∈ ((TEndo‘𝑘)‘𝑤), 𝑡 ∈ ((TEndo‘𝑘)‘𝑤) ↦ (𝑓 ∈ ((LTrn‘𝑘)‘𝑤) ↦ ((𝑠‘𝑓) ∘ (𝑡‘𝑓)))) |
32 | 17, 31 | cop 4567 |
. . . . 5
class
〈(+g‘ndx), (𝑠 ∈ ((TEndo‘𝑘)‘𝑤), 𝑡 ∈ ((TEndo‘𝑘)‘𝑤) ↦ (𝑓 ∈ ((LTrn‘𝑘)‘𝑤) ↦ ((𝑠‘𝑓) ∘ (𝑡‘𝑓))))〉 |
33 | | cmulr 16963 |
. . . . . . 7
class
.r |
34 | 8, 33 | cfv 6433 |
. . . . . 6
class
(.r‘ndx) |
35 | 27, 25 | ccom 5593 |
. . . . . . 7
class (𝑡 ∘ 𝑠) |
36 | 18, 19, 14, 14, 35 | cmpo 7277 |
. . . . . 6
class (𝑠 ∈ ((TEndo‘𝑘)‘𝑤), 𝑡 ∈ ((TEndo‘𝑘)‘𝑤) ↦ (𝑡 ∘ 𝑠)) |
37 | 34, 36 | cop 4567 |
. . . . 5
class
〈(.r‘ndx), (𝑠 ∈ ((TEndo‘𝑘)‘𝑤), 𝑡 ∈ ((TEndo‘𝑘)‘𝑤) ↦ (𝑡 ∘ 𝑠))〉 |
38 | 15, 32, 37 | ctp 4565 |
. . . 4
class
{〈(Base‘ndx), ((TEndo‘𝑘)‘𝑤)〉, 〈(+g‘ndx),
(𝑠 ∈
((TEndo‘𝑘)‘𝑤), 𝑡 ∈ ((TEndo‘𝑘)‘𝑤) ↦ (𝑓 ∈ ((LTrn‘𝑘)‘𝑤) ↦ ((𝑠‘𝑓) ∘ (𝑡‘𝑓))))〉, 〈(.r‘ndx),
(𝑠 ∈
((TEndo‘𝑘)‘𝑤), 𝑡 ∈ ((TEndo‘𝑘)‘𝑤) ↦ (𝑡 ∘ 𝑠))〉} |
39 | 4, 7, 38 | cmpt 5157 |
. . 3
class (𝑤 ∈ (LHyp‘𝑘) ↦
{〈(Base‘ndx), ((TEndo‘𝑘)‘𝑤)〉, 〈(+g‘ndx),
(𝑠 ∈
((TEndo‘𝑘)‘𝑤), 𝑡 ∈ ((TEndo‘𝑘)‘𝑤) ↦ (𝑓 ∈ ((LTrn‘𝑘)‘𝑤) ↦ ((𝑠‘𝑓) ∘ (𝑡‘𝑓))))〉, 〈(.r‘ndx),
(𝑠 ∈
((TEndo‘𝑘)‘𝑤), 𝑡 ∈ ((TEndo‘𝑘)‘𝑤) ↦ (𝑡 ∘ 𝑠))〉}) |
40 | 2, 3, 39 | cmpt 5157 |
. 2
class (𝑘 ∈ V ↦ (𝑤 ∈ (LHyp‘𝑘) ↦
{〈(Base‘ndx), ((TEndo‘𝑘)‘𝑤)〉, 〈(+g‘ndx),
(𝑠 ∈
((TEndo‘𝑘)‘𝑤), 𝑡 ∈ ((TEndo‘𝑘)‘𝑤) ↦ (𝑓 ∈ ((LTrn‘𝑘)‘𝑤) ↦ ((𝑠‘𝑓) ∘ (𝑡‘𝑓))))〉, 〈(.r‘ndx),
(𝑠 ∈
((TEndo‘𝑘)‘𝑤), 𝑡 ∈ ((TEndo‘𝑘)‘𝑤) ↦ (𝑡 ∘ 𝑠))〉})) |
41 | 1, 40 | wceq 1539 |
1
wff
EDRingR = (𝑘 ∈ V ↦ (𝑤 ∈ (LHyp‘𝑘) ↦ {〈(Base‘ndx),
((TEndo‘𝑘)‘𝑤)〉, 〈(+g‘ndx),
(𝑠 ∈
((TEndo‘𝑘)‘𝑤), 𝑡 ∈ ((TEndo‘𝑘)‘𝑤) ↦ (𝑓 ∈ ((LTrn‘𝑘)‘𝑤) ↦ ((𝑠‘𝑓) ∘ (𝑡‘𝑓))))〉, 〈(.r‘ndx),
(𝑠 ∈
((TEndo‘𝑘)‘𝑤), 𝑡 ∈ ((TEndo‘𝑘)‘𝑤) ↦ (𝑡 ∘ 𝑠))〉})) |