Detailed syntax breakdown of Definition df-tendo
Step | Hyp | Ref
| Expression |
1 | | ctendo 38362 |
. 2
class
TEndo |
2 | | vk |
. . 3
setvar 𝑘 |
3 | | cvv 3409 |
. . 3
class
V |
4 | | vw |
. . . 4
setvar 𝑤 |
5 | 2 | cv 1537 |
. . . . 5
class 𝑘 |
6 | | clh 37594 |
. . . . 5
class
LHyp |
7 | 5, 6 | cfv 6340 |
. . . 4
class
(LHyp‘𝑘) |
8 | 4 | cv 1537 |
. . . . . . . 8
class 𝑤 |
9 | | cltrn 37711 |
. . . . . . . . 9
class
LTrn |
10 | 5, 9 | cfv 6340 |
. . . . . . . 8
class
(LTrn‘𝑘) |
11 | 8, 10 | cfv 6340 |
. . . . . . 7
class
((LTrn‘𝑘)‘𝑤) |
12 | | vf |
. . . . . . . 8
setvar 𝑓 |
13 | 12 | cv 1537 |
. . . . . . 7
class 𝑓 |
14 | 11, 11, 13 | wf 6336 |
. . . . . 6
wff 𝑓:((LTrn‘𝑘)‘𝑤)⟶((LTrn‘𝑘)‘𝑤) |
15 | | vx |
. . . . . . . . . . . 12
setvar 𝑥 |
16 | 15 | cv 1537 |
. . . . . . . . . . 11
class 𝑥 |
17 | | vy |
. . . . . . . . . . . 12
setvar 𝑦 |
18 | 17 | cv 1537 |
. . . . . . . . . . 11
class 𝑦 |
19 | 16, 18 | ccom 5532 |
. . . . . . . . . 10
class (𝑥 ∘ 𝑦) |
20 | 19, 13 | cfv 6340 |
. . . . . . . . 9
class (𝑓‘(𝑥 ∘ 𝑦)) |
21 | 16, 13 | cfv 6340 |
. . . . . . . . . 10
class (𝑓‘𝑥) |
22 | 18, 13 | cfv 6340 |
. . . . . . . . . 10
class (𝑓‘𝑦) |
23 | 21, 22 | ccom 5532 |
. . . . . . . . 9
class ((𝑓‘𝑥) ∘ (𝑓‘𝑦)) |
24 | 20, 23 | wceq 1538 |
. . . . . . . 8
wff (𝑓‘(𝑥 ∘ 𝑦)) = ((𝑓‘𝑥) ∘ (𝑓‘𝑦)) |
25 | 24, 17, 11 | wral 3070 |
. . . . . . 7
wff
∀𝑦 ∈
((LTrn‘𝑘)‘𝑤)(𝑓‘(𝑥 ∘ 𝑦)) = ((𝑓‘𝑥) ∘ (𝑓‘𝑦)) |
26 | 25, 15, 11 | wral 3070 |
. . . . . 6
wff
∀𝑥 ∈
((LTrn‘𝑘)‘𝑤)∀𝑦 ∈ ((LTrn‘𝑘)‘𝑤)(𝑓‘(𝑥 ∘ 𝑦)) = ((𝑓‘𝑥) ∘ (𝑓‘𝑦)) |
27 | | ctrl 37768 |
. . . . . . . . . . 11
class
trL |
28 | 5, 27 | cfv 6340 |
. . . . . . . . . 10
class
(trL‘𝑘) |
29 | 8, 28 | cfv 6340 |
. . . . . . . . 9
class
((trL‘𝑘)‘𝑤) |
30 | 21, 29 | cfv 6340 |
. . . . . . . 8
class
(((trL‘𝑘)‘𝑤)‘(𝑓‘𝑥)) |
31 | 16, 29 | cfv 6340 |
. . . . . . . 8
class
(((trL‘𝑘)‘𝑤)‘𝑥) |
32 | | cple 16643 |
. . . . . . . . 9
class
le |
33 | 5, 32 | cfv 6340 |
. . . . . . . 8
class
(le‘𝑘) |
34 | 30, 31, 33 | wbr 5036 |
. . . . . . 7
wff
(((trL‘𝑘)‘𝑤)‘(𝑓‘𝑥))(le‘𝑘)(((trL‘𝑘)‘𝑤)‘𝑥) |
35 | 34, 15, 11 | wral 3070 |
. . . . . 6
wff
∀𝑥 ∈
((LTrn‘𝑘)‘𝑤)(((trL‘𝑘)‘𝑤)‘(𝑓‘𝑥))(le‘𝑘)(((trL‘𝑘)‘𝑤)‘𝑥) |
36 | 14, 26, 35 | w3a 1084 |
. . . . 5
wff (𝑓:((LTrn‘𝑘)‘𝑤)⟶((LTrn‘𝑘)‘𝑤) ∧ ∀𝑥 ∈ ((LTrn‘𝑘)‘𝑤)∀𝑦 ∈ ((LTrn‘𝑘)‘𝑤)(𝑓‘(𝑥 ∘ 𝑦)) = ((𝑓‘𝑥) ∘ (𝑓‘𝑦)) ∧ ∀𝑥 ∈ ((LTrn‘𝑘)‘𝑤)(((trL‘𝑘)‘𝑤)‘(𝑓‘𝑥))(le‘𝑘)(((trL‘𝑘)‘𝑤)‘𝑥)) |
37 | 36, 12 | cab 2735 |
. . . 4
class {𝑓 ∣ (𝑓:((LTrn‘𝑘)‘𝑤)⟶((LTrn‘𝑘)‘𝑤) ∧ ∀𝑥 ∈ ((LTrn‘𝑘)‘𝑤)∀𝑦 ∈ ((LTrn‘𝑘)‘𝑤)(𝑓‘(𝑥 ∘ 𝑦)) = ((𝑓‘𝑥) ∘ (𝑓‘𝑦)) ∧ ∀𝑥 ∈ ((LTrn‘𝑘)‘𝑤)(((trL‘𝑘)‘𝑤)‘(𝑓‘𝑥))(le‘𝑘)(((trL‘𝑘)‘𝑤)‘𝑥))} |
38 | 4, 7, 37 | cmpt 5116 |
. . 3
class (𝑤 ∈ (LHyp‘𝑘) ↦ {𝑓 ∣ (𝑓:((LTrn‘𝑘)‘𝑤)⟶((LTrn‘𝑘)‘𝑤) ∧ ∀𝑥 ∈ ((LTrn‘𝑘)‘𝑤)∀𝑦 ∈ ((LTrn‘𝑘)‘𝑤)(𝑓‘(𝑥 ∘ 𝑦)) = ((𝑓‘𝑥) ∘ (𝑓‘𝑦)) ∧ ∀𝑥 ∈ ((LTrn‘𝑘)‘𝑤)(((trL‘𝑘)‘𝑤)‘(𝑓‘𝑥))(le‘𝑘)(((trL‘𝑘)‘𝑤)‘𝑥))}) |
39 | 2, 3, 38 | cmpt 5116 |
. 2
class (𝑘 ∈ V ↦ (𝑤 ∈ (LHyp‘𝑘) ↦ {𝑓 ∣ (𝑓:((LTrn‘𝑘)‘𝑤)⟶((LTrn‘𝑘)‘𝑤) ∧ ∀𝑥 ∈ ((LTrn‘𝑘)‘𝑤)∀𝑦 ∈ ((LTrn‘𝑘)‘𝑤)(𝑓‘(𝑥 ∘ 𝑦)) = ((𝑓‘𝑥) ∘ (𝑓‘𝑦)) ∧ ∀𝑥 ∈ ((LTrn‘𝑘)‘𝑤)(((trL‘𝑘)‘𝑤)‘(𝑓‘𝑥))(le‘𝑘)(((trL‘𝑘)‘𝑤)‘𝑥))})) |
40 | 1, 39 | wceq 1538 |
1
wff TEndo =
(𝑘 ∈ V ↦ (𝑤 ∈ (LHyp‘𝑘) ↦ {𝑓 ∣ (𝑓:((LTrn‘𝑘)‘𝑤)⟶((LTrn‘𝑘)‘𝑤) ∧ ∀𝑥 ∈ ((LTrn‘𝑘)‘𝑤)∀𝑦 ∈ ((LTrn‘𝑘)‘𝑤)(𝑓‘(𝑥 ∘ 𝑦)) = ((𝑓‘𝑥) ∘ (𝑓‘𝑦)) ∧ ∀𝑥 ∈ ((LTrn‘𝑘)‘𝑤)(((trL‘𝑘)‘𝑤)‘(𝑓‘𝑥))(le‘𝑘)(((trL‘𝑘)‘𝑤)‘𝑥))})) |