Detailed syntax breakdown of Definition df-tendo
| Step | Hyp | Ref
| Expression |
| 1 | | ctendo 40754 |
. 2
class
TEndo |
| 2 | | vk |
. . 3
setvar 𝑘 |
| 3 | | cvv 3480 |
. . 3
class
V |
| 4 | | vw |
. . . 4
setvar 𝑤 |
| 5 | 2 | cv 1539 |
. . . . 5
class 𝑘 |
| 6 | | clh 39986 |
. . . . 5
class
LHyp |
| 7 | 5, 6 | cfv 6561 |
. . . 4
class
(LHyp‘𝑘) |
| 8 | 4 | cv 1539 |
. . . . . . . 8
class 𝑤 |
| 9 | | cltrn 40103 |
. . . . . . . . 9
class
LTrn |
| 10 | 5, 9 | cfv 6561 |
. . . . . . . 8
class
(LTrn‘𝑘) |
| 11 | 8, 10 | cfv 6561 |
. . . . . . 7
class
((LTrn‘𝑘)‘𝑤) |
| 12 | | vf |
. . . . . . . 8
setvar 𝑓 |
| 13 | 12 | cv 1539 |
. . . . . . 7
class 𝑓 |
| 14 | 11, 11, 13 | wf 6557 |
. . . . . 6
wff 𝑓:((LTrn‘𝑘)‘𝑤)⟶((LTrn‘𝑘)‘𝑤) |
| 15 | | vx |
. . . . . . . . . . . 12
setvar 𝑥 |
| 16 | 15 | cv 1539 |
. . . . . . . . . . 11
class 𝑥 |
| 17 | | vy |
. . . . . . . . . . . 12
setvar 𝑦 |
| 18 | 17 | cv 1539 |
. . . . . . . . . . 11
class 𝑦 |
| 19 | 16, 18 | ccom 5689 |
. . . . . . . . . 10
class (𝑥 ∘ 𝑦) |
| 20 | 19, 13 | cfv 6561 |
. . . . . . . . 9
class (𝑓‘(𝑥 ∘ 𝑦)) |
| 21 | 16, 13 | cfv 6561 |
. . . . . . . . . 10
class (𝑓‘𝑥) |
| 22 | 18, 13 | cfv 6561 |
. . . . . . . . . 10
class (𝑓‘𝑦) |
| 23 | 21, 22 | ccom 5689 |
. . . . . . . . 9
class ((𝑓‘𝑥) ∘ (𝑓‘𝑦)) |
| 24 | 20, 23 | wceq 1540 |
. . . . . . . 8
wff (𝑓‘(𝑥 ∘ 𝑦)) = ((𝑓‘𝑥) ∘ (𝑓‘𝑦)) |
| 25 | 24, 17, 11 | wral 3061 |
. . . . . . 7
wff
∀𝑦 ∈
((LTrn‘𝑘)‘𝑤)(𝑓‘(𝑥 ∘ 𝑦)) = ((𝑓‘𝑥) ∘ (𝑓‘𝑦)) |
| 26 | 25, 15, 11 | wral 3061 |
. . . . . 6
wff
∀𝑥 ∈
((LTrn‘𝑘)‘𝑤)∀𝑦 ∈ ((LTrn‘𝑘)‘𝑤)(𝑓‘(𝑥 ∘ 𝑦)) = ((𝑓‘𝑥) ∘ (𝑓‘𝑦)) |
| 27 | | ctrl 40160 |
. . . . . . . . . . 11
class
trL |
| 28 | 5, 27 | cfv 6561 |
. . . . . . . . . 10
class
(trL‘𝑘) |
| 29 | 8, 28 | cfv 6561 |
. . . . . . . . 9
class
((trL‘𝑘)‘𝑤) |
| 30 | 21, 29 | cfv 6561 |
. . . . . . . 8
class
(((trL‘𝑘)‘𝑤)‘(𝑓‘𝑥)) |
| 31 | 16, 29 | cfv 6561 |
. . . . . . . 8
class
(((trL‘𝑘)‘𝑤)‘𝑥) |
| 32 | | cple 17304 |
. . . . . . . . 9
class
le |
| 33 | 5, 32 | cfv 6561 |
. . . . . . . 8
class
(le‘𝑘) |
| 34 | 30, 31, 33 | wbr 5143 |
. . . . . . 7
wff
(((trL‘𝑘)‘𝑤)‘(𝑓‘𝑥))(le‘𝑘)(((trL‘𝑘)‘𝑤)‘𝑥) |
| 35 | 34, 15, 11 | wral 3061 |
. . . . . 6
wff
∀𝑥 ∈
((LTrn‘𝑘)‘𝑤)(((trL‘𝑘)‘𝑤)‘(𝑓‘𝑥))(le‘𝑘)(((trL‘𝑘)‘𝑤)‘𝑥) |
| 36 | 14, 26, 35 | w3a 1087 |
. . . . 5
wff (𝑓:((LTrn‘𝑘)‘𝑤)⟶((LTrn‘𝑘)‘𝑤) ∧ ∀𝑥 ∈ ((LTrn‘𝑘)‘𝑤)∀𝑦 ∈ ((LTrn‘𝑘)‘𝑤)(𝑓‘(𝑥 ∘ 𝑦)) = ((𝑓‘𝑥) ∘ (𝑓‘𝑦)) ∧ ∀𝑥 ∈ ((LTrn‘𝑘)‘𝑤)(((trL‘𝑘)‘𝑤)‘(𝑓‘𝑥))(le‘𝑘)(((trL‘𝑘)‘𝑤)‘𝑥)) |
| 37 | 36, 12 | cab 2714 |
. . . 4
class {𝑓 ∣ (𝑓:((LTrn‘𝑘)‘𝑤)⟶((LTrn‘𝑘)‘𝑤) ∧ ∀𝑥 ∈ ((LTrn‘𝑘)‘𝑤)∀𝑦 ∈ ((LTrn‘𝑘)‘𝑤)(𝑓‘(𝑥 ∘ 𝑦)) = ((𝑓‘𝑥) ∘ (𝑓‘𝑦)) ∧ ∀𝑥 ∈ ((LTrn‘𝑘)‘𝑤)(((trL‘𝑘)‘𝑤)‘(𝑓‘𝑥))(le‘𝑘)(((trL‘𝑘)‘𝑤)‘𝑥))} |
| 38 | 4, 7, 37 | cmpt 5225 |
. . 3
class (𝑤 ∈ (LHyp‘𝑘) ↦ {𝑓 ∣ (𝑓:((LTrn‘𝑘)‘𝑤)⟶((LTrn‘𝑘)‘𝑤) ∧ ∀𝑥 ∈ ((LTrn‘𝑘)‘𝑤)∀𝑦 ∈ ((LTrn‘𝑘)‘𝑤)(𝑓‘(𝑥 ∘ 𝑦)) = ((𝑓‘𝑥) ∘ (𝑓‘𝑦)) ∧ ∀𝑥 ∈ ((LTrn‘𝑘)‘𝑤)(((trL‘𝑘)‘𝑤)‘(𝑓‘𝑥))(le‘𝑘)(((trL‘𝑘)‘𝑤)‘𝑥))}) |
| 39 | 2, 3, 38 | cmpt 5225 |
. 2
class (𝑘 ∈ V ↦ (𝑤 ∈ (LHyp‘𝑘) ↦ {𝑓 ∣ (𝑓:((LTrn‘𝑘)‘𝑤)⟶((LTrn‘𝑘)‘𝑤) ∧ ∀𝑥 ∈ ((LTrn‘𝑘)‘𝑤)∀𝑦 ∈ ((LTrn‘𝑘)‘𝑤)(𝑓‘(𝑥 ∘ 𝑦)) = ((𝑓‘𝑥) ∘ (𝑓‘𝑦)) ∧ ∀𝑥 ∈ ((LTrn‘𝑘)‘𝑤)(((trL‘𝑘)‘𝑤)‘(𝑓‘𝑥))(le‘𝑘)(((trL‘𝑘)‘𝑤)‘𝑥))})) |
| 40 | 1, 39 | wceq 1540 |
1
wff TEndo =
(𝑘 ∈ V ↦ (𝑤 ∈ (LHyp‘𝑘) ↦ {𝑓 ∣ (𝑓:((LTrn‘𝑘)‘𝑤)⟶((LTrn‘𝑘)‘𝑤) ∧ ∀𝑥 ∈ ((LTrn‘𝑘)‘𝑤)∀𝑦 ∈ ((LTrn‘𝑘)‘𝑤)(𝑓‘(𝑥 ∘ 𝑦)) = ((𝑓‘𝑥) ∘ (𝑓‘𝑦)) ∧ ∀𝑥 ∈ ((LTrn‘𝑘)‘𝑤)(((trL‘𝑘)‘𝑤)‘(𝑓‘𝑥))(le‘𝑘)(((trL‘𝑘)‘𝑤)‘𝑥))})) |