Mathbox for Norm Megill < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  erngfset-rN Structured version   Visualization version   GIF version

Theorem erngfset-rN 38383
 Description: The division rings on trace-preserving endomorphisms for a lattice 𝐾. (Contributed by NM, 8-Jun-2013.) (New usage is discouraged.)
Hypothesis
Ref Expression
erngset.h-r 𝐻 = (LHyp‘𝐾)
Assertion
Ref Expression
erngfset-rN (𝐾𝑉 → (EDRingR𝐾) = (𝑤𝐻 ↦ {⟨(Base‘ndx), ((TEndo‘𝐾)‘𝑤)⟩, ⟨(+g‘ndx), (𝑠 ∈ ((TEndo‘𝐾)‘𝑤), 𝑡 ∈ ((TEndo‘𝐾)‘𝑤) ↦ (𝑓 ∈ ((LTrn‘𝐾)‘𝑤) ↦ ((𝑠𝑓) ∘ (𝑡𝑓))))⟩, ⟨(.r‘ndx), (𝑠 ∈ ((TEndo‘𝐾)‘𝑤), 𝑡 ∈ ((TEndo‘𝐾)‘𝑤) ↦ (𝑡𝑠))⟩}))
Distinct variable groups:   𝑤,𝐻   𝑓,𝑠,𝑡,𝑤,𝐾
Allowed substitution hints:   𝐻(𝑡,𝑓,𝑠)   𝑉(𝑤,𝑡,𝑓,𝑠)

Proof of Theorem erngfset-rN
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 elex 3428 . 2 (𝐾𝑉𝐾 ∈ V)
2 fveq2 6658 . . . . 5 (𝑘 = 𝐾 → (LHyp‘𝑘) = (LHyp‘𝐾))
3 erngset.h-r . . . . 5 𝐻 = (LHyp‘𝐾)
42, 3eqtr4di 2811 . . . 4 (𝑘 = 𝐾 → (LHyp‘𝑘) = 𝐻)
5 fveq2 6658 . . . . . . 7 (𝑘 = 𝐾 → (TEndo‘𝑘) = (TEndo‘𝐾))
65fveq1d 6660 . . . . . 6 (𝑘 = 𝐾 → ((TEndo‘𝑘)‘𝑤) = ((TEndo‘𝐾)‘𝑤))
76opeq2d 4770 . . . . 5 (𝑘 = 𝐾 → ⟨(Base‘ndx), ((TEndo‘𝑘)‘𝑤)⟩ = ⟨(Base‘ndx), ((TEndo‘𝐾)‘𝑤)⟩)
8 fveq2 6658 . . . . . . . . 9 (𝑘 = 𝐾 → (LTrn‘𝑘) = (LTrn‘𝐾))
98fveq1d 6660 . . . . . . . 8 (𝑘 = 𝐾 → ((LTrn‘𝑘)‘𝑤) = ((LTrn‘𝐾)‘𝑤))
109mpteq1d 5121 . . . . . . 7 (𝑘 = 𝐾 → (𝑓 ∈ ((LTrn‘𝑘)‘𝑤) ↦ ((𝑠𝑓) ∘ (𝑡𝑓))) = (𝑓 ∈ ((LTrn‘𝐾)‘𝑤) ↦ ((𝑠𝑓) ∘ (𝑡𝑓))))
116, 6, 10mpoeq123dv 7223 . . . . . 6 (𝑘 = 𝐾 → (𝑠 ∈ ((TEndo‘𝑘)‘𝑤), 𝑡 ∈ ((TEndo‘𝑘)‘𝑤) ↦ (𝑓 ∈ ((LTrn‘𝑘)‘𝑤) ↦ ((𝑠𝑓) ∘ (𝑡𝑓)))) = (𝑠 ∈ ((TEndo‘𝐾)‘𝑤), 𝑡 ∈ ((TEndo‘𝐾)‘𝑤) ↦ (𝑓 ∈ ((LTrn‘𝐾)‘𝑤) ↦ ((𝑠𝑓) ∘ (𝑡𝑓)))))
1211opeq2d 4770 . . . . 5 (𝑘 = 𝐾 → ⟨(+g‘ndx), (𝑠 ∈ ((TEndo‘𝑘)‘𝑤), 𝑡 ∈ ((TEndo‘𝑘)‘𝑤) ↦ (𝑓 ∈ ((LTrn‘𝑘)‘𝑤) ↦ ((𝑠𝑓) ∘ (𝑡𝑓))))⟩ = ⟨(+g‘ndx), (𝑠 ∈ ((TEndo‘𝐾)‘𝑤), 𝑡 ∈ ((TEndo‘𝐾)‘𝑤) ↦ (𝑓 ∈ ((LTrn‘𝐾)‘𝑤) ↦ ((𝑠𝑓) ∘ (𝑡𝑓))))⟩)
13 eqidd 2759 . . . . . . 7 (𝑘 = 𝐾 → (𝑡𝑠) = (𝑡𝑠))
146, 6, 13mpoeq123dv 7223 . . . . . 6 (𝑘 = 𝐾 → (𝑠 ∈ ((TEndo‘𝑘)‘𝑤), 𝑡 ∈ ((TEndo‘𝑘)‘𝑤) ↦ (𝑡𝑠)) = (𝑠 ∈ ((TEndo‘𝐾)‘𝑤), 𝑡 ∈ ((TEndo‘𝐾)‘𝑤) ↦ (𝑡𝑠)))
1514opeq2d 4770 . . . . 5 (𝑘 = 𝐾 → ⟨(.r‘ndx), (𝑠 ∈ ((TEndo‘𝑘)‘𝑤), 𝑡 ∈ ((TEndo‘𝑘)‘𝑤) ↦ (𝑡𝑠))⟩ = ⟨(.r‘ndx), (𝑠 ∈ ((TEndo‘𝐾)‘𝑤), 𝑡 ∈ ((TEndo‘𝐾)‘𝑤) ↦ (𝑡𝑠))⟩)
167, 12, 15tpeq123d 4641 . . . 4 (𝑘 = 𝐾 → {⟨(Base‘ndx), ((TEndo‘𝑘)‘𝑤)⟩, ⟨(+g‘ndx), (𝑠 ∈ ((TEndo‘𝑘)‘𝑤), 𝑡 ∈ ((TEndo‘𝑘)‘𝑤) ↦ (𝑓 ∈ ((LTrn‘𝑘)‘𝑤) ↦ ((𝑠𝑓) ∘ (𝑡𝑓))))⟩, ⟨(.r‘ndx), (𝑠 ∈ ((TEndo‘𝑘)‘𝑤), 𝑡 ∈ ((TEndo‘𝑘)‘𝑤) ↦ (𝑡𝑠))⟩} = {⟨(Base‘ndx), ((TEndo‘𝐾)‘𝑤)⟩, ⟨(+g‘ndx), (𝑠 ∈ ((TEndo‘𝐾)‘𝑤), 𝑡 ∈ ((TEndo‘𝐾)‘𝑤) ↦ (𝑓 ∈ ((LTrn‘𝐾)‘𝑤) ↦ ((𝑠𝑓) ∘ (𝑡𝑓))))⟩, ⟨(.r‘ndx), (𝑠 ∈ ((TEndo‘𝐾)‘𝑤), 𝑡 ∈ ((TEndo‘𝐾)‘𝑤) ↦ (𝑡𝑠))⟩})
174, 16mpteq12dv 5117 . . 3 (𝑘 = 𝐾 → (𝑤 ∈ (LHyp‘𝑘) ↦ {⟨(Base‘ndx), ((TEndo‘𝑘)‘𝑤)⟩, ⟨(+g‘ndx), (𝑠 ∈ ((TEndo‘𝑘)‘𝑤), 𝑡 ∈ ((TEndo‘𝑘)‘𝑤) ↦ (𝑓 ∈ ((LTrn‘𝑘)‘𝑤) ↦ ((𝑠𝑓) ∘ (𝑡𝑓))))⟩, ⟨(.r‘ndx), (𝑠 ∈ ((TEndo‘𝑘)‘𝑤), 𝑡 ∈ ((TEndo‘𝑘)‘𝑤) ↦ (𝑡𝑠))⟩}) = (𝑤𝐻 ↦ {⟨(Base‘ndx), ((TEndo‘𝐾)‘𝑤)⟩, ⟨(+g‘ndx), (𝑠 ∈ ((TEndo‘𝐾)‘𝑤), 𝑡 ∈ ((TEndo‘𝐾)‘𝑤) ↦ (𝑓 ∈ ((LTrn‘𝐾)‘𝑤) ↦ ((𝑠𝑓) ∘ (𝑡𝑓))))⟩, ⟨(.r‘ndx), (𝑠 ∈ ((TEndo‘𝐾)‘𝑤), 𝑡 ∈ ((TEndo‘𝐾)‘𝑤) ↦ (𝑡𝑠))⟩}))
18 df-edring-rN 38332 . . 3 EDRingR = (𝑘 ∈ V ↦ (𝑤 ∈ (LHyp‘𝑘) ↦ {⟨(Base‘ndx), ((TEndo‘𝑘)‘𝑤)⟩, ⟨(+g‘ndx), (𝑠 ∈ ((TEndo‘𝑘)‘𝑤), 𝑡 ∈ ((TEndo‘𝑘)‘𝑤) ↦ (𝑓 ∈ ((LTrn‘𝑘)‘𝑤) ↦ ((𝑠𝑓) ∘ (𝑡𝑓))))⟩, ⟨(.r‘ndx), (𝑠 ∈ ((TEndo‘𝑘)‘𝑤), 𝑡 ∈ ((TEndo‘𝑘)‘𝑤) ↦ (𝑡𝑠))⟩}))
1917, 18, 3mptfvmpt 6982 . 2 (𝐾 ∈ V → (EDRingR𝐾) = (𝑤𝐻 ↦ {⟨(Base‘ndx), ((TEndo‘𝐾)‘𝑤)⟩, ⟨(+g‘ndx), (𝑠 ∈ ((TEndo‘𝐾)‘𝑤), 𝑡 ∈ ((TEndo‘𝐾)‘𝑤) ↦ (𝑓 ∈ ((LTrn‘𝐾)‘𝑤) ↦ ((𝑠𝑓) ∘ (𝑡𝑓))))⟩, ⟨(.r‘ndx), (𝑠 ∈ ((TEndo‘𝐾)‘𝑤), 𝑡 ∈ ((TEndo‘𝐾)‘𝑤) ↦ (𝑡𝑠))⟩}))
201, 19syl 17 1 (𝐾𝑉 → (EDRingR𝐾) = (𝑤𝐻 ↦ {⟨(Base‘ndx), ((TEndo‘𝐾)‘𝑤)⟩, ⟨(+g‘ndx), (𝑠 ∈ ((TEndo‘𝐾)‘𝑤), 𝑡 ∈ ((TEndo‘𝐾)‘𝑤) ↦ (𝑓 ∈ ((LTrn‘𝐾)‘𝑤) ↦ ((𝑠𝑓) ∘ (𝑡𝑓))))⟩, ⟨(.r‘ndx), (𝑠 ∈ ((TEndo‘𝐾)‘𝑤), 𝑡 ∈ ((TEndo‘𝐾)‘𝑤) ↦ (𝑡𝑠))⟩}))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   = wceq 1538   ∈ wcel 2111  Vcvv 3409  {ctp 4526  ⟨cop 4528   ↦ cmpt 5112   ∘ ccom 5528  ‘cfv 6335   ∈ cmpo 7152  ndxcnx 16538  Basecbs 16541  +gcplusg 16623  .rcmulr 16624  LHypclh 37560  LTrncltrn 37677  TEndoctendo 38328  EDRingRcedring-rN 38330 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5156  ax-sep 5169  ax-nul 5176  ax-pr 5298 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-ral 3075  df-rex 3076  df-reu 3077  df-rab 3079  df-v 3411  df-sbc 3697  df-csb 3806  df-dif 3861  df-un 3863  df-in 3865  df-ss 3875  df-nul 4226  df-if 4421  df-sn 4523  df-pr 4525  df-tp 4527  df-op 4529  df-uni 4799  df-iun 4885  df-br 5033  df-opab 5095  df-mpt 5113  df-id 5430  df-xp 5530  df-rel 5531  df-cnv 5532  df-co 5533  df-dm 5534  df-rn 5535  df-res 5536  df-ima 5537  df-iota 6294  df-fun 6337  df-fn 6338  df-f 6339  df-f1 6340  df-fo 6341  df-f1o 6342  df-fv 6343  df-oprab 7154  df-mpo 7155  df-edring-rN 38332 This theorem is referenced by:  erngset-rN  38384
 Copyright terms: Public domain W3C validator