Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  erngfset-rN Structured version   Visualization version   GIF version

Theorem erngfset-rN 39981
Description: The division rings on trace-preserving endomorphisms for a lattice 𝐾. (Contributed by NM, 8-Jun-2013.) (New usage is discouraged.)
Hypothesis
Ref Expression
erngset.h-r 𝐻 = (LHypβ€˜πΎ)
Assertion
Ref Expression
erngfset-rN (𝐾 ∈ 𝑉 β†’ (EDRingRβ€˜πΎ) = (𝑀 ∈ 𝐻 ↦ {⟨(Baseβ€˜ndx), ((TEndoβ€˜πΎ)β€˜π‘€)⟩, ⟨(+gβ€˜ndx), (𝑠 ∈ ((TEndoβ€˜πΎ)β€˜π‘€), 𝑑 ∈ ((TEndoβ€˜πΎ)β€˜π‘€) ↦ (𝑓 ∈ ((LTrnβ€˜πΎ)β€˜π‘€) ↦ ((π‘ β€˜π‘“) ∘ (π‘‘β€˜π‘“))))⟩, ⟨(.rβ€˜ndx), (𝑠 ∈ ((TEndoβ€˜πΎ)β€˜π‘€), 𝑑 ∈ ((TEndoβ€˜πΎ)β€˜π‘€) ↦ (𝑑 ∘ 𝑠))⟩}))
Distinct variable groups:   𝑀,𝐻   𝑓,𝑠,𝑑,𝑀,𝐾
Allowed substitution hints:   𝐻(𝑑,𝑓,𝑠)   𝑉(𝑀,𝑑,𝑓,𝑠)

Proof of Theorem erngfset-rN
Dummy variable π‘˜ is distinct from all other variables.
StepHypRef Expression
1 elex 3491 . 2 (𝐾 ∈ 𝑉 β†’ 𝐾 ∈ V)
2 fveq2 6890 . . . . 5 (π‘˜ = 𝐾 β†’ (LHypβ€˜π‘˜) = (LHypβ€˜πΎ))
3 erngset.h-r . . . . 5 𝐻 = (LHypβ€˜πΎ)
42, 3eqtr4di 2788 . . . 4 (π‘˜ = 𝐾 β†’ (LHypβ€˜π‘˜) = 𝐻)
5 fveq2 6890 . . . . . . 7 (π‘˜ = 𝐾 β†’ (TEndoβ€˜π‘˜) = (TEndoβ€˜πΎ))
65fveq1d 6892 . . . . . 6 (π‘˜ = 𝐾 β†’ ((TEndoβ€˜π‘˜)β€˜π‘€) = ((TEndoβ€˜πΎ)β€˜π‘€))
76opeq2d 4879 . . . . 5 (π‘˜ = 𝐾 β†’ ⟨(Baseβ€˜ndx), ((TEndoβ€˜π‘˜)β€˜π‘€)⟩ = ⟨(Baseβ€˜ndx), ((TEndoβ€˜πΎ)β€˜π‘€)⟩)
8 fveq2 6890 . . . . . . . . 9 (π‘˜ = 𝐾 β†’ (LTrnβ€˜π‘˜) = (LTrnβ€˜πΎ))
98fveq1d 6892 . . . . . . . 8 (π‘˜ = 𝐾 β†’ ((LTrnβ€˜π‘˜)β€˜π‘€) = ((LTrnβ€˜πΎ)β€˜π‘€))
109mpteq1d 5242 . . . . . . 7 (π‘˜ = 𝐾 β†’ (𝑓 ∈ ((LTrnβ€˜π‘˜)β€˜π‘€) ↦ ((π‘ β€˜π‘“) ∘ (π‘‘β€˜π‘“))) = (𝑓 ∈ ((LTrnβ€˜πΎ)β€˜π‘€) ↦ ((π‘ β€˜π‘“) ∘ (π‘‘β€˜π‘“))))
116, 6, 10mpoeq123dv 7486 . . . . . 6 (π‘˜ = 𝐾 β†’ (𝑠 ∈ ((TEndoβ€˜π‘˜)β€˜π‘€), 𝑑 ∈ ((TEndoβ€˜π‘˜)β€˜π‘€) ↦ (𝑓 ∈ ((LTrnβ€˜π‘˜)β€˜π‘€) ↦ ((π‘ β€˜π‘“) ∘ (π‘‘β€˜π‘“)))) = (𝑠 ∈ ((TEndoβ€˜πΎ)β€˜π‘€), 𝑑 ∈ ((TEndoβ€˜πΎ)β€˜π‘€) ↦ (𝑓 ∈ ((LTrnβ€˜πΎ)β€˜π‘€) ↦ ((π‘ β€˜π‘“) ∘ (π‘‘β€˜π‘“)))))
1211opeq2d 4879 . . . . 5 (π‘˜ = 𝐾 β†’ ⟨(+gβ€˜ndx), (𝑠 ∈ ((TEndoβ€˜π‘˜)β€˜π‘€), 𝑑 ∈ ((TEndoβ€˜π‘˜)β€˜π‘€) ↦ (𝑓 ∈ ((LTrnβ€˜π‘˜)β€˜π‘€) ↦ ((π‘ β€˜π‘“) ∘ (π‘‘β€˜π‘“))))⟩ = ⟨(+gβ€˜ndx), (𝑠 ∈ ((TEndoβ€˜πΎ)β€˜π‘€), 𝑑 ∈ ((TEndoβ€˜πΎ)β€˜π‘€) ↦ (𝑓 ∈ ((LTrnβ€˜πΎ)β€˜π‘€) ↦ ((π‘ β€˜π‘“) ∘ (π‘‘β€˜π‘“))))⟩)
13 eqidd 2731 . . . . . . 7 (π‘˜ = 𝐾 β†’ (𝑑 ∘ 𝑠) = (𝑑 ∘ 𝑠))
146, 6, 13mpoeq123dv 7486 . . . . . 6 (π‘˜ = 𝐾 β†’ (𝑠 ∈ ((TEndoβ€˜π‘˜)β€˜π‘€), 𝑑 ∈ ((TEndoβ€˜π‘˜)β€˜π‘€) ↦ (𝑑 ∘ 𝑠)) = (𝑠 ∈ ((TEndoβ€˜πΎ)β€˜π‘€), 𝑑 ∈ ((TEndoβ€˜πΎ)β€˜π‘€) ↦ (𝑑 ∘ 𝑠)))
1514opeq2d 4879 . . . . 5 (π‘˜ = 𝐾 β†’ ⟨(.rβ€˜ndx), (𝑠 ∈ ((TEndoβ€˜π‘˜)β€˜π‘€), 𝑑 ∈ ((TEndoβ€˜π‘˜)β€˜π‘€) ↦ (𝑑 ∘ 𝑠))⟩ = ⟨(.rβ€˜ndx), (𝑠 ∈ ((TEndoβ€˜πΎ)β€˜π‘€), 𝑑 ∈ ((TEndoβ€˜πΎ)β€˜π‘€) ↦ (𝑑 ∘ 𝑠))⟩)
167, 12, 15tpeq123d 4751 . . . 4 (π‘˜ = 𝐾 β†’ {⟨(Baseβ€˜ndx), ((TEndoβ€˜π‘˜)β€˜π‘€)⟩, ⟨(+gβ€˜ndx), (𝑠 ∈ ((TEndoβ€˜π‘˜)β€˜π‘€), 𝑑 ∈ ((TEndoβ€˜π‘˜)β€˜π‘€) ↦ (𝑓 ∈ ((LTrnβ€˜π‘˜)β€˜π‘€) ↦ ((π‘ β€˜π‘“) ∘ (π‘‘β€˜π‘“))))⟩, ⟨(.rβ€˜ndx), (𝑠 ∈ ((TEndoβ€˜π‘˜)β€˜π‘€), 𝑑 ∈ ((TEndoβ€˜π‘˜)β€˜π‘€) ↦ (𝑑 ∘ 𝑠))⟩} = {⟨(Baseβ€˜ndx), ((TEndoβ€˜πΎ)β€˜π‘€)⟩, ⟨(+gβ€˜ndx), (𝑠 ∈ ((TEndoβ€˜πΎ)β€˜π‘€), 𝑑 ∈ ((TEndoβ€˜πΎ)β€˜π‘€) ↦ (𝑓 ∈ ((LTrnβ€˜πΎ)β€˜π‘€) ↦ ((π‘ β€˜π‘“) ∘ (π‘‘β€˜π‘“))))⟩, ⟨(.rβ€˜ndx), (𝑠 ∈ ((TEndoβ€˜πΎ)β€˜π‘€), 𝑑 ∈ ((TEndoβ€˜πΎ)β€˜π‘€) ↦ (𝑑 ∘ 𝑠))⟩})
174, 16mpteq12dv 5238 . . 3 (π‘˜ = 𝐾 β†’ (𝑀 ∈ (LHypβ€˜π‘˜) ↦ {⟨(Baseβ€˜ndx), ((TEndoβ€˜π‘˜)β€˜π‘€)⟩, ⟨(+gβ€˜ndx), (𝑠 ∈ ((TEndoβ€˜π‘˜)β€˜π‘€), 𝑑 ∈ ((TEndoβ€˜π‘˜)β€˜π‘€) ↦ (𝑓 ∈ ((LTrnβ€˜π‘˜)β€˜π‘€) ↦ ((π‘ β€˜π‘“) ∘ (π‘‘β€˜π‘“))))⟩, ⟨(.rβ€˜ndx), (𝑠 ∈ ((TEndoβ€˜π‘˜)β€˜π‘€), 𝑑 ∈ ((TEndoβ€˜π‘˜)β€˜π‘€) ↦ (𝑑 ∘ 𝑠))⟩}) = (𝑀 ∈ 𝐻 ↦ {⟨(Baseβ€˜ndx), ((TEndoβ€˜πΎ)β€˜π‘€)⟩, ⟨(+gβ€˜ndx), (𝑠 ∈ ((TEndoβ€˜πΎ)β€˜π‘€), 𝑑 ∈ ((TEndoβ€˜πΎ)β€˜π‘€) ↦ (𝑓 ∈ ((LTrnβ€˜πΎ)β€˜π‘€) ↦ ((π‘ β€˜π‘“) ∘ (π‘‘β€˜π‘“))))⟩, ⟨(.rβ€˜ndx), (𝑠 ∈ ((TEndoβ€˜πΎ)β€˜π‘€), 𝑑 ∈ ((TEndoβ€˜πΎ)β€˜π‘€) ↦ (𝑑 ∘ 𝑠))⟩}))
18 df-edring-rN 39930 . . 3 EDRingR = (π‘˜ ∈ V ↦ (𝑀 ∈ (LHypβ€˜π‘˜) ↦ {⟨(Baseβ€˜ndx), ((TEndoβ€˜π‘˜)β€˜π‘€)⟩, ⟨(+gβ€˜ndx), (𝑠 ∈ ((TEndoβ€˜π‘˜)β€˜π‘€), 𝑑 ∈ ((TEndoβ€˜π‘˜)β€˜π‘€) ↦ (𝑓 ∈ ((LTrnβ€˜π‘˜)β€˜π‘€) ↦ ((π‘ β€˜π‘“) ∘ (π‘‘β€˜π‘“))))⟩, ⟨(.rβ€˜ndx), (𝑠 ∈ ((TEndoβ€˜π‘˜)β€˜π‘€), 𝑑 ∈ ((TEndoβ€˜π‘˜)β€˜π‘€) ↦ (𝑑 ∘ 𝑠))⟩}))
1917, 18, 3mptfvmpt 7231 . 2 (𝐾 ∈ V β†’ (EDRingRβ€˜πΎ) = (𝑀 ∈ 𝐻 ↦ {⟨(Baseβ€˜ndx), ((TEndoβ€˜πΎ)β€˜π‘€)⟩, ⟨(+gβ€˜ndx), (𝑠 ∈ ((TEndoβ€˜πΎ)β€˜π‘€), 𝑑 ∈ ((TEndoβ€˜πΎ)β€˜π‘€) ↦ (𝑓 ∈ ((LTrnβ€˜πΎ)β€˜π‘€) ↦ ((π‘ β€˜π‘“) ∘ (π‘‘β€˜π‘“))))⟩, ⟨(.rβ€˜ndx), (𝑠 ∈ ((TEndoβ€˜πΎ)β€˜π‘€), 𝑑 ∈ ((TEndoβ€˜πΎ)β€˜π‘€) ↦ (𝑑 ∘ 𝑠))⟩}))
201, 19syl 17 1 (𝐾 ∈ 𝑉 β†’ (EDRingRβ€˜πΎ) = (𝑀 ∈ 𝐻 ↦ {⟨(Baseβ€˜ndx), ((TEndoβ€˜πΎ)β€˜π‘€)⟩, ⟨(+gβ€˜ndx), (𝑠 ∈ ((TEndoβ€˜πΎ)β€˜π‘€), 𝑑 ∈ ((TEndoβ€˜πΎ)β€˜π‘€) ↦ (𝑓 ∈ ((LTrnβ€˜πΎ)β€˜π‘€) ↦ ((π‘ β€˜π‘“) ∘ (π‘‘β€˜π‘“))))⟩, ⟨(.rβ€˜ndx), (𝑠 ∈ ((TEndoβ€˜πΎ)β€˜π‘€), 𝑑 ∈ ((TEndoβ€˜πΎ)β€˜π‘€) ↦ (𝑑 ∘ 𝑠))⟩}))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   = wceq 1539   ∈ wcel 2104  Vcvv 3472  {ctp 4631  βŸ¨cop 4633   ↦ cmpt 5230   ∘ ccom 5679  β€˜cfv 6542   ∈ cmpo 7413  ndxcnx 17130  Basecbs 17148  +gcplusg 17201  .rcmulr 17202  LHypclh 39158  LTrncltrn 39275  TEndoctendo 39926  EDRingRcedring-rN 39928
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pr 5426
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3375  df-rab 3431  df-v 3474  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-tp 4632  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-oprab 7415  df-mpo 7416  df-edring-rN 39930
This theorem is referenced by:  erngset-rN  39982
  Copyright terms: Public domain W3C validator