|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > df-em | Structured version Visualization version GIF version | ||
| Description: Define the Euler-Mascheroni constant, γ = 0.57721.... This is the limit of the series Σ𝑘 ∈ (1...𝑚)(1 / 𝑘) − (log‘𝑚), with a proof that the limit exists in emcl 27047. (Contributed by Mario Carneiro, 11-Jul-2014.) | 
| Ref | Expression | 
|---|---|
| df-em | ⊢ γ = Σ𝑘 ∈ ℕ ((1 / 𝑘) − (log‘(1 + (1 / 𝑘)))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | cem 27036 | . 2 class γ | |
| 2 | cn 12267 | . . 3 class ℕ | |
| 3 | c1 11157 | . . . . 5 class 1 | |
| 4 | vk | . . . . . 6 setvar 𝑘 | |
| 5 | 4 | cv 1538 | . . . . 5 class 𝑘 | 
| 6 | cdiv 11921 | . . . . 5 class / | |
| 7 | 3, 5, 6 | co 7432 | . . . 4 class (1 / 𝑘) | 
| 8 | caddc 11159 | . . . . . 6 class + | |
| 9 | 3, 7, 8 | co 7432 | . . . . 5 class (1 + (1 / 𝑘)) | 
| 10 | clog 26597 | . . . . 5 class log | |
| 11 | 9, 10 | cfv 6560 | . . . 4 class (log‘(1 + (1 / 𝑘))) | 
| 12 | cmin 11493 | . . . 4 class − | |
| 13 | 7, 11, 12 | co 7432 | . . 3 class ((1 / 𝑘) − (log‘(1 + (1 / 𝑘)))) | 
| 14 | 2, 13, 4 | csu 15723 | . 2 class Σ𝑘 ∈ ℕ ((1 / 𝑘) − (log‘(1 + (1 / 𝑘)))) | 
| 15 | 1, 14 | wceq 1539 | 1 wff γ = Σ𝑘 ∈ ℕ ((1 / 𝑘) − (log‘(1 + (1 / 𝑘)))) | 
| Colors of variables: wff setvar class | 
| This definition is referenced by: emcllem6 27045 | 
| Copyright terms: Public domain | W3C validator |