MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-em Structured version   Visualization version   GIF version

Definition df-em 26047
Description: Define the Euler-Mascheroni constant, γ = 0.57721.... This is the limit of the series Σ𝑘 ∈ (1...𝑚)(1 / 𝑘) − (log‘𝑚), with a proof that the limit exists in emcl 26057. (Contributed by Mario Carneiro, 11-Jul-2014.)
Assertion
Ref Expression
df-em γ = Σ𝑘 ∈ ℕ ((1 / 𝑘) − (log‘(1 + (1 / 𝑘))))

Detailed syntax breakdown of Definition df-em
StepHypRef Expression
1 cem 26046 . 2 class γ
2 cn 11903 . . 3 class
3 c1 10803 . . . . 5 class 1
4 vk . . . . . 6 setvar 𝑘
54cv 1538 . . . . 5 class 𝑘
6 cdiv 11562 . . . . 5 class /
73, 5, 6co 7255 . . . 4 class (1 / 𝑘)
8 caddc 10805 . . . . . 6 class +
93, 7, 8co 7255 . . . . 5 class (1 + (1 / 𝑘))
10 clog 25615 . . . . 5 class log
119, 10cfv 6418 . . . 4 class (log‘(1 + (1 / 𝑘)))
12 cmin 11135 . . . 4 class
137, 11, 12co 7255 . . 3 class ((1 / 𝑘) − (log‘(1 + (1 / 𝑘))))
142, 13, 4csu 15325 . 2 class Σ𝑘 ∈ ℕ ((1 / 𝑘) − (log‘(1 + (1 / 𝑘))))
151, 14wceq 1539 1 wff γ = Σ𝑘 ∈ ℕ ((1 / 𝑘) − (log‘(1 + (1 / 𝑘))))
Colors of variables: wff setvar class
This definition is referenced by:  emcllem6  26055
  Copyright terms: Public domain W3C validator