MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  emcllem6 Structured version   Visualization version   GIF version

Theorem emcllem6 26887
Description: Lemma for emcl 26889. By the previous lemmas, 𝐹 and 𝐺 must approach a common limit, which is γ by definition. (Contributed by Mario Carneiro, 11-Jul-2014.)
Hypotheses
Ref Expression
emcl.1 𝐹 = (𝑛 ∈ ℕ ↦ (Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) − (log‘𝑛)))
emcl.2 𝐺 = (𝑛 ∈ ℕ ↦ (Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) − (log‘(𝑛 + 1))))
emcl.3 𝐻 = (𝑛 ∈ ℕ ↦ (log‘(1 + (1 / 𝑛))))
emcl.4 𝑇 = (𝑛 ∈ ℕ ↦ ((1 / 𝑛) − (log‘(1 + (1 / 𝑛)))))
Assertion
Ref Expression
emcllem6 (𝐹 ⇝ γ ∧ 𝐺 ⇝ γ)
Distinct variable groups:   𝑚,𝐻   𝑚,𝑛,𝑇
Allowed substitution hints:   𝐹(𝑚,𝑛)   𝐺(𝑚,𝑛)   𝐻(𝑛)

Proof of Theorem emcllem6
Dummy variables 𝑘 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnuz 12812 . . . . 5 ℕ = (ℤ‘1)
2 1zzd 12540 . . . . 5 (⊤ → 1 ∈ ℤ)
3 oveq2 7377 . . . . . . . . . 10 (𝑛 = 𝑘 → (1 / 𝑛) = (1 / 𝑘))
43oveq2d 7385 . . . . . . . . . . 11 (𝑛 = 𝑘 → (1 + (1 / 𝑛)) = (1 + (1 / 𝑘)))
54fveq2d 6844 . . . . . . . . . 10 (𝑛 = 𝑘 → (log‘(1 + (1 / 𝑛))) = (log‘(1 + (1 / 𝑘))))
63, 5oveq12d 7387 . . . . . . . . 9 (𝑛 = 𝑘 → ((1 / 𝑛) − (log‘(1 + (1 / 𝑛)))) = ((1 / 𝑘) − (log‘(1 + (1 / 𝑘)))))
7 emcl.4 . . . . . . . . 9 𝑇 = (𝑛 ∈ ℕ ↦ ((1 / 𝑛) − (log‘(1 + (1 / 𝑛)))))
8 ovex 7402 . . . . . . . . 9 ((1 / 𝑘) − (log‘(1 + (1 / 𝑘)))) ∈ V
96, 7, 8fvmpt 6950 . . . . . . . 8 (𝑘 ∈ ℕ → (𝑇𝑘) = ((1 / 𝑘) − (log‘(1 + (1 / 𝑘)))))
109adantl 481 . . . . . . 7 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝑇𝑘) = ((1 / 𝑘) − (log‘(1 + (1 / 𝑘)))))
11 nnrecre 12204 . . . . . . . . . 10 (𝑘 ∈ ℕ → (1 / 𝑘) ∈ ℝ)
1211adantl 481 . . . . . . . . 9 ((⊤ ∧ 𝑘 ∈ ℕ) → (1 / 𝑘) ∈ ℝ)
13 1rp 12931 . . . . . . . . . . 11 1 ∈ ℝ+
14 nnrp 12939 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ → 𝑘 ∈ ℝ+)
1514rpreccld 12981 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → (1 / 𝑘) ∈ ℝ+)
1615adantl 481 . . . . . . . . . . 11 ((⊤ ∧ 𝑘 ∈ ℕ) → (1 / 𝑘) ∈ ℝ+)
17 rpaddcl 12951 . . . . . . . . . . 11 ((1 ∈ ℝ+ ∧ (1 / 𝑘) ∈ ℝ+) → (1 + (1 / 𝑘)) ∈ ℝ+)
1813, 16, 17sylancr 587 . . . . . . . . . 10 ((⊤ ∧ 𝑘 ∈ ℕ) → (1 + (1 / 𝑘)) ∈ ℝ+)
1918relogcld 26508 . . . . . . . . 9 ((⊤ ∧ 𝑘 ∈ ℕ) → (log‘(1 + (1 / 𝑘))) ∈ ℝ)
2012, 19resubcld 11582 . . . . . . . 8 ((⊤ ∧ 𝑘 ∈ ℕ) → ((1 / 𝑘) − (log‘(1 + (1 / 𝑘)))) ∈ ℝ)
2120recnd 11178 . . . . . . 7 ((⊤ ∧ 𝑘 ∈ ℕ) → ((1 / 𝑘) − (log‘(1 + (1 / 𝑘)))) ∈ ℂ)
22 emcl.1 . . . . . . . . . 10 𝐹 = (𝑛 ∈ ℕ ↦ (Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) − (log‘𝑛)))
23 emcl.2 . . . . . . . . . 10 𝐺 = (𝑛 ∈ ℕ ↦ (Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) − (log‘(𝑛 + 1))))
24 emcl.3 . . . . . . . . . 10 𝐻 = (𝑛 ∈ ℕ ↦ (log‘(1 + (1 / 𝑛))))
2522, 23, 24, 7emcllem5 26886 . . . . . . . . 9 𝐺 = seq1( + , 𝑇)
2622, 23emcllem1 26882 . . . . . . . . . . . 12 (𝐹:ℕ⟶ℝ ∧ 𝐺:ℕ⟶ℝ)
2726simpri 485 . . . . . . . . . . 11 𝐺:ℕ⟶ℝ
2827a1i 11 . . . . . . . . . 10 (⊤ → 𝐺:ℕ⟶ℝ)
2922, 23emcllem2 26883 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → ((𝐹‘(𝑘 + 1)) ≤ (𝐹𝑘) ∧ (𝐺𝑘) ≤ (𝐺‘(𝑘 + 1))))
3029simprd 495 . . . . . . . . . . 11 (𝑘 ∈ ℕ → (𝐺𝑘) ≤ (𝐺‘(𝑘 + 1)))
3130adantl 481 . . . . . . . . . 10 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝐺𝑘) ≤ (𝐺‘(𝑘 + 1)))
32 1nn 12173 . . . . . . . . . . . 12 1 ∈ ℕ
3326simpli 483 . . . . . . . . . . . . 13 𝐹:ℕ⟶ℝ
3433ffvelcdmi 7037 . . . . . . . . . . . 12 (1 ∈ ℕ → (𝐹‘1) ∈ ℝ)
3532, 34ax-mp 5 . . . . . . . . . . 11 (𝐹‘1) ∈ ℝ
3627ffvelcdmi 7037 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ → (𝐺𝑘) ∈ ℝ)
3736adantl 481 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝐺𝑘) ∈ ℝ)
3833ffvelcdmi 7037 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ → (𝐹𝑘) ∈ ℝ)
3938adantl 481 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝐹𝑘) ∈ ℝ)
4035a1i 11 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝐹‘1) ∈ ℝ)
41 fvex 6853 . . . . . . . . . . . . . . . . . . 19 (log‘(1 + (1 / 𝑘))) ∈ V
425, 24, 41fvmpt 6950 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ ℕ → (𝐻𝑘) = (log‘(1 + (1 / 𝑘))))
4342adantl 481 . . . . . . . . . . . . . . . . 17 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝐻𝑘) = (log‘(1 + (1 / 𝑘))))
4422, 23, 24emcllem3 26884 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ ℕ → (𝐻𝑘) = ((𝐹𝑘) − (𝐺𝑘)))
4544adantl 481 . . . . . . . . . . . . . . . . 17 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝐻𝑘) = ((𝐹𝑘) − (𝐺𝑘)))
4643, 45eqtr3d 2766 . . . . . . . . . . . . . . . 16 ((⊤ ∧ 𝑘 ∈ ℕ) → (log‘(1 + (1 / 𝑘))) = ((𝐹𝑘) − (𝐺𝑘)))
47 1re 11150 . . . . . . . . . . . . . . . . . 18 1 ∈ ℝ
48 readdcl 11127 . . . . . . . . . . . . . . . . . 18 ((1 ∈ ℝ ∧ (1 / 𝑘) ∈ ℝ) → (1 + (1 / 𝑘)) ∈ ℝ)
4947, 12, 48sylancr 587 . . . . . . . . . . . . . . . . 17 ((⊤ ∧ 𝑘 ∈ ℕ) → (1 + (1 / 𝑘)) ∈ ℝ)
50 ltaddrp 12966 . . . . . . . . . . . . . . . . . 18 ((1 ∈ ℝ ∧ (1 / 𝑘) ∈ ℝ+) → 1 < (1 + (1 / 𝑘)))
5147, 16, 50sylancr 587 . . . . . . . . . . . . . . . . 17 ((⊤ ∧ 𝑘 ∈ ℕ) → 1 < (1 + (1 / 𝑘)))
5249, 51rplogcld 26514 . . . . . . . . . . . . . . . 16 ((⊤ ∧ 𝑘 ∈ ℕ) → (log‘(1 + (1 / 𝑘))) ∈ ℝ+)
5346, 52eqeltrrd 2829 . . . . . . . . . . . . . . 15 ((⊤ ∧ 𝑘 ∈ ℕ) → ((𝐹𝑘) − (𝐺𝑘)) ∈ ℝ+)
5453rpge0d 12975 . . . . . . . . . . . . . 14 ((⊤ ∧ 𝑘 ∈ ℕ) → 0 ≤ ((𝐹𝑘) − (𝐺𝑘)))
5539, 37subge0d 11744 . . . . . . . . . . . . . 14 ((⊤ ∧ 𝑘 ∈ ℕ) → (0 ≤ ((𝐹𝑘) − (𝐺𝑘)) ↔ (𝐺𝑘) ≤ (𝐹𝑘)))
5654, 55mpbid 232 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝐺𝑘) ≤ (𝐹𝑘))
57 fveq2 6840 . . . . . . . . . . . . . . . 16 (𝑥 = 1 → (𝐹𝑥) = (𝐹‘1))
5857breq1d 5112 . . . . . . . . . . . . . . 15 (𝑥 = 1 → ((𝐹𝑥) ≤ (𝐹‘1) ↔ (𝐹‘1) ≤ (𝐹‘1)))
59 fveq2 6840 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑘 → (𝐹𝑥) = (𝐹𝑘))
6059breq1d 5112 . . . . . . . . . . . . . . 15 (𝑥 = 𝑘 → ((𝐹𝑥) ≤ (𝐹‘1) ↔ (𝐹𝑘) ≤ (𝐹‘1)))
61 fveq2 6840 . . . . . . . . . . . . . . . 16 (𝑥 = (𝑘 + 1) → (𝐹𝑥) = (𝐹‘(𝑘 + 1)))
6261breq1d 5112 . . . . . . . . . . . . . . 15 (𝑥 = (𝑘 + 1) → ((𝐹𝑥) ≤ (𝐹‘1) ↔ (𝐹‘(𝑘 + 1)) ≤ (𝐹‘1)))
6335leidi 11688 . . . . . . . . . . . . . . 15 (𝐹‘1) ≤ (𝐹‘1)
6429simpld 494 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℕ → (𝐹‘(𝑘 + 1)) ≤ (𝐹𝑘))
65 peano2nn 12174 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ ℕ → (𝑘 + 1) ∈ ℕ)
6633ffvelcdmi 7037 . . . . . . . . . . . . . . . . . 18 ((𝑘 + 1) ∈ ℕ → (𝐹‘(𝑘 + 1)) ∈ ℝ)
6765, 66syl 17 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ ℕ → (𝐹‘(𝑘 + 1)) ∈ ℝ)
6835a1i 11 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ ℕ → (𝐹‘1) ∈ ℝ)
69 letr 11244 . . . . . . . . . . . . . . . . 17 (((𝐹‘(𝑘 + 1)) ∈ ℝ ∧ (𝐹𝑘) ∈ ℝ ∧ (𝐹‘1) ∈ ℝ) → (((𝐹‘(𝑘 + 1)) ≤ (𝐹𝑘) ∧ (𝐹𝑘) ≤ (𝐹‘1)) → (𝐹‘(𝑘 + 1)) ≤ (𝐹‘1)))
7067, 38, 68, 69syl3anc 1373 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℕ → (((𝐹‘(𝑘 + 1)) ≤ (𝐹𝑘) ∧ (𝐹𝑘) ≤ (𝐹‘1)) → (𝐹‘(𝑘 + 1)) ≤ (𝐹‘1)))
7164, 70mpand 695 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℕ → ((𝐹𝑘) ≤ (𝐹‘1) → (𝐹‘(𝑘 + 1)) ≤ (𝐹‘1)))
7258, 60, 62, 60, 63, 71nnind 12180 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ → (𝐹𝑘) ≤ (𝐹‘1))
7372adantl 481 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝐹𝑘) ≤ (𝐹‘1))
7437, 39, 40, 56, 73letrd 11307 . . . . . . . . . . . 12 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝐺𝑘) ≤ (𝐹‘1))
7574ralrimiva 3125 . . . . . . . . . . 11 (⊤ → ∀𝑘 ∈ ℕ (𝐺𝑘) ≤ (𝐹‘1))
76 brralrspcev 5162 . . . . . . . . . . 11 (((𝐹‘1) ∈ ℝ ∧ ∀𝑘 ∈ ℕ (𝐺𝑘) ≤ (𝐹‘1)) → ∃𝑥 ∈ ℝ ∀𝑘 ∈ ℕ (𝐺𝑘) ≤ 𝑥)
7735, 75, 76sylancr 587 . . . . . . . . . 10 (⊤ → ∃𝑥 ∈ ℝ ∀𝑘 ∈ ℕ (𝐺𝑘) ≤ 𝑥)
781, 2, 28, 31, 77climsup 15612 . . . . . . . . 9 (⊤ → 𝐺 ⇝ sup(ran 𝐺, ℝ, < ))
7925, 78eqbrtrrid 5138 . . . . . . . 8 (⊤ → seq1( + , 𝑇) ⇝ sup(ran 𝐺, ℝ, < ))
80 climrel 15434 . . . . . . . . 9 Rel ⇝
8180releldmi 5901 . . . . . . . 8 (seq1( + , 𝑇) ⇝ sup(ran 𝐺, ℝ, < ) → seq1( + , 𝑇) ∈ dom ⇝ )
8279, 81syl 17 . . . . . . 7 (⊤ → seq1( + , 𝑇) ∈ dom ⇝ )
831, 2, 10, 21, 82isumclim2 15700 . . . . . 6 (⊤ → seq1( + , 𝑇) ⇝ Σ𝑘 ∈ ℕ ((1 / 𝑘) − (log‘(1 + (1 / 𝑘)))))
84 df-em 26879 . . . . . 6 γ = Σ𝑘 ∈ ℕ ((1 / 𝑘) − (log‘(1 + (1 / 𝑘))))
8583, 25, 843brtr4g 5136 . . . . 5 (⊤ → 𝐺 ⇝ γ)
86 nnex 12168 . . . . . . . 8 ℕ ∈ V
8786mptex 7179 . . . . . . 7 (𝑛 ∈ ℕ ↦ (Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) − (log‘𝑛))) ∈ V
8822, 87eqeltri 2824 . . . . . 6 𝐹 ∈ V
8988a1i 11 . . . . 5 (⊤ → 𝐹 ∈ V)
9022, 23, 24emcllem4 26885 . . . . . 6 𝐻 ⇝ 0
9190a1i 11 . . . . 5 (⊤ → 𝐻 ⇝ 0)
9237recnd 11178 . . . . 5 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝐺𝑘) ∈ ℂ)
9339, 37resubcld 11582 . . . . . . 7 ((⊤ ∧ 𝑘 ∈ ℕ) → ((𝐹𝑘) − (𝐺𝑘)) ∈ ℝ)
9445, 93eqeltrd 2828 . . . . . 6 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝐻𝑘) ∈ ℝ)
9594recnd 11178 . . . . 5 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝐻𝑘) ∈ ℂ)
9645oveq2d 7385 . . . . . 6 ((⊤ ∧ 𝑘 ∈ ℕ) → ((𝐺𝑘) + (𝐻𝑘)) = ((𝐺𝑘) + ((𝐹𝑘) − (𝐺𝑘))))
9739recnd 11178 . . . . . . 7 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝐹𝑘) ∈ ℂ)
9892, 97pncan3d 11512 . . . . . 6 ((⊤ ∧ 𝑘 ∈ ℕ) → ((𝐺𝑘) + ((𝐹𝑘) − (𝐺𝑘))) = (𝐹𝑘))
9996, 98eqtr2d 2765 . . . . 5 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝐹𝑘) = ((𝐺𝑘) + (𝐻𝑘)))
1001, 2, 85, 89, 91, 92, 95, 99climadd 15574 . . . 4 (⊤ → 𝐹 ⇝ (γ + 0))
10185mptru 1547 . . . . . 6 𝐺 ⇝ γ
102 climcl 15441 . . . . . 6 (𝐺 ⇝ γ → γ ∈ ℂ)
103101, 102ax-mp 5 . . . . 5 γ ∈ ℂ
104103addridi 11337 . . . 4 (γ + 0) = γ
105100, 104breqtrdi 5143 . . 3 (⊤ → 𝐹 ⇝ γ)
106105mptru 1547 . 2 𝐹 ⇝ γ
107106, 101pm3.2i 470 1 (𝐹 ⇝ γ ∧ 𝐺 ⇝ γ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wtru 1541  wcel 2109  wral 3044  wrex 3053  Vcvv 3444   class class class wbr 5102  cmpt 5183  dom cdm 5631  ran crn 5632  wf 6495  cfv 6499  (class class class)co 7369  supcsup 9367  cc 11042  cr 11043  0cc0 11044  1c1 11045   + caddc 11047   < clt 11184  cle 11185  cmin 11381   / cdiv 11811  cn 12162  +crp 12927  ...cfz 13444  seqcseq 13942  cli 15426  Σcsu 15628  logclog 26439  γcem 26878
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-inf2 9570  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122  ax-addf 11123
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-iin 4954  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-of 7633  df-om 7823  df-1st 7947  df-2nd 7948  df-supp 8117  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-er 8648  df-map 8778  df-pm 8779  df-ixp 8848  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-fsupp 9289  df-fi 9338  df-sup 9369  df-inf 9370  df-oi 9439  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-z 12506  df-dec 12626  df-uz 12770  df-q 12884  df-rp 12928  df-xneg 13048  df-xadd 13049  df-xmul 13050  df-ioo 13286  df-ioc 13287  df-ico 13288  df-icc 13289  df-fz 13445  df-fzo 13592  df-fl 13730  df-mod 13808  df-seq 13943  df-exp 14003  df-fac 14215  df-bc 14244  df-hash 14272  df-shft 15009  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-limsup 15413  df-clim 15430  df-rlim 15431  df-sum 15629  df-ef 16009  df-sin 16011  df-cos 16012  df-pi 16014  df-struct 17093  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-mulr 17210  df-starv 17211  df-sca 17212  df-vsca 17213  df-ip 17214  df-tset 17215  df-ple 17216  df-ds 17218  df-unif 17219  df-hom 17220  df-cco 17221  df-rest 17361  df-topn 17362  df-0g 17380  df-gsum 17381  df-topgen 17382  df-pt 17383  df-prds 17386  df-xrs 17441  df-qtop 17446  df-imas 17447  df-xps 17449  df-mre 17523  df-mrc 17524  df-acs 17526  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-submnd 18687  df-mulg 18976  df-cntz 19225  df-cmn 19688  df-psmet 21232  df-xmet 21233  df-met 21234  df-bl 21235  df-mopn 21236  df-fbas 21237  df-fg 21238  df-cnfld 21241  df-top 22757  df-topon 22774  df-topsp 22796  df-bases 22809  df-cld 22882  df-ntr 22883  df-cls 22884  df-nei 22961  df-lp 22999  df-perf 23000  df-cn 23090  df-cnp 23091  df-haus 23178  df-tx 23425  df-hmeo 23618  df-fil 23709  df-fm 23801  df-flim 23802  df-flf 23803  df-xms 24184  df-ms 24185  df-tms 24186  df-cncf 24747  df-limc 25743  df-dv 25744  df-log 26441  df-em 26879
This theorem is referenced by:  emcllem7  26888
  Copyright terms: Public domain W3C validator