MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  emcllem6 Structured version   Visualization version   GIF version

Theorem emcllem6 26938
Description: Lemma for emcl 26940. By the previous lemmas, 𝐹 and 𝐺 must approach a common limit, which is γ by definition. (Contributed by Mario Carneiro, 11-Jul-2014.)
Hypotheses
Ref Expression
emcl.1 𝐹 = (𝑛 ∈ ℕ ↦ (Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) − (log‘𝑛)))
emcl.2 𝐺 = (𝑛 ∈ ℕ ↦ (Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) − (log‘(𝑛 + 1))))
emcl.3 𝐻 = (𝑛 ∈ ℕ ↦ (log‘(1 + (1 / 𝑛))))
emcl.4 𝑇 = (𝑛 ∈ ℕ ↦ ((1 / 𝑛) − (log‘(1 + (1 / 𝑛)))))
Assertion
Ref Expression
emcllem6 (𝐹 ⇝ γ ∧ 𝐺 ⇝ γ)
Distinct variable groups:   𝑚,𝐻   𝑚,𝑛,𝑇
Allowed substitution hints:   𝐹(𝑚,𝑛)   𝐺(𝑚,𝑛)   𝐻(𝑛)

Proof of Theorem emcllem6
Dummy variables 𝑘 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnuz 12775 . . . . 5 ℕ = (ℤ‘1)
2 1zzd 12503 . . . . 5 (⊤ → 1 ∈ ℤ)
3 oveq2 7354 . . . . . . . . . 10 (𝑛 = 𝑘 → (1 / 𝑛) = (1 / 𝑘))
43oveq2d 7362 . . . . . . . . . . 11 (𝑛 = 𝑘 → (1 + (1 / 𝑛)) = (1 + (1 / 𝑘)))
54fveq2d 6826 . . . . . . . . . 10 (𝑛 = 𝑘 → (log‘(1 + (1 / 𝑛))) = (log‘(1 + (1 / 𝑘))))
63, 5oveq12d 7364 . . . . . . . . 9 (𝑛 = 𝑘 → ((1 / 𝑛) − (log‘(1 + (1 / 𝑛)))) = ((1 / 𝑘) − (log‘(1 + (1 / 𝑘)))))
7 emcl.4 . . . . . . . . 9 𝑇 = (𝑛 ∈ ℕ ↦ ((1 / 𝑛) − (log‘(1 + (1 / 𝑛)))))
8 ovex 7379 . . . . . . . . 9 ((1 / 𝑘) − (log‘(1 + (1 / 𝑘)))) ∈ V
96, 7, 8fvmpt 6929 . . . . . . . 8 (𝑘 ∈ ℕ → (𝑇𝑘) = ((1 / 𝑘) − (log‘(1 + (1 / 𝑘)))))
109adantl 481 . . . . . . 7 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝑇𝑘) = ((1 / 𝑘) − (log‘(1 + (1 / 𝑘)))))
11 nnrecre 12167 . . . . . . . . . 10 (𝑘 ∈ ℕ → (1 / 𝑘) ∈ ℝ)
1211adantl 481 . . . . . . . . 9 ((⊤ ∧ 𝑘 ∈ ℕ) → (1 / 𝑘) ∈ ℝ)
13 1rp 12894 . . . . . . . . . . 11 1 ∈ ℝ+
14 nnrp 12902 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ → 𝑘 ∈ ℝ+)
1514rpreccld 12944 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → (1 / 𝑘) ∈ ℝ+)
1615adantl 481 . . . . . . . . . . 11 ((⊤ ∧ 𝑘 ∈ ℕ) → (1 / 𝑘) ∈ ℝ+)
17 rpaddcl 12914 . . . . . . . . . . 11 ((1 ∈ ℝ+ ∧ (1 / 𝑘) ∈ ℝ+) → (1 + (1 / 𝑘)) ∈ ℝ+)
1813, 16, 17sylancr 587 . . . . . . . . . 10 ((⊤ ∧ 𝑘 ∈ ℕ) → (1 + (1 / 𝑘)) ∈ ℝ+)
1918relogcld 26559 . . . . . . . . 9 ((⊤ ∧ 𝑘 ∈ ℕ) → (log‘(1 + (1 / 𝑘))) ∈ ℝ)
2012, 19resubcld 11545 . . . . . . . 8 ((⊤ ∧ 𝑘 ∈ ℕ) → ((1 / 𝑘) − (log‘(1 + (1 / 𝑘)))) ∈ ℝ)
2120recnd 11140 . . . . . . 7 ((⊤ ∧ 𝑘 ∈ ℕ) → ((1 / 𝑘) − (log‘(1 + (1 / 𝑘)))) ∈ ℂ)
22 emcl.1 . . . . . . . . . 10 𝐹 = (𝑛 ∈ ℕ ↦ (Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) − (log‘𝑛)))
23 emcl.2 . . . . . . . . . 10 𝐺 = (𝑛 ∈ ℕ ↦ (Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) − (log‘(𝑛 + 1))))
24 emcl.3 . . . . . . . . . 10 𝐻 = (𝑛 ∈ ℕ ↦ (log‘(1 + (1 / 𝑛))))
2522, 23, 24, 7emcllem5 26937 . . . . . . . . 9 𝐺 = seq1( + , 𝑇)
2622, 23emcllem1 26933 . . . . . . . . . . . 12 (𝐹:ℕ⟶ℝ ∧ 𝐺:ℕ⟶ℝ)
2726simpri 485 . . . . . . . . . . 11 𝐺:ℕ⟶ℝ
2827a1i 11 . . . . . . . . . 10 (⊤ → 𝐺:ℕ⟶ℝ)
2922, 23emcllem2 26934 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → ((𝐹‘(𝑘 + 1)) ≤ (𝐹𝑘) ∧ (𝐺𝑘) ≤ (𝐺‘(𝑘 + 1))))
3029simprd 495 . . . . . . . . . . 11 (𝑘 ∈ ℕ → (𝐺𝑘) ≤ (𝐺‘(𝑘 + 1)))
3130adantl 481 . . . . . . . . . 10 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝐺𝑘) ≤ (𝐺‘(𝑘 + 1)))
32 1nn 12136 . . . . . . . . . . . 12 1 ∈ ℕ
3326simpli 483 . . . . . . . . . . . . 13 𝐹:ℕ⟶ℝ
3433ffvelcdmi 7016 . . . . . . . . . . . 12 (1 ∈ ℕ → (𝐹‘1) ∈ ℝ)
3532, 34ax-mp 5 . . . . . . . . . . 11 (𝐹‘1) ∈ ℝ
3627ffvelcdmi 7016 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ → (𝐺𝑘) ∈ ℝ)
3736adantl 481 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝐺𝑘) ∈ ℝ)
3833ffvelcdmi 7016 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ → (𝐹𝑘) ∈ ℝ)
3938adantl 481 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝐹𝑘) ∈ ℝ)
4035a1i 11 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝐹‘1) ∈ ℝ)
41 fvex 6835 . . . . . . . . . . . . . . . . . . 19 (log‘(1 + (1 / 𝑘))) ∈ V
425, 24, 41fvmpt 6929 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ ℕ → (𝐻𝑘) = (log‘(1 + (1 / 𝑘))))
4342adantl 481 . . . . . . . . . . . . . . . . 17 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝐻𝑘) = (log‘(1 + (1 / 𝑘))))
4422, 23, 24emcllem3 26935 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ ℕ → (𝐻𝑘) = ((𝐹𝑘) − (𝐺𝑘)))
4544adantl 481 . . . . . . . . . . . . . . . . 17 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝐻𝑘) = ((𝐹𝑘) − (𝐺𝑘)))
4643, 45eqtr3d 2768 . . . . . . . . . . . . . . . 16 ((⊤ ∧ 𝑘 ∈ ℕ) → (log‘(1 + (1 / 𝑘))) = ((𝐹𝑘) − (𝐺𝑘)))
47 1re 11112 . . . . . . . . . . . . . . . . . 18 1 ∈ ℝ
48 readdcl 11089 . . . . . . . . . . . . . . . . . 18 ((1 ∈ ℝ ∧ (1 / 𝑘) ∈ ℝ) → (1 + (1 / 𝑘)) ∈ ℝ)
4947, 12, 48sylancr 587 . . . . . . . . . . . . . . . . 17 ((⊤ ∧ 𝑘 ∈ ℕ) → (1 + (1 / 𝑘)) ∈ ℝ)
50 ltaddrp 12929 . . . . . . . . . . . . . . . . . 18 ((1 ∈ ℝ ∧ (1 / 𝑘) ∈ ℝ+) → 1 < (1 + (1 / 𝑘)))
5147, 16, 50sylancr 587 . . . . . . . . . . . . . . . . 17 ((⊤ ∧ 𝑘 ∈ ℕ) → 1 < (1 + (1 / 𝑘)))
5249, 51rplogcld 26565 . . . . . . . . . . . . . . . 16 ((⊤ ∧ 𝑘 ∈ ℕ) → (log‘(1 + (1 / 𝑘))) ∈ ℝ+)
5346, 52eqeltrrd 2832 . . . . . . . . . . . . . . 15 ((⊤ ∧ 𝑘 ∈ ℕ) → ((𝐹𝑘) − (𝐺𝑘)) ∈ ℝ+)
5453rpge0d 12938 . . . . . . . . . . . . . 14 ((⊤ ∧ 𝑘 ∈ ℕ) → 0 ≤ ((𝐹𝑘) − (𝐺𝑘)))
5539, 37subge0d 11707 . . . . . . . . . . . . . 14 ((⊤ ∧ 𝑘 ∈ ℕ) → (0 ≤ ((𝐹𝑘) − (𝐺𝑘)) ↔ (𝐺𝑘) ≤ (𝐹𝑘)))
5654, 55mpbid 232 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝐺𝑘) ≤ (𝐹𝑘))
57 fveq2 6822 . . . . . . . . . . . . . . . 16 (𝑥 = 1 → (𝐹𝑥) = (𝐹‘1))
5857breq1d 5099 . . . . . . . . . . . . . . 15 (𝑥 = 1 → ((𝐹𝑥) ≤ (𝐹‘1) ↔ (𝐹‘1) ≤ (𝐹‘1)))
59 fveq2 6822 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑘 → (𝐹𝑥) = (𝐹𝑘))
6059breq1d 5099 . . . . . . . . . . . . . . 15 (𝑥 = 𝑘 → ((𝐹𝑥) ≤ (𝐹‘1) ↔ (𝐹𝑘) ≤ (𝐹‘1)))
61 fveq2 6822 . . . . . . . . . . . . . . . 16 (𝑥 = (𝑘 + 1) → (𝐹𝑥) = (𝐹‘(𝑘 + 1)))
6261breq1d 5099 . . . . . . . . . . . . . . 15 (𝑥 = (𝑘 + 1) → ((𝐹𝑥) ≤ (𝐹‘1) ↔ (𝐹‘(𝑘 + 1)) ≤ (𝐹‘1)))
6335leidi 11651 . . . . . . . . . . . . . . 15 (𝐹‘1) ≤ (𝐹‘1)
6429simpld 494 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℕ → (𝐹‘(𝑘 + 1)) ≤ (𝐹𝑘))
65 peano2nn 12137 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ ℕ → (𝑘 + 1) ∈ ℕ)
6633ffvelcdmi 7016 . . . . . . . . . . . . . . . . . 18 ((𝑘 + 1) ∈ ℕ → (𝐹‘(𝑘 + 1)) ∈ ℝ)
6765, 66syl 17 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ ℕ → (𝐹‘(𝑘 + 1)) ∈ ℝ)
6835a1i 11 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ ℕ → (𝐹‘1) ∈ ℝ)
69 letr 11207 . . . . . . . . . . . . . . . . 17 (((𝐹‘(𝑘 + 1)) ∈ ℝ ∧ (𝐹𝑘) ∈ ℝ ∧ (𝐹‘1) ∈ ℝ) → (((𝐹‘(𝑘 + 1)) ≤ (𝐹𝑘) ∧ (𝐹𝑘) ≤ (𝐹‘1)) → (𝐹‘(𝑘 + 1)) ≤ (𝐹‘1)))
7067, 38, 68, 69syl3anc 1373 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℕ → (((𝐹‘(𝑘 + 1)) ≤ (𝐹𝑘) ∧ (𝐹𝑘) ≤ (𝐹‘1)) → (𝐹‘(𝑘 + 1)) ≤ (𝐹‘1)))
7164, 70mpand 695 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℕ → ((𝐹𝑘) ≤ (𝐹‘1) → (𝐹‘(𝑘 + 1)) ≤ (𝐹‘1)))
7258, 60, 62, 60, 63, 71nnind 12143 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ → (𝐹𝑘) ≤ (𝐹‘1))
7372adantl 481 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝐹𝑘) ≤ (𝐹‘1))
7437, 39, 40, 56, 73letrd 11270 . . . . . . . . . . . 12 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝐺𝑘) ≤ (𝐹‘1))
7574ralrimiva 3124 . . . . . . . . . . 11 (⊤ → ∀𝑘 ∈ ℕ (𝐺𝑘) ≤ (𝐹‘1))
76 brralrspcev 5149 . . . . . . . . . . 11 (((𝐹‘1) ∈ ℝ ∧ ∀𝑘 ∈ ℕ (𝐺𝑘) ≤ (𝐹‘1)) → ∃𝑥 ∈ ℝ ∀𝑘 ∈ ℕ (𝐺𝑘) ≤ 𝑥)
7735, 75, 76sylancr 587 . . . . . . . . . 10 (⊤ → ∃𝑥 ∈ ℝ ∀𝑘 ∈ ℕ (𝐺𝑘) ≤ 𝑥)
781, 2, 28, 31, 77climsup 15577 . . . . . . . . 9 (⊤ → 𝐺 ⇝ sup(ran 𝐺, ℝ, < ))
7925, 78eqbrtrrid 5125 . . . . . . . 8 (⊤ → seq1( + , 𝑇) ⇝ sup(ran 𝐺, ℝ, < ))
80 climrel 15399 . . . . . . . . 9 Rel ⇝
8180releldmi 5887 . . . . . . . 8 (seq1( + , 𝑇) ⇝ sup(ran 𝐺, ℝ, < ) → seq1( + , 𝑇) ∈ dom ⇝ )
8279, 81syl 17 . . . . . . 7 (⊤ → seq1( + , 𝑇) ∈ dom ⇝ )
831, 2, 10, 21, 82isumclim2 15665 . . . . . 6 (⊤ → seq1( + , 𝑇) ⇝ Σ𝑘 ∈ ℕ ((1 / 𝑘) − (log‘(1 + (1 / 𝑘)))))
84 df-em 26930 . . . . . 6 γ = Σ𝑘 ∈ ℕ ((1 / 𝑘) − (log‘(1 + (1 / 𝑘))))
8583, 25, 843brtr4g 5123 . . . . 5 (⊤ → 𝐺 ⇝ γ)
86 nnex 12131 . . . . . . . 8 ℕ ∈ V
8786mptex 7157 . . . . . . 7 (𝑛 ∈ ℕ ↦ (Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) − (log‘𝑛))) ∈ V
8822, 87eqeltri 2827 . . . . . 6 𝐹 ∈ V
8988a1i 11 . . . . 5 (⊤ → 𝐹 ∈ V)
9022, 23, 24emcllem4 26936 . . . . . 6 𝐻 ⇝ 0
9190a1i 11 . . . . 5 (⊤ → 𝐻 ⇝ 0)
9237recnd 11140 . . . . 5 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝐺𝑘) ∈ ℂ)
9339, 37resubcld 11545 . . . . . . 7 ((⊤ ∧ 𝑘 ∈ ℕ) → ((𝐹𝑘) − (𝐺𝑘)) ∈ ℝ)
9445, 93eqeltrd 2831 . . . . . 6 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝐻𝑘) ∈ ℝ)
9594recnd 11140 . . . . 5 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝐻𝑘) ∈ ℂ)
9645oveq2d 7362 . . . . . 6 ((⊤ ∧ 𝑘 ∈ ℕ) → ((𝐺𝑘) + (𝐻𝑘)) = ((𝐺𝑘) + ((𝐹𝑘) − (𝐺𝑘))))
9739recnd 11140 . . . . . . 7 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝐹𝑘) ∈ ℂ)
9892, 97pncan3d 11475 . . . . . 6 ((⊤ ∧ 𝑘 ∈ ℕ) → ((𝐺𝑘) + ((𝐹𝑘) − (𝐺𝑘))) = (𝐹𝑘))
9996, 98eqtr2d 2767 . . . . 5 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝐹𝑘) = ((𝐺𝑘) + (𝐻𝑘)))
1001, 2, 85, 89, 91, 92, 95, 99climadd 15539 . . . 4 (⊤ → 𝐹 ⇝ (γ + 0))
10185mptru 1548 . . . . . 6 𝐺 ⇝ γ
102 climcl 15406 . . . . . 6 (𝐺 ⇝ γ → γ ∈ ℂ)
103101, 102ax-mp 5 . . . . 5 γ ∈ ℂ
104103addridi 11300 . . . 4 (γ + 0) = γ
105100, 104breqtrdi 5130 . . 3 (⊤ → 𝐹 ⇝ γ)
106105mptru 1548 . 2 𝐹 ⇝ γ
107106, 101pm3.2i 470 1 (𝐹 ⇝ γ ∧ 𝐺 ⇝ γ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wtru 1542  wcel 2111  wral 3047  wrex 3056  Vcvv 3436   class class class wbr 5089  cmpt 5170  dom cdm 5614  ran crn 5615  wf 6477  cfv 6481  (class class class)co 7346  supcsup 9324  cc 11004  cr 11005  0cc0 11006  1c1 11007   + caddc 11009   < clt 11146  cle 11147  cmin 11344   / cdiv 11774  cn 12125  +crp 12890  ...cfz 13407  seqcseq 13908  cli 15391  Σcsu 15593  logclog 26490  γcem 26929
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-inf2 9531  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084  ax-addf 11085
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-iin 4942  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-om 7797  df-1st 7921  df-2nd 7922  df-supp 8091  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-er 8622  df-map 8752  df-pm 8753  df-ixp 8822  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fsupp 9246  df-fi 9295  df-sup 9326  df-inf 9327  df-oi 9396  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-9 12195  df-n0 12382  df-z 12469  df-dec 12589  df-uz 12733  df-q 12847  df-rp 12891  df-xneg 13011  df-xadd 13012  df-xmul 13013  df-ioo 13249  df-ioc 13250  df-ico 13251  df-icc 13252  df-fz 13408  df-fzo 13555  df-fl 13696  df-mod 13774  df-seq 13909  df-exp 13969  df-fac 14181  df-bc 14210  df-hash 14238  df-shft 14974  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-limsup 15378  df-clim 15395  df-rlim 15396  df-sum 15594  df-ef 15974  df-sin 15976  df-cos 15977  df-pi 15979  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-starv 17176  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-hom 17185  df-cco 17186  df-rest 17326  df-topn 17327  df-0g 17345  df-gsum 17346  df-topgen 17347  df-pt 17348  df-prds 17351  df-xrs 17406  df-qtop 17411  df-imas 17412  df-xps 17414  df-mre 17488  df-mrc 17489  df-acs 17491  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-submnd 18692  df-mulg 18981  df-cntz 19229  df-cmn 19694  df-psmet 21283  df-xmet 21284  df-met 21285  df-bl 21286  df-mopn 21287  df-fbas 21288  df-fg 21289  df-cnfld 21292  df-top 22809  df-topon 22826  df-topsp 22848  df-bases 22861  df-cld 22934  df-ntr 22935  df-cls 22936  df-nei 23013  df-lp 23051  df-perf 23052  df-cn 23142  df-cnp 23143  df-haus 23230  df-tx 23477  df-hmeo 23670  df-fil 23761  df-fm 23853  df-flim 23854  df-flf 23855  df-xms 24235  df-ms 24236  df-tms 24237  df-cncf 24798  df-limc 25794  df-dv 25795  df-log 26492  df-em 26930
This theorem is referenced by:  emcllem7  26939
  Copyright terms: Public domain W3C validator