MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  emcllem6 Structured version   Visualization version   GIF version

Theorem emcllem6 26911
Description: Lemma for emcl 26913. By the previous lemmas, 𝐹 and 𝐺 must approach a common limit, which is γ by definition. (Contributed by Mario Carneiro, 11-Jul-2014.)
Hypotheses
Ref Expression
emcl.1 𝐹 = (𝑛 ∈ ℕ ↦ (Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) − (log‘𝑛)))
emcl.2 𝐺 = (𝑛 ∈ ℕ ↦ (Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) − (log‘(𝑛 + 1))))
emcl.3 𝐻 = (𝑛 ∈ ℕ ↦ (log‘(1 + (1 / 𝑛))))
emcl.4 𝑇 = (𝑛 ∈ ℕ ↦ ((1 / 𝑛) − (log‘(1 + (1 / 𝑛)))))
Assertion
Ref Expression
emcllem6 (𝐹 ⇝ γ ∧ 𝐺 ⇝ γ)
Distinct variable groups:   𝑚,𝐻   𝑚,𝑛,𝑇
Allowed substitution hints:   𝐹(𝑚,𝑛)   𝐺(𝑚,𝑛)   𝐻(𝑛)

Proof of Theorem emcllem6
Dummy variables 𝑘 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnuz 12836 . . . . 5 ℕ = (ℤ‘1)
2 1zzd 12564 . . . . 5 (⊤ → 1 ∈ ℤ)
3 oveq2 7395 . . . . . . . . . 10 (𝑛 = 𝑘 → (1 / 𝑛) = (1 / 𝑘))
43oveq2d 7403 . . . . . . . . . . 11 (𝑛 = 𝑘 → (1 + (1 / 𝑛)) = (1 + (1 / 𝑘)))
54fveq2d 6862 . . . . . . . . . 10 (𝑛 = 𝑘 → (log‘(1 + (1 / 𝑛))) = (log‘(1 + (1 / 𝑘))))
63, 5oveq12d 7405 . . . . . . . . 9 (𝑛 = 𝑘 → ((1 / 𝑛) − (log‘(1 + (1 / 𝑛)))) = ((1 / 𝑘) − (log‘(1 + (1 / 𝑘)))))
7 emcl.4 . . . . . . . . 9 𝑇 = (𝑛 ∈ ℕ ↦ ((1 / 𝑛) − (log‘(1 + (1 / 𝑛)))))
8 ovex 7420 . . . . . . . . 9 ((1 / 𝑘) − (log‘(1 + (1 / 𝑘)))) ∈ V
96, 7, 8fvmpt 6968 . . . . . . . 8 (𝑘 ∈ ℕ → (𝑇𝑘) = ((1 / 𝑘) − (log‘(1 + (1 / 𝑘)))))
109adantl 481 . . . . . . 7 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝑇𝑘) = ((1 / 𝑘) − (log‘(1 + (1 / 𝑘)))))
11 nnrecre 12228 . . . . . . . . . 10 (𝑘 ∈ ℕ → (1 / 𝑘) ∈ ℝ)
1211adantl 481 . . . . . . . . 9 ((⊤ ∧ 𝑘 ∈ ℕ) → (1 / 𝑘) ∈ ℝ)
13 1rp 12955 . . . . . . . . . . 11 1 ∈ ℝ+
14 nnrp 12963 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ → 𝑘 ∈ ℝ+)
1514rpreccld 13005 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → (1 / 𝑘) ∈ ℝ+)
1615adantl 481 . . . . . . . . . . 11 ((⊤ ∧ 𝑘 ∈ ℕ) → (1 / 𝑘) ∈ ℝ+)
17 rpaddcl 12975 . . . . . . . . . . 11 ((1 ∈ ℝ+ ∧ (1 / 𝑘) ∈ ℝ+) → (1 + (1 / 𝑘)) ∈ ℝ+)
1813, 16, 17sylancr 587 . . . . . . . . . 10 ((⊤ ∧ 𝑘 ∈ ℕ) → (1 + (1 / 𝑘)) ∈ ℝ+)
1918relogcld 26532 . . . . . . . . 9 ((⊤ ∧ 𝑘 ∈ ℕ) → (log‘(1 + (1 / 𝑘))) ∈ ℝ)
2012, 19resubcld 11606 . . . . . . . 8 ((⊤ ∧ 𝑘 ∈ ℕ) → ((1 / 𝑘) − (log‘(1 + (1 / 𝑘)))) ∈ ℝ)
2120recnd 11202 . . . . . . 7 ((⊤ ∧ 𝑘 ∈ ℕ) → ((1 / 𝑘) − (log‘(1 + (1 / 𝑘)))) ∈ ℂ)
22 emcl.1 . . . . . . . . . 10 𝐹 = (𝑛 ∈ ℕ ↦ (Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) − (log‘𝑛)))
23 emcl.2 . . . . . . . . . 10 𝐺 = (𝑛 ∈ ℕ ↦ (Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) − (log‘(𝑛 + 1))))
24 emcl.3 . . . . . . . . . 10 𝐻 = (𝑛 ∈ ℕ ↦ (log‘(1 + (1 / 𝑛))))
2522, 23, 24, 7emcllem5 26910 . . . . . . . . 9 𝐺 = seq1( + , 𝑇)
2622, 23emcllem1 26906 . . . . . . . . . . . 12 (𝐹:ℕ⟶ℝ ∧ 𝐺:ℕ⟶ℝ)
2726simpri 485 . . . . . . . . . . 11 𝐺:ℕ⟶ℝ
2827a1i 11 . . . . . . . . . 10 (⊤ → 𝐺:ℕ⟶ℝ)
2922, 23emcllem2 26907 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → ((𝐹‘(𝑘 + 1)) ≤ (𝐹𝑘) ∧ (𝐺𝑘) ≤ (𝐺‘(𝑘 + 1))))
3029simprd 495 . . . . . . . . . . 11 (𝑘 ∈ ℕ → (𝐺𝑘) ≤ (𝐺‘(𝑘 + 1)))
3130adantl 481 . . . . . . . . . 10 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝐺𝑘) ≤ (𝐺‘(𝑘 + 1)))
32 1nn 12197 . . . . . . . . . . . 12 1 ∈ ℕ
3326simpli 483 . . . . . . . . . . . . 13 𝐹:ℕ⟶ℝ
3433ffvelcdmi 7055 . . . . . . . . . . . 12 (1 ∈ ℕ → (𝐹‘1) ∈ ℝ)
3532, 34ax-mp 5 . . . . . . . . . . 11 (𝐹‘1) ∈ ℝ
3627ffvelcdmi 7055 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ → (𝐺𝑘) ∈ ℝ)
3736adantl 481 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝐺𝑘) ∈ ℝ)
3833ffvelcdmi 7055 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ → (𝐹𝑘) ∈ ℝ)
3938adantl 481 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝐹𝑘) ∈ ℝ)
4035a1i 11 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝐹‘1) ∈ ℝ)
41 fvex 6871 . . . . . . . . . . . . . . . . . . 19 (log‘(1 + (1 / 𝑘))) ∈ V
425, 24, 41fvmpt 6968 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ ℕ → (𝐻𝑘) = (log‘(1 + (1 / 𝑘))))
4342adantl 481 . . . . . . . . . . . . . . . . 17 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝐻𝑘) = (log‘(1 + (1 / 𝑘))))
4422, 23, 24emcllem3 26908 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ ℕ → (𝐻𝑘) = ((𝐹𝑘) − (𝐺𝑘)))
4544adantl 481 . . . . . . . . . . . . . . . . 17 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝐻𝑘) = ((𝐹𝑘) − (𝐺𝑘)))
4643, 45eqtr3d 2766 . . . . . . . . . . . . . . . 16 ((⊤ ∧ 𝑘 ∈ ℕ) → (log‘(1 + (1 / 𝑘))) = ((𝐹𝑘) − (𝐺𝑘)))
47 1re 11174 . . . . . . . . . . . . . . . . . 18 1 ∈ ℝ
48 readdcl 11151 . . . . . . . . . . . . . . . . . 18 ((1 ∈ ℝ ∧ (1 / 𝑘) ∈ ℝ) → (1 + (1 / 𝑘)) ∈ ℝ)
4947, 12, 48sylancr 587 . . . . . . . . . . . . . . . . 17 ((⊤ ∧ 𝑘 ∈ ℕ) → (1 + (1 / 𝑘)) ∈ ℝ)
50 ltaddrp 12990 . . . . . . . . . . . . . . . . . 18 ((1 ∈ ℝ ∧ (1 / 𝑘) ∈ ℝ+) → 1 < (1 + (1 / 𝑘)))
5147, 16, 50sylancr 587 . . . . . . . . . . . . . . . . 17 ((⊤ ∧ 𝑘 ∈ ℕ) → 1 < (1 + (1 / 𝑘)))
5249, 51rplogcld 26538 . . . . . . . . . . . . . . . 16 ((⊤ ∧ 𝑘 ∈ ℕ) → (log‘(1 + (1 / 𝑘))) ∈ ℝ+)
5346, 52eqeltrrd 2829 . . . . . . . . . . . . . . 15 ((⊤ ∧ 𝑘 ∈ ℕ) → ((𝐹𝑘) − (𝐺𝑘)) ∈ ℝ+)
5453rpge0d 12999 . . . . . . . . . . . . . 14 ((⊤ ∧ 𝑘 ∈ ℕ) → 0 ≤ ((𝐹𝑘) − (𝐺𝑘)))
5539, 37subge0d 11768 . . . . . . . . . . . . . 14 ((⊤ ∧ 𝑘 ∈ ℕ) → (0 ≤ ((𝐹𝑘) − (𝐺𝑘)) ↔ (𝐺𝑘) ≤ (𝐹𝑘)))
5654, 55mpbid 232 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝐺𝑘) ≤ (𝐹𝑘))
57 fveq2 6858 . . . . . . . . . . . . . . . 16 (𝑥 = 1 → (𝐹𝑥) = (𝐹‘1))
5857breq1d 5117 . . . . . . . . . . . . . . 15 (𝑥 = 1 → ((𝐹𝑥) ≤ (𝐹‘1) ↔ (𝐹‘1) ≤ (𝐹‘1)))
59 fveq2 6858 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑘 → (𝐹𝑥) = (𝐹𝑘))
6059breq1d 5117 . . . . . . . . . . . . . . 15 (𝑥 = 𝑘 → ((𝐹𝑥) ≤ (𝐹‘1) ↔ (𝐹𝑘) ≤ (𝐹‘1)))
61 fveq2 6858 . . . . . . . . . . . . . . . 16 (𝑥 = (𝑘 + 1) → (𝐹𝑥) = (𝐹‘(𝑘 + 1)))
6261breq1d 5117 . . . . . . . . . . . . . . 15 (𝑥 = (𝑘 + 1) → ((𝐹𝑥) ≤ (𝐹‘1) ↔ (𝐹‘(𝑘 + 1)) ≤ (𝐹‘1)))
6335leidi 11712 . . . . . . . . . . . . . . 15 (𝐹‘1) ≤ (𝐹‘1)
6429simpld 494 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℕ → (𝐹‘(𝑘 + 1)) ≤ (𝐹𝑘))
65 peano2nn 12198 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ ℕ → (𝑘 + 1) ∈ ℕ)
6633ffvelcdmi 7055 . . . . . . . . . . . . . . . . . 18 ((𝑘 + 1) ∈ ℕ → (𝐹‘(𝑘 + 1)) ∈ ℝ)
6765, 66syl 17 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ ℕ → (𝐹‘(𝑘 + 1)) ∈ ℝ)
6835a1i 11 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ ℕ → (𝐹‘1) ∈ ℝ)
69 letr 11268 . . . . . . . . . . . . . . . . 17 (((𝐹‘(𝑘 + 1)) ∈ ℝ ∧ (𝐹𝑘) ∈ ℝ ∧ (𝐹‘1) ∈ ℝ) → (((𝐹‘(𝑘 + 1)) ≤ (𝐹𝑘) ∧ (𝐹𝑘) ≤ (𝐹‘1)) → (𝐹‘(𝑘 + 1)) ≤ (𝐹‘1)))
7067, 38, 68, 69syl3anc 1373 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℕ → (((𝐹‘(𝑘 + 1)) ≤ (𝐹𝑘) ∧ (𝐹𝑘) ≤ (𝐹‘1)) → (𝐹‘(𝑘 + 1)) ≤ (𝐹‘1)))
7164, 70mpand 695 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℕ → ((𝐹𝑘) ≤ (𝐹‘1) → (𝐹‘(𝑘 + 1)) ≤ (𝐹‘1)))
7258, 60, 62, 60, 63, 71nnind 12204 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ → (𝐹𝑘) ≤ (𝐹‘1))
7372adantl 481 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝐹𝑘) ≤ (𝐹‘1))
7437, 39, 40, 56, 73letrd 11331 . . . . . . . . . . . 12 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝐺𝑘) ≤ (𝐹‘1))
7574ralrimiva 3125 . . . . . . . . . . 11 (⊤ → ∀𝑘 ∈ ℕ (𝐺𝑘) ≤ (𝐹‘1))
76 brralrspcev 5167 . . . . . . . . . . 11 (((𝐹‘1) ∈ ℝ ∧ ∀𝑘 ∈ ℕ (𝐺𝑘) ≤ (𝐹‘1)) → ∃𝑥 ∈ ℝ ∀𝑘 ∈ ℕ (𝐺𝑘) ≤ 𝑥)
7735, 75, 76sylancr 587 . . . . . . . . . 10 (⊤ → ∃𝑥 ∈ ℝ ∀𝑘 ∈ ℕ (𝐺𝑘) ≤ 𝑥)
781, 2, 28, 31, 77climsup 15636 . . . . . . . . 9 (⊤ → 𝐺 ⇝ sup(ran 𝐺, ℝ, < ))
7925, 78eqbrtrrid 5143 . . . . . . . 8 (⊤ → seq1( + , 𝑇) ⇝ sup(ran 𝐺, ℝ, < ))
80 climrel 15458 . . . . . . . . 9 Rel ⇝
8180releldmi 5912 . . . . . . . 8 (seq1( + , 𝑇) ⇝ sup(ran 𝐺, ℝ, < ) → seq1( + , 𝑇) ∈ dom ⇝ )
8279, 81syl 17 . . . . . . 7 (⊤ → seq1( + , 𝑇) ∈ dom ⇝ )
831, 2, 10, 21, 82isumclim2 15724 . . . . . 6 (⊤ → seq1( + , 𝑇) ⇝ Σ𝑘 ∈ ℕ ((1 / 𝑘) − (log‘(1 + (1 / 𝑘)))))
84 df-em 26903 . . . . . 6 γ = Σ𝑘 ∈ ℕ ((1 / 𝑘) − (log‘(1 + (1 / 𝑘))))
8583, 25, 843brtr4g 5141 . . . . 5 (⊤ → 𝐺 ⇝ γ)
86 nnex 12192 . . . . . . . 8 ℕ ∈ V
8786mptex 7197 . . . . . . 7 (𝑛 ∈ ℕ ↦ (Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) − (log‘𝑛))) ∈ V
8822, 87eqeltri 2824 . . . . . 6 𝐹 ∈ V
8988a1i 11 . . . . 5 (⊤ → 𝐹 ∈ V)
9022, 23, 24emcllem4 26909 . . . . . 6 𝐻 ⇝ 0
9190a1i 11 . . . . 5 (⊤ → 𝐻 ⇝ 0)
9237recnd 11202 . . . . 5 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝐺𝑘) ∈ ℂ)
9339, 37resubcld 11606 . . . . . . 7 ((⊤ ∧ 𝑘 ∈ ℕ) → ((𝐹𝑘) − (𝐺𝑘)) ∈ ℝ)
9445, 93eqeltrd 2828 . . . . . 6 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝐻𝑘) ∈ ℝ)
9594recnd 11202 . . . . 5 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝐻𝑘) ∈ ℂ)
9645oveq2d 7403 . . . . . 6 ((⊤ ∧ 𝑘 ∈ ℕ) → ((𝐺𝑘) + (𝐻𝑘)) = ((𝐺𝑘) + ((𝐹𝑘) − (𝐺𝑘))))
9739recnd 11202 . . . . . . 7 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝐹𝑘) ∈ ℂ)
9892, 97pncan3d 11536 . . . . . 6 ((⊤ ∧ 𝑘 ∈ ℕ) → ((𝐺𝑘) + ((𝐹𝑘) − (𝐺𝑘))) = (𝐹𝑘))
9996, 98eqtr2d 2765 . . . . 5 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝐹𝑘) = ((𝐺𝑘) + (𝐻𝑘)))
1001, 2, 85, 89, 91, 92, 95, 99climadd 15598 . . . 4 (⊤ → 𝐹 ⇝ (γ + 0))
10185mptru 1547 . . . . . 6 𝐺 ⇝ γ
102 climcl 15465 . . . . . 6 (𝐺 ⇝ γ → γ ∈ ℂ)
103101, 102ax-mp 5 . . . . 5 γ ∈ ℂ
104103addridi 11361 . . . 4 (γ + 0) = γ
105100, 104breqtrdi 5148 . . 3 (⊤ → 𝐹 ⇝ γ)
106105mptru 1547 . 2 𝐹 ⇝ γ
107106, 101pm3.2i 470 1 (𝐹 ⇝ γ ∧ 𝐺 ⇝ γ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wtru 1541  wcel 2109  wral 3044  wrex 3053  Vcvv 3447   class class class wbr 5107  cmpt 5188  dom cdm 5638  ran crn 5639  wf 6507  cfv 6511  (class class class)co 7387  supcsup 9391  cc 11066  cr 11067  0cc0 11068  1c1 11069   + caddc 11071   < clt 11208  cle 11209  cmin 11405   / cdiv 11835  cn 12186  +crp 12951  ...cfz 13468  seqcseq 13966  cli 15450  Σcsu 15652  logclog 26463  γcem 26902
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146  ax-addf 11147
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-er 8671  df-map 8801  df-pm 8802  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-fi 9362  df-sup 9393  df-inf 9394  df-oi 9463  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-q 12908  df-rp 12952  df-xneg 13072  df-xadd 13073  df-xmul 13074  df-ioo 13310  df-ioc 13311  df-ico 13312  df-icc 13313  df-fz 13469  df-fzo 13616  df-fl 13754  df-mod 13832  df-seq 13967  df-exp 14027  df-fac 14239  df-bc 14268  df-hash 14296  df-shft 15033  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-limsup 15437  df-clim 15454  df-rlim 15455  df-sum 15653  df-ef 16033  df-sin 16035  df-cos 16036  df-pi 16038  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-starv 17235  df-sca 17236  df-vsca 17237  df-ip 17238  df-tset 17239  df-ple 17240  df-ds 17242  df-unif 17243  df-hom 17244  df-cco 17245  df-rest 17385  df-topn 17386  df-0g 17404  df-gsum 17405  df-topgen 17406  df-pt 17407  df-prds 17410  df-xrs 17465  df-qtop 17470  df-imas 17471  df-xps 17473  df-mre 17547  df-mrc 17548  df-acs 17550  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-submnd 18711  df-mulg 19000  df-cntz 19249  df-cmn 19712  df-psmet 21256  df-xmet 21257  df-met 21258  df-bl 21259  df-mopn 21260  df-fbas 21261  df-fg 21262  df-cnfld 21265  df-top 22781  df-topon 22798  df-topsp 22820  df-bases 22833  df-cld 22906  df-ntr 22907  df-cls 22908  df-nei 22985  df-lp 23023  df-perf 23024  df-cn 23114  df-cnp 23115  df-haus 23202  df-tx 23449  df-hmeo 23642  df-fil 23733  df-fm 23825  df-flim 23826  df-flf 23827  df-xms 24208  df-ms 24209  df-tms 24210  df-cncf 24771  df-limc 25767  df-dv 25768  df-log 26465  df-em 26903
This theorem is referenced by:  emcllem7  26912
  Copyright terms: Public domain W3C validator