![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > logdifbnd | Structured version Visualization version GIF version |
Description: Bound on the difference of logs. (Contributed by Mario Carneiro, 23-May-2016.) |
Ref | Expression |
---|---|
logdifbnd | ⊢ (𝐴 ∈ ℝ+ → ((log‘(𝐴 + 1)) − (log‘𝐴)) ≤ (1 / 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rpcn 12210 | . . . . . 6 ⊢ (𝐴 ∈ ℝ+ → 𝐴 ∈ ℂ) | |
2 | 1cnd 10428 | . . . . . 6 ⊢ (𝐴 ∈ ℝ+ → 1 ∈ ℂ) | |
3 | rpne0 12216 | . . . . . 6 ⊢ (𝐴 ∈ ℝ+ → 𝐴 ≠ 0) | |
4 | 1, 2, 1, 3 | divdird 11249 | . . . . 5 ⊢ (𝐴 ∈ ℝ+ → ((𝐴 + 1) / 𝐴) = ((𝐴 / 𝐴) + (1 / 𝐴))) |
5 | 1, 3 | dividd 11209 | . . . . . 6 ⊢ (𝐴 ∈ ℝ+ → (𝐴 / 𝐴) = 1) |
6 | 5 | oveq1d 6985 | . . . . 5 ⊢ (𝐴 ∈ ℝ+ → ((𝐴 / 𝐴) + (1 / 𝐴)) = (1 + (1 / 𝐴))) |
7 | 4, 6 | eqtr2d 2809 | . . . 4 ⊢ (𝐴 ∈ ℝ+ → (1 + (1 / 𝐴)) = ((𝐴 + 1) / 𝐴)) |
8 | 7 | fveq2d 6497 | . . 3 ⊢ (𝐴 ∈ ℝ+ → (log‘(1 + (1 / 𝐴))) = (log‘((𝐴 + 1) / 𝐴))) |
9 | 1rp 12202 | . . . . 5 ⊢ 1 ∈ ℝ+ | |
10 | rpaddcl 12222 | . . . . 5 ⊢ ((𝐴 ∈ ℝ+ ∧ 1 ∈ ℝ+) → (𝐴 + 1) ∈ ℝ+) | |
11 | 9, 10 | mpan2 678 | . . . 4 ⊢ (𝐴 ∈ ℝ+ → (𝐴 + 1) ∈ ℝ+) |
12 | relogdiv 24871 | . . . 4 ⊢ (((𝐴 + 1) ∈ ℝ+ ∧ 𝐴 ∈ ℝ+) → (log‘((𝐴 + 1) / 𝐴)) = ((log‘(𝐴 + 1)) − (log‘𝐴))) | |
13 | 11, 12 | mpancom 675 | . . 3 ⊢ (𝐴 ∈ ℝ+ → (log‘((𝐴 + 1) / 𝐴)) = ((log‘(𝐴 + 1)) − (log‘𝐴))) |
14 | 8, 13 | eqtrd 2808 | . 2 ⊢ (𝐴 ∈ ℝ+ → (log‘(1 + (1 / 𝐴))) = ((log‘(𝐴 + 1)) − (log‘𝐴))) |
15 | rpreccl 12226 | . . . . . 6 ⊢ (𝐴 ∈ ℝ+ → (1 / 𝐴) ∈ ℝ+) | |
16 | rpaddcl 12222 | . . . . . 6 ⊢ ((1 ∈ ℝ+ ∧ (1 / 𝐴) ∈ ℝ+) → (1 + (1 / 𝐴)) ∈ ℝ+) | |
17 | 9, 15, 16 | sylancr 578 | . . . . 5 ⊢ (𝐴 ∈ ℝ+ → (1 + (1 / 𝐴)) ∈ ℝ+) |
18 | 17 | reeflogd 24902 | . . . 4 ⊢ (𝐴 ∈ ℝ+ → (exp‘(log‘(1 + (1 / 𝐴)))) = (1 + (1 / 𝐴))) |
19 | 17 | rpred 12242 | . . . . 5 ⊢ (𝐴 ∈ ℝ+ → (1 + (1 / 𝐴)) ∈ ℝ) |
20 | 15 | rpred 12242 | . . . . . 6 ⊢ (𝐴 ∈ ℝ+ → (1 / 𝐴) ∈ ℝ) |
21 | 20 | reefcld 15295 | . . . . 5 ⊢ (𝐴 ∈ ℝ+ → (exp‘(1 / 𝐴)) ∈ ℝ) |
22 | efgt1p 15322 | . . . . . 6 ⊢ ((1 / 𝐴) ∈ ℝ+ → (1 + (1 / 𝐴)) < (exp‘(1 / 𝐴))) | |
23 | 15, 22 | syl 17 | . . . . 5 ⊢ (𝐴 ∈ ℝ+ → (1 + (1 / 𝐴)) < (exp‘(1 / 𝐴))) |
24 | 19, 21, 23 | ltled 10582 | . . . 4 ⊢ (𝐴 ∈ ℝ+ → (1 + (1 / 𝐴)) ≤ (exp‘(1 / 𝐴))) |
25 | 18, 24 | eqbrtrd 4945 | . . 3 ⊢ (𝐴 ∈ ℝ+ → (exp‘(log‘(1 + (1 / 𝐴)))) ≤ (exp‘(1 / 𝐴))) |
26 | relogcl 24854 | . . . . . . 7 ⊢ ((𝐴 + 1) ∈ ℝ+ → (log‘(𝐴 + 1)) ∈ ℝ) | |
27 | 11, 26 | syl 17 | . . . . . 6 ⊢ (𝐴 ∈ ℝ+ → (log‘(𝐴 + 1)) ∈ ℝ) |
28 | relogcl 24854 | . . . . . 6 ⊢ (𝐴 ∈ ℝ+ → (log‘𝐴) ∈ ℝ) | |
29 | 27, 28 | resubcld 10863 | . . . . 5 ⊢ (𝐴 ∈ ℝ+ → ((log‘(𝐴 + 1)) − (log‘𝐴)) ∈ ℝ) |
30 | 14, 29 | eqeltrd 2860 | . . . 4 ⊢ (𝐴 ∈ ℝ+ → (log‘(1 + (1 / 𝐴))) ∈ ℝ) |
31 | efle 15325 | . . . 4 ⊢ (((log‘(1 + (1 / 𝐴))) ∈ ℝ ∧ (1 / 𝐴) ∈ ℝ) → ((log‘(1 + (1 / 𝐴))) ≤ (1 / 𝐴) ↔ (exp‘(log‘(1 + (1 / 𝐴)))) ≤ (exp‘(1 / 𝐴)))) | |
32 | 30, 20, 31 | syl2anc 576 | . . 3 ⊢ (𝐴 ∈ ℝ+ → ((log‘(1 + (1 / 𝐴))) ≤ (1 / 𝐴) ↔ (exp‘(log‘(1 + (1 / 𝐴)))) ≤ (exp‘(1 / 𝐴)))) |
33 | 25, 32 | mpbird 249 | . 2 ⊢ (𝐴 ∈ ℝ+ → (log‘(1 + (1 / 𝐴))) ≤ (1 / 𝐴)) |
34 | 14, 33 | eqbrtrrd 4947 | 1 ⊢ (𝐴 ∈ ℝ+ → ((log‘(𝐴 + 1)) − (log‘𝐴)) ≤ (1 / 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 = wceq 1507 ∈ wcel 2050 class class class wbr 4923 ‘cfv 6182 (class class class)co 6970 ℝcr 10328 1c1 10330 + caddc 10332 < clt 10468 ≤ cle 10469 − cmin 10664 / cdiv 11092 ℝ+crp 12198 expce 15269 logclog 24833 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-13 2301 ax-ext 2744 ax-rep 5043 ax-sep 5054 ax-nul 5061 ax-pow 5113 ax-pr 5180 ax-un 7273 ax-inf2 8892 ax-cnex 10385 ax-resscn 10386 ax-1cn 10387 ax-icn 10388 ax-addcl 10389 ax-addrcl 10390 ax-mulcl 10391 ax-mulrcl 10392 ax-mulcom 10393 ax-addass 10394 ax-mulass 10395 ax-distr 10396 ax-i2m1 10397 ax-1ne0 10398 ax-1rid 10399 ax-rnegex 10400 ax-rrecex 10401 ax-cnre 10402 ax-pre-lttri 10403 ax-pre-lttrn 10404 ax-pre-ltadd 10405 ax-pre-mulgt0 10406 ax-pre-sup 10407 ax-addf 10408 ax-mulf 10409 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3or 1069 df-3an 1070 df-tru 1510 df-fal 1520 df-ex 1743 df-nf 1747 df-sb 2016 df-mo 2547 df-eu 2584 df-clab 2753 df-cleq 2765 df-clel 2840 df-nfc 2912 df-ne 2962 df-nel 3068 df-ral 3087 df-rex 3088 df-reu 3089 df-rmo 3090 df-rab 3091 df-v 3411 df-sbc 3676 df-csb 3781 df-dif 3826 df-un 3828 df-in 3830 df-ss 3837 df-pss 3839 df-nul 4173 df-if 4345 df-pw 4418 df-sn 4436 df-pr 4438 df-tp 4440 df-op 4442 df-uni 4707 df-int 4744 df-iun 4788 df-iin 4789 df-br 4924 df-opab 4986 df-mpt 5003 df-tr 5025 df-id 5306 df-eprel 5311 df-po 5320 df-so 5321 df-fr 5360 df-se 5361 df-we 5362 df-xp 5407 df-rel 5408 df-cnv 5409 df-co 5410 df-dm 5411 df-rn 5412 df-res 5413 df-ima 5414 df-pred 5980 df-ord 6026 df-on 6027 df-lim 6028 df-suc 6029 df-iota 6146 df-fun 6184 df-fn 6185 df-f 6186 df-f1 6187 df-fo 6188 df-f1o 6189 df-fv 6190 df-isom 6191 df-riota 6931 df-ov 6973 df-oprab 6974 df-mpo 6975 df-of 7221 df-om 7391 df-1st 7495 df-2nd 7496 df-supp 7628 df-wrecs 7744 df-recs 7806 df-rdg 7844 df-1o 7899 df-2o 7900 df-oadd 7903 df-er 8083 df-map 8202 df-pm 8203 df-ixp 8254 df-en 8301 df-dom 8302 df-sdom 8303 df-fin 8304 df-fsupp 8623 df-fi 8664 df-sup 8695 df-inf 8696 df-oi 8763 df-card 9156 df-cda 9382 df-pnf 10470 df-mnf 10471 df-xr 10472 df-ltxr 10473 df-le 10474 df-sub 10666 df-neg 10667 df-div 11093 df-nn 11434 df-2 11497 df-3 11498 df-4 11499 df-5 11500 df-6 11501 df-7 11502 df-8 11503 df-9 11504 df-n0 11702 df-z 11788 df-dec 11906 df-uz 12053 df-q 12157 df-rp 12199 df-xneg 12318 df-xadd 12319 df-xmul 12320 df-ioo 12552 df-ioc 12553 df-ico 12554 df-icc 12555 df-fz 12703 df-fzo 12844 df-fl 12971 df-mod 13047 df-seq 13179 df-exp 13239 df-fac 13443 df-bc 13472 df-hash 13500 df-shft 14281 df-cj 14313 df-re 14314 df-im 14315 df-sqrt 14449 df-abs 14450 df-limsup 14683 df-clim 14700 df-rlim 14701 df-sum 14898 df-ef 15275 df-sin 15277 df-cos 15278 df-pi 15280 df-struct 16335 df-ndx 16336 df-slot 16337 df-base 16339 df-sets 16340 df-ress 16341 df-plusg 16428 df-mulr 16429 df-starv 16430 df-sca 16431 df-vsca 16432 df-ip 16433 df-tset 16434 df-ple 16435 df-ds 16437 df-unif 16438 df-hom 16439 df-cco 16440 df-rest 16546 df-topn 16547 df-0g 16565 df-gsum 16566 df-topgen 16567 df-pt 16568 df-prds 16571 df-xrs 16625 df-qtop 16630 df-imas 16631 df-xps 16633 df-mre 16709 df-mrc 16710 df-acs 16712 df-mgm 17704 df-sgrp 17746 df-mnd 17757 df-submnd 17798 df-mulg 18006 df-cntz 18212 df-cmn 18662 df-psmet 20233 df-xmet 20234 df-met 20235 df-bl 20236 df-mopn 20237 df-fbas 20238 df-fg 20239 df-cnfld 20242 df-top 21200 df-topon 21217 df-topsp 21239 df-bases 21252 df-cld 21325 df-ntr 21326 df-cls 21327 df-nei 21404 df-lp 21442 df-perf 21443 df-cn 21533 df-cnp 21534 df-haus 21621 df-tx 21868 df-hmeo 22061 df-fil 22152 df-fm 22244 df-flim 22245 df-flf 22246 df-xms 22627 df-ms 22628 df-tms 22629 df-cncf 23183 df-limc 24161 df-dv 24162 df-log 24835 |
This theorem is referenced by: emcllem2 25270 lgamgulmlem3 25304 selberg2lem 25822 pntrlog2bndlem5 25853 |
Copyright terms: Public domain | W3C validator |