Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > logdifbnd | Structured version Visualization version GIF version |
Description: Bound on the difference of logs. (Contributed by Mario Carneiro, 23-May-2016.) |
Ref | Expression |
---|---|
logdifbnd | ⊢ (𝐴 ∈ ℝ+ → ((log‘(𝐴 + 1)) − (log‘𝐴)) ≤ (1 / 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rpcn 12846 | . . . . . 6 ⊢ (𝐴 ∈ ℝ+ → 𝐴 ∈ ℂ) | |
2 | 1cnd 11076 | . . . . . 6 ⊢ (𝐴 ∈ ℝ+ → 1 ∈ ℂ) | |
3 | rpne0 12852 | . . . . . 6 ⊢ (𝐴 ∈ ℝ+ → 𝐴 ≠ 0) | |
4 | 1, 2, 1, 3 | divdird 11895 | . . . . 5 ⊢ (𝐴 ∈ ℝ+ → ((𝐴 + 1) / 𝐴) = ((𝐴 / 𝐴) + (1 / 𝐴))) |
5 | 1, 3 | dividd 11855 | . . . . . 6 ⊢ (𝐴 ∈ ℝ+ → (𝐴 / 𝐴) = 1) |
6 | 5 | oveq1d 7357 | . . . . 5 ⊢ (𝐴 ∈ ℝ+ → ((𝐴 / 𝐴) + (1 / 𝐴)) = (1 + (1 / 𝐴))) |
7 | 4, 6 | eqtr2d 2778 | . . . 4 ⊢ (𝐴 ∈ ℝ+ → (1 + (1 / 𝐴)) = ((𝐴 + 1) / 𝐴)) |
8 | 7 | fveq2d 6834 | . . 3 ⊢ (𝐴 ∈ ℝ+ → (log‘(1 + (1 / 𝐴))) = (log‘((𝐴 + 1) / 𝐴))) |
9 | 1rp 12840 | . . . . 5 ⊢ 1 ∈ ℝ+ | |
10 | rpaddcl 12858 | . . . . 5 ⊢ ((𝐴 ∈ ℝ+ ∧ 1 ∈ ℝ+) → (𝐴 + 1) ∈ ℝ+) | |
11 | 9, 10 | mpan2 689 | . . . 4 ⊢ (𝐴 ∈ ℝ+ → (𝐴 + 1) ∈ ℝ+) |
12 | relogdiv 25854 | . . . 4 ⊢ (((𝐴 + 1) ∈ ℝ+ ∧ 𝐴 ∈ ℝ+) → (log‘((𝐴 + 1) / 𝐴)) = ((log‘(𝐴 + 1)) − (log‘𝐴))) | |
13 | 11, 12 | mpancom 686 | . . 3 ⊢ (𝐴 ∈ ℝ+ → (log‘((𝐴 + 1) / 𝐴)) = ((log‘(𝐴 + 1)) − (log‘𝐴))) |
14 | 8, 13 | eqtrd 2777 | . 2 ⊢ (𝐴 ∈ ℝ+ → (log‘(1 + (1 / 𝐴))) = ((log‘(𝐴 + 1)) − (log‘𝐴))) |
15 | rpreccl 12862 | . . . . . 6 ⊢ (𝐴 ∈ ℝ+ → (1 / 𝐴) ∈ ℝ+) | |
16 | rpaddcl 12858 | . . . . . 6 ⊢ ((1 ∈ ℝ+ ∧ (1 / 𝐴) ∈ ℝ+) → (1 + (1 / 𝐴)) ∈ ℝ+) | |
17 | 9, 15, 16 | sylancr 588 | . . . . 5 ⊢ (𝐴 ∈ ℝ+ → (1 + (1 / 𝐴)) ∈ ℝ+) |
18 | 17 | reeflogd 25885 | . . . 4 ⊢ (𝐴 ∈ ℝ+ → (exp‘(log‘(1 + (1 / 𝐴)))) = (1 + (1 / 𝐴))) |
19 | 17 | rpred 12878 | . . . . 5 ⊢ (𝐴 ∈ ℝ+ → (1 + (1 / 𝐴)) ∈ ℝ) |
20 | 15 | rpred 12878 | . . . . . 6 ⊢ (𝐴 ∈ ℝ+ → (1 / 𝐴) ∈ ℝ) |
21 | 20 | reefcld 15897 | . . . . 5 ⊢ (𝐴 ∈ ℝ+ → (exp‘(1 / 𝐴)) ∈ ℝ) |
22 | efgt1p 15924 | . . . . . 6 ⊢ ((1 / 𝐴) ∈ ℝ+ → (1 + (1 / 𝐴)) < (exp‘(1 / 𝐴))) | |
23 | 15, 22 | syl 17 | . . . . 5 ⊢ (𝐴 ∈ ℝ+ → (1 + (1 / 𝐴)) < (exp‘(1 / 𝐴))) |
24 | 19, 21, 23 | ltled 11229 | . . . 4 ⊢ (𝐴 ∈ ℝ+ → (1 + (1 / 𝐴)) ≤ (exp‘(1 / 𝐴))) |
25 | 18, 24 | eqbrtrd 5119 | . . 3 ⊢ (𝐴 ∈ ℝ+ → (exp‘(log‘(1 + (1 / 𝐴)))) ≤ (exp‘(1 / 𝐴))) |
26 | relogcl 25837 | . . . . . . 7 ⊢ ((𝐴 + 1) ∈ ℝ+ → (log‘(𝐴 + 1)) ∈ ℝ) | |
27 | 11, 26 | syl 17 | . . . . . 6 ⊢ (𝐴 ∈ ℝ+ → (log‘(𝐴 + 1)) ∈ ℝ) |
28 | relogcl 25837 | . . . . . 6 ⊢ (𝐴 ∈ ℝ+ → (log‘𝐴) ∈ ℝ) | |
29 | 27, 28 | resubcld 11509 | . . . . 5 ⊢ (𝐴 ∈ ℝ+ → ((log‘(𝐴 + 1)) − (log‘𝐴)) ∈ ℝ) |
30 | 14, 29 | eqeltrd 2838 | . . . 4 ⊢ (𝐴 ∈ ℝ+ → (log‘(1 + (1 / 𝐴))) ∈ ℝ) |
31 | efle 15927 | . . . 4 ⊢ (((log‘(1 + (1 / 𝐴))) ∈ ℝ ∧ (1 / 𝐴) ∈ ℝ) → ((log‘(1 + (1 / 𝐴))) ≤ (1 / 𝐴) ↔ (exp‘(log‘(1 + (1 / 𝐴)))) ≤ (exp‘(1 / 𝐴)))) | |
32 | 30, 20, 31 | syl2anc 585 | . . 3 ⊢ (𝐴 ∈ ℝ+ → ((log‘(1 + (1 / 𝐴))) ≤ (1 / 𝐴) ↔ (exp‘(log‘(1 + (1 / 𝐴)))) ≤ (exp‘(1 / 𝐴)))) |
33 | 25, 32 | mpbird 257 | . 2 ⊢ (𝐴 ∈ ℝ+ → (log‘(1 + (1 / 𝐴))) ≤ (1 / 𝐴)) |
34 | 14, 33 | eqbrtrrd 5121 | 1 ⊢ (𝐴 ∈ ℝ+ → ((log‘(𝐴 + 1)) − (log‘𝐴)) ≤ (1 / 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1541 ∈ wcel 2106 class class class wbr 5097 ‘cfv 6484 (class class class)co 7342 ℝcr 10976 1c1 10978 + caddc 10980 < clt 11115 ≤ cle 11116 − cmin 11311 / cdiv 11738 ℝ+crp 12836 expce 15871 logclog 25816 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-rep 5234 ax-sep 5248 ax-nul 5255 ax-pow 5313 ax-pr 5377 ax-un 7655 ax-inf2 9503 ax-cnex 11033 ax-resscn 11034 ax-1cn 11035 ax-icn 11036 ax-addcl 11037 ax-addrcl 11038 ax-mulcl 11039 ax-mulrcl 11040 ax-mulcom 11041 ax-addass 11042 ax-mulass 11043 ax-distr 11044 ax-i2m1 11045 ax-1ne0 11046 ax-1rid 11047 ax-rnegex 11048 ax-rrecex 11049 ax-cnre 11050 ax-pre-lttri 11051 ax-pre-lttrn 11052 ax-pre-ltadd 11053 ax-pre-mulgt0 11054 ax-pre-sup 11055 ax-addf 11056 ax-mulf 11057 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3350 df-reu 3351 df-rab 3405 df-v 3444 df-sbc 3732 df-csb 3848 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3921 df-nul 4275 df-if 4479 df-pw 4554 df-sn 4579 df-pr 4581 df-tp 4583 df-op 4585 df-uni 4858 df-int 4900 df-iun 4948 df-iin 4949 df-br 5098 df-opab 5160 df-mpt 5181 df-tr 5215 df-id 5523 df-eprel 5529 df-po 5537 df-so 5538 df-fr 5580 df-se 5581 df-we 5582 df-xp 5631 df-rel 5632 df-cnv 5633 df-co 5634 df-dm 5635 df-rn 5636 df-res 5637 df-ima 5638 df-pred 6243 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6436 df-fun 6486 df-fn 6487 df-f 6488 df-f1 6489 df-fo 6490 df-f1o 6491 df-fv 6492 df-isom 6493 df-riota 7298 df-ov 7345 df-oprab 7346 df-mpo 7347 df-of 7600 df-om 7786 df-1st 7904 df-2nd 7905 df-supp 8053 df-frecs 8172 df-wrecs 8203 df-recs 8277 df-rdg 8316 df-1o 8372 df-2o 8373 df-er 8574 df-map 8693 df-pm 8694 df-ixp 8762 df-en 8810 df-dom 8811 df-sdom 8812 df-fin 8813 df-fsupp 9232 df-fi 9273 df-sup 9304 df-inf 9305 df-oi 9372 df-card 9801 df-pnf 11117 df-mnf 11118 df-xr 11119 df-ltxr 11120 df-le 11121 df-sub 11313 df-neg 11314 df-div 11739 df-nn 12080 df-2 12142 df-3 12143 df-4 12144 df-5 12145 df-6 12146 df-7 12147 df-8 12148 df-9 12149 df-n0 12340 df-z 12426 df-dec 12544 df-uz 12689 df-q 12795 df-rp 12837 df-xneg 12954 df-xadd 12955 df-xmul 12956 df-ioo 13189 df-ioc 13190 df-ico 13191 df-icc 13192 df-fz 13346 df-fzo 13489 df-fl 13618 df-mod 13696 df-seq 13828 df-exp 13889 df-fac 14094 df-bc 14123 df-hash 14151 df-shft 14878 df-cj 14910 df-re 14911 df-im 14912 df-sqrt 15046 df-abs 15047 df-limsup 15280 df-clim 15297 df-rlim 15298 df-sum 15498 df-ef 15877 df-sin 15879 df-cos 15880 df-pi 15882 df-struct 16946 df-sets 16963 df-slot 16981 df-ndx 16993 df-base 17011 df-ress 17040 df-plusg 17073 df-mulr 17074 df-starv 17075 df-sca 17076 df-vsca 17077 df-ip 17078 df-tset 17079 df-ple 17080 df-ds 17082 df-unif 17083 df-hom 17084 df-cco 17085 df-rest 17231 df-topn 17232 df-0g 17250 df-gsum 17251 df-topgen 17252 df-pt 17253 df-prds 17256 df-xrs 17311 df-qtop 17316 df-imas 17317 df-xps 17319 df-mre 17393 df-mrc 17394 df-acs 17396 df-mgm 18424 df-sgrp 18473 df-mnd 18484 df-submnd 18529 df-mulg 18798 df-cntz 19020 df-cmn 19484 df-psmet 20695 df-xmet 20696 df-met 20697 df-bl 20698 df-mopn 20699 df-fbas 20700 df-fg 20701 df-cnfld 20704 df-top 22149 df-topon 22166 df-topsp 22188 df-bases 22202 df-cld 22276 df-ntr 22277 df-cls 22278 df-nei 22355 df-lp 22393 df-perf 22394 df-cn 22484 df-cnp 22485 df-haus 22572 df-tx 22819 df-hmeo 23012 df-fil 23103 df-fm 23195 df-flim 23196 df-flf 23197 df-xms 23579 df-ms 23580 df-tms 23581 df-cncf 24147 df-limc 25136 df-dv 25137 df-log 25818 |
This theorem is referenced by: emcllem2 26252 lgamgulmlem3 26286 selberg2lem 26804 pntrlog2bndlem5 26835 |
Copyright terms: Public domain | W3C validator |