Step | Hyp | Ref
| Expression |
1 | | simpr 483 |
. . 3
⊢ ((𝜑 ∧ 𝑅 ∈ V) → 𝑅 ∈ V) |
2 | | rlocval.1 |
. . . . . 6
⊢ 𝐵 = (Base‘𝑅) |
3 | 2 | fvexi 6910 |
. . . . 5
⊢ 𝐵 ∈ V |
4 | 3 | a1i 11 |
. . . 4
⊢ ((𝜑 ∧ 𝑅 ∈ V) → 𝐵 ∈ V) |
5 | | erlval.20 |
. . . . 5
⊢ (𝜑 → 𝑆 ⊆ 𝐵) |
6 | 5 | adantr 479 |
. . . 4
⊢ ((𝜑 ∧ 𝑅 ∈ V) → 𝑆 ⊆ 𝐵) |
7 | 4, 6 | ssexd 5325 |
. . 3
⊢ ((𝜑 ∧ 𝑅 ∈ V) → 𝑆 ∈ V) |
8 | | erlval.q |
. . . 4
⊢ ∼ =
{〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ 𝑊 ∧ 𝑏 ∈ 𝑊) ∧ ∃𝑡 ∈ 𝑆 (𝑡 · (((1st
‘𝑎) ·
(2nd ‘𝑏))
−
((1st ‘𝑏)
·
(2nd ‘𝑎)))) = 0 )} |
9 | | erlval.w |
. . . . . . 7
⊢ 𝑊 = (𝐵 × 𝑆) |
10 | 4, 7 | xpexd 7754 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑅 ∈ V) → (𝐵 × 𝑆) ∈ V) |
11 | 9, 10 | eqeltrid 2829 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑅 ∈ V) → 𝑊 ∈ V) |
12 | 11, 11 | xpexd 7754 |
. . . . 5
⊢ ((𝜑 ∧ 𝑅 ∈ V) → (𝑊 × 𝑊) ∈ V) |
13 | | simprll 777 |
. . . . . . 7
⊢ ((𝜑 ∧ ((𝑎 ∈ 𝑊 ∧ 𝑏 ∈ 𝑊) ∧ ∃𝑡 ∈ 𝑆 (𝑡 · (((1st
‘𝑎) ·
(2nd ‘𝑏))
−
((1st ‘𝑏)
·
(2nd ‘𝑎)))) = 0 )) → 𝑎 ∈ 𝑊) |
14 | | simprlr 778 |
. . . . . . 7
⊢ ((𝜑 ∧ ((𝑎 ∈ 𝑊 ∧ 𝑏 ∈ 𝑊) ∧ ∃𝑡 ∈ 𝑆 (𝑡 · (((1st
‘𝑎) ·
(2nd ‘𝑏))
−
((1st ‘𝑏)
·
(2nd ‘𝑎)))) = 0 )) → 𝑏 ∈ 𝑊) |
15 | 13, 14 | opabssxpd 5725 |
. . . . . 6
⊢ (𝜑 → {〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ 𝑊 ∧ 𝑏 ∈ 𝑊) ∧ ∃𝑡 ∈ 𝑆 (𝑡 · (((1st
‘𝑎) ·
(2nd ‘𝑏))
−
((1st ‘𝑏)
·
(2nd ‘𝑎)))) = 0 )} ⊆ (𝑊 × 𝑊)) |
16 | 15 | adantr 479 |
. . . . 5
⊢ ((𝜑 ∧ 𝑅 ∈ V) → {〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ 𝑊 ∧ 𝑏 ∈ 𝑊) ∧ ∃𝑡 ∈ 𝑆 (𝑡 · (((1st
‘𝑎) ·
(2nd ‘𝑏))
−
((1st ‘𝑏)
·
(2nd ‘𝑎)))) = 0 )} ⊆ (𝑊 × 𝑊)) |
17 | 12, 16 | ssexd 5325 |
. . . 4
⊢ ((𝜑 ∧ 𝑅 ∈ V) → {〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ 𝑊 ∧ 𝑏 ∈ 𝑊) ∧ ∃𝑡 ∈ 𝑆 (𝑡 · (((1st
‘𝑎) ·
(2nd ‘𝑏))
−
((1st ‘𝑏)
·
(2nd ‘𝑎)))) = 0 )} ∈
V) |
18 | 8, 17 | eqeltrid 2829 |
. . 3
⊢ ((𝜑 ∧ 𝑅 ∈ V) → ∼ ∈
V) |
19 | | fvexd 6911 |
. . . . 5
⊢ ((𝑟 = 𝑅 ∧ 𝑠 = 𝑆) → (.r‘𝑟) ∈ V) |
20 | | fveq2 6896 |
. . . . . . 7
⊢ (𝑟 = 𝑅 → (.r‘𝑟) = (.r‘𝑅)) |
21 | 20 | adantr 479 |
. . . . . 6
⊢ ((𝑟 = 𝑅 ∧ 𝑠 = 𝑆) → (.r‘𝑟) = (.r‘𝑅)) |
22 | | rlocval.3 |
. . . . . 6
⊢ · =
(.r‘𝑅) |
23 | 21, 22 | eqtr4di 2783 |
. . . . 5
⊢ ((𝑟 = 𝑅 ∧ 𝑠 = 𝑆) → (.r‘𝑟) = · ) |
24 | | fvexd 6911 |
. . . . . . 7
⊢ (((𝑟 = 𝑅 ∧ 𝑠 = 𝑆) ∧ 𝑥 = · ) →
(Base‘𝑟) ∈
V) |
25 | | vex 3465 |
. . . . . . . 8
⊢ 𝑠 ∈ V |
26 | 25 | a1i 11 |
. . . . . . 7
⊢ (((𝑟 = 𝑅 ∧ 𝑠 = 𝑆) ∧ 𝑥 = · ) → 𝑠 ∈ V) |
27 | 24, 26 | xpexd 7754 |
. . . . . 6
⊢ (((𝑟 = 𝑅 ∧ 𝑠 = 𝑆) ∧ 𝑥 = · ) →
((Base‘𝑟) ×
𝑠) ∈
V) |
28 | | fveq2 6896 |
. . . . . . . . . 10
⊢ (𝑟 = 𝑅 → (Base‘𝑟) = (Base‘𝑅)) |
29 | 28 | ad2antrr 724 |
. . . . . . . . 9
⊢ (((𝑟 = 𝑅 ∧ 𝑠 = 𝑆) ∧ 𝑥 = · ) →
(Base‘𝑟) =
(Base‘𝑅)) |
30 | 29, 2 | eqtr4di 2783 |
. . . . . . . 8
⊢ (((𝑟 = 𝑅 ∧ 𝑠 = 𝑆) ∧ 𝑥 = · ) →
(Base‘𝑟) = 𝐵) |
31 | | simplr 767 |
. . . . . . . 8
⊢ (((𝑟 = 𝑅 ∧ 𝑠 = 𝑆) ∧ 𝑥 = · ) → 𝑠 = 𝑆) |
32 | 30, 31 | xpeq12d 5709 |
. . . . . . 7
⊢ (((𝑟 = 𝑅 ∧ 𝑠 = 𝑆) ∧ 𝑥 = · ) →
((Base‘𝑟) ×
𝑠) = (𝐵 × 𝑆)) |
33 | 32, 9 | eqtr4di 2783 |
. . . . . 6
⊢ (((𝑟 = 𝑅 ∧ 𝑠 = 𝑆) ∧ 𝑥 = · ) →
((Base‘𝑟) ×
𝑠) = 𝑊) |
34 | | simpr 483 |
. . . . . . . . . . 11
⊢ ((((𝑟 = 𝑅 ∧ 𝑠 = 𝑆) ∧ 𝑥 = · ) ∧ 𝑤 = 𝑊) → 𝑤 = 𝑊) |
35 | 34 | eleq2d 2811 |
. . . . . . . . . 10
⊢ ((((𝑟 = 𝑅 ∧ 𝑠 = 𝑆) ∧ 𝑥 = · ) ∧ 𝑤 = 𝑊) → (𝑎 ∈ 𝑤 ↔ 𝑎 ∈ 𝑊)) |
36 | 34 | eleq2d 2811 |
. . . . . . . . . 10
⊢ ((((𝑟 = 𝑅 ∧ 𝑠 = 𝑆) ∧ 𝑥 = · ) ∧ 𝑤 = 𝑊) → (𝑏 ∈ 𝑤 ↔ 𝑏 ∈ 𝑊)) |
37 | 35, 36 | anbi12d 630 |
. . . . . . . . 9
⊢ ((((𝑟 = 𝑅 ∧ 𝑠 = 𝑆) ∧ 𝑥 = · ) ∧ 𝑤 = 𝑊) → ((𝑎 ∈ 𝑤 ∧ 𝑏 ∈ 𝑤) ↔ (𝑎 ∈ 𝑊 ∧ 𝑏 ∈ 𝑊))) |
38 | 31 | adantr 479 |
. . . . . . . . . 10
⊢ ((((𝑟 = 𝑅 ∧ 𝑠 = 𝑆) ∧ 𝑥 = · ) ∧ 𝑤 = 𝑊) → 𝑠 = 𝑆) |
39 | | simplr 767 |
. . . . . . . . . . . 12
⊢ ((((𝑟 = 𝑅 ∧ 𝑠 = 𝑆) ∧ 𝑥 = · ) ∧ 𝑤 = 𝑊) → 𝑥 = · ) |
40 | | eqidd 2726 |
. . . . . . . . . . . 12
⊢ ((((𝑟 = 𝑅 ∧ 𝑠 = 𝑆) ∧ 𝑥 = · ) ∧ 𝑤 = 𝑊) → 𝑡 = 𝑡) |
41 | | fveq2 6896 |
. . . . . . . . . . . . . . 15
⊢ (𝑟 = 𝑅 → (-g‘𝑟) = (-g‘𝑅)) |
42 | 41 | ad3antrrr 728 |
. . . . . . . . . . . . . 14
⊢ ((((𝑟 = 𝑅 ∧ 𝑠 = 𝑆) ∧ 𝑥 = · ) ∧ 𝑤 = 𝑊) → (-g‘𝑟) = (-g‘𝑅)) |
43 | | rlocval.4 |
. . . . . . . . . . . . . 14
⊢ − =
(-g‘𝑅) |
44 | 42, 43 | eqtr4di 2783 |
. . . . . . . . . . . . 13
⊢ ((((𝑟 = 𝑅 ∧ 𝑠 = 𝑆) ∧ 𝑥 = · ) ∧ 𝑤 = 𝑊) → (-g‘𝑟) = − ) |
45 | 39 | oveqd 7436 |
. . . . . . . . . . . . 13
⊢ ((((𝑟 = 𝑅 ∧ 𝑠 = 𝑆) ∧ 𝑥 = · ) ∧ 𝑤 = 𝑊) → ((1st ‘𝑎)𝑥(2nd ‘𝑏)) = ((1st ‘𝑎) · (2nd
‘𝑏))) |
46 | 39 | oveqd 7436 |
. . . . . . . . . . . . 13
⊢ ((((𝑟 = 𝑅 ∧ 𝑠 = 𝑆) ∧ 𝑥 = · ) ∧ 𝑤 = 𝑊) → ((1st ‘𝑏)𝑥(2nd ‘𝑎)) = ((1st ‘𝑏) · (2nd
‘𝑎))) |
47 | 44, 45, 46 | oveq123d 7440 |
. . . . . . . . . . . 12
⊢ ((((𝑟 = 𝑅 ∧ 𝑠 = 𝑆) ∧ 𝑥 = · ) ∧ 𝑤 = 𝑊) → (((1st ‘𝑎)𝑥(2nd ‘𝑏))(-g‘𝑟)((1st ‘𝑏)𝑥(2nd ‘𝑎))) = (((1st ‘𝑎) · (2nd
‘𝑏)) −
((1st ‘𝑏)
·
(2nd ‘𝑎)))) |
48 | 39, 40, 47 | oveq123d 7440 |
. . . . . . . . . . 11
⊢ ((((𝑟 = 𝑅 ∧ 𝑠 = 𝑆) ∧ 𝑥 = · ) ∧ 𝑤 = 𝑊) → (𝑡𝑥(((1st ‘𝑎)𝑥(2nd ‘𝑏))(-g‘𝑟)((1st ‘𝑏)𝑥(2nd ‘𝑎)))) = (𝑡 · (((1st
‘𝑎) ·
(2nd ‘𝑏))
−
((1st ‘𝑏)
·
(2nd ‘𝑎))))) |
49 | | fveq2 6896 |
. . . . . . . . . . . . 13
⊢ (𝑟 = 𝑅 → (0g‘𝑟) = (0g‘𝑅)) |
50 | 49 | ad3antrrr 728 |
. . . . . . . . . . . 12
⊢ ((((𝑟 = 𝑅 ∧ 𝑠 = 𝑆) ∧ 𝑥 = · ) ∧ 𝑤 = 𝑊) → (0g‘𝑟) = (0g‘𝑅)) |
51 | | rlocval.2 |
. . . . . . . . . . . 12
⊢ 0 =
(0g‘𝑅) |
52 | 50, 51 | eqtr4di 2783 |
. . . . . . . . . . 11
⊢ ((((𝑟 = 𝑅 ∧ 𝑠 = 𝑆) ∧ 𝑥 = · ) ∧ 𝑤 = 𝑊) → (0g‘𝑟) = 0 ) |
53 | 48, 52 | eqeq12d 2741 |
. . . . . . . . . 10
⊢ ((((𝑟 = 𝑅 ∧ 𝑠 = 𝑆) ∧ 𝑥 = · ) ∧ 𝑤 = 𝑊) → ((𝑡𝑥(((1st ‘𝑎)𝑥(2nd ‘𝑏))(-g‘𝑟)((1st ‘𝑏)𝑥(2nd ‘𝑎)))) = (0g‘𝑟) ↔ (𝑡 · (((1st
‘𝑎) ·
(2nd ‘𝑏))
−
((1st ‘𝑏)
·
(2nd ‘𝑎)))) = 0 )) |
54 | 38, 53 | rexeqbidv 3330 |
. . . . . . . . 9
⊢ ((((𝑟 = 𝑅 ∧ 𝑠 = 𝑆) ∧ 𝑥 = · ) ∧ 𝑤 = 𝑊) → (∃𝑡 ∈ 𝑠 (𝑡𝑥(((1st ‘𝑎)𝑥(2nd ‘𝑏))(-g‘𝑟)((1st ‘𝑏)𝑥(2nd ‘𝑎)))) = (0g‘𝑟) ↔ ∃𝑡 ∈ 𝑆 (𝑡 · (((1st
‘𝑎) ·
(2nd ‘𝑏))
−
((1st ‘𝑏)
·
(2nd ‘𝑎)))) = 0 )) |
55 | 37, 54 | anbi12d 630 |
. . . . . . . 8
⊢ ((((𝑟 = 𝑅 ∧ 𝑠 = 𝑆) ∧ 𝑥 = · ) ∧ 𝑤 = 𝑊) → (((𝑎 ∈ 𝑤 ∧ 𝑏 ∈ 𝑤) ∧ ∃𝑡 ∈ 𝑠 (𝑡𝑥(((1st ‘𝑎)𝑥(2nd ‘𝑏))(-g‘𝑟)((1st ‘𝑏)𝑥(2nd ‘𝑎)))) = (0g‘𝑟)) ↔ ((𝑎 ∈ 𝑊 ∧ 𝑏 ∈ 𝑊) ∧ ∃𝑡 ∈ 𝑆 (𝑡 · (((1st
‘𝑎) ·
(2nd ‘𝑏))
−
((1st ‘𝑏)
·
(2nd ‘𝑎)))) = 0 ))) |
56 | 55 | opabbidv 5215 |
. . . . . . 7
⊢ ((((𝑟 = 𝑅 ∧ 𝑠 = 𝑆) ∧ 𝑥 = · ) ∧ 𝑤 = 𝑊) → {〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ 𝑤 ∧ 𝑏 ∈ 𝑤) ∧ ∃𝑡 ∈ 𝑠 (𝑡𝑥(((1st ‘𝑎)𝑥(2nd ‘𝑏))(-g‘𝑟)((1st ‘𝑏)𝑥(2nd ‘𝑎)))) = (0g‘𝑟))} = {〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ 𝑊 ∧ 𝑏 ∈ 𝑊) ∧ ∃𝑡 ∈ 𝑆 (𝑡 · (((1st
‘𝑎) ·
(2nd ‘𝑏))
−
((1st ‘𝑏)
·
(2nd ‘𝑎)))) = 0 )}) |
57 | 56, 8 | eqtr4di 2783 |
. . . . . 6
⊢ ((((𝑟 = 𝑅 ∧ 𝑠 = 𝑆) ∧ 𝑥 = · ) ∧ 𝑤 = 𝑊) → {〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ 𝑤 ∧ 𝑏 ∈ 𝑤) ∧ ∃𝑡 ∈ 𝑠 (𝑡𝑥(((1st ‘𝑎)𝑥(2nd ‘𝑏))(-g‘𝑟)((1st ‘𝑏)𝑥(2nd ‘𝑎)))) = (0g‘𝑟))} = ∼ ) |
58 | 27, 33, 57 | csbied2 3929 |
. . . . 5
⊢ (((𝑟 = 𝑅 ∧ 𝑠 = 𝑆) ∧ 𝑥 = · ) →
⦋((Base‘𝑟) × 𝑠) / 𝑤⦌{〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ 𝑤 ∧ 𝑏 ∈ 𝑤) ∧ ∃𝑡 ∈ 𝑠 (𝑡𝑥(((1st ‘𝑎)𝑥(2nd ‘𝑏))(-g‘𝑟)((1st ‘𝑏)𝑥(2nd ‘𝑎)))) = (0g‘𝑟))} = ∼ ) |
59 | 19, 23, 58 | csbied2 3929 |
. . . 4
⊢ ((𝑟 = 𝑅 ∧ 𝑠 = 𝑆) →
⦋(.r‘𝑟) / 𝑥⦌⦋((Base‘𝑟) × 𝑠) / 𝑤⦌{〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ 𝑤 ∧ 𝑏 ∈ 𝑤) ∧ ∃𝑡 ∈ 𝑠 (𝑡𝑥(((1st ‘𝑎)𝑥(2nd ‘𝑏))(-g‘𝑟)((1st ‘𝑏)𝑥(2nd ‘𝑎)))) = (0g‘𝑟))} = ∼ ) |
60 | | df-erl 33045 |
. . . 4
⊢
~RL = (𝑟
∈ V, 𝑠 ∈ V
↦ ⦋(.r‘𝑟) / 𝑥⦌⦋((Base‘𝑟) × 𝑠) / 𝑤⦌{〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ 𝑤 ∧ 𝑏 ∈ 𝑤) ∧ ∃𝑡 ∈ 𝑠 (𝑡𝑥(((1st ‘𝑎)𝑥(2nd ‘𝑏))(-g‘𝑟)((1st ‘𝑏)𝑥(2nd ‘𝑎)))) = (0g‘𝑟))}) |
61 | 59, 60 | ovmpoga 7575 |
. . 3
⊢ ((𝑅 ∈ V ∧ 𝑆 ∈ V ∧ ∼ ∈
V) → (𝑅
~RL 𝑆) =
∼
) |
62 | 1, 7, 18, 61 | syl3anc 1368 |
. 2
⊢ ((𝜑 ∧ 𝑅 ∈ V) → (𝑅 ~RL 𝑆) = ∼ ) |
63 | 60 | reldmmpo 7555 |
. . . . 5
⊢ Rel dom
~RL |
64 | 63 | ovprc1 7458 |
. . . 4
⊢ (¬
𝑅 ∈ V → (𝑅 ~RL 𝑆) = ∅) |
65 | 64 | adantl 480 |
. . 3
⊢ ((𝜑 ∧ ¬ 𝑅 ∈ V) → (𝑅 ~RL 𝑆) = ∅) |
66 | 8, 15 | eqsstrid 4025 |
. . . . . 6
⊢ (𝜑 → ∼ ⊆ (𝑊 × 𝑊)) |
67 | 66 | adantr 479 |
. . . . 5
⊢ ((𝜑 ∧ ¬ 𝑅 ∈ V) → ∼ ⊆ (𝑊 × 𝑊)) |
68 | | fvprc 6888 |
. . . . . . . . . . 11
⊢ (¬
𝑅 ∈ V →
(Base‘𝑅) =
∅) |
69 | 2, 68 | eqtrid 2777 |
. . . . . . . . . 10
⊢ (¬
𝑅 ∈ V → 𝐵 = ∅) |
70 | 69 | xpeq1d 5707 |
. . . . . . . . 9
⊢ (¬
𝑅 ∈ V → (𝐵 × 𝑆) = (∅ × 𝑆)) |
71 | | 0xp 5776 |
. . . . . . . . 9
⊢ (∅
× 𝑆) =
∅ |
72 | 70, 71 | eqtrdi 2781 |
. . . . . . . 8
⊢ (¬
𝑅 ∈ V → (𝐵 × 𝑆) = ∅) |
73 | 9, 72 | eqtrid 2777 |
. . . . . . 7
⊢ (¬
𝑅 ∈ V → 𝑊 = ∅) |
74 | | id 22 |
. . . . . . . . 9
⊢ (𝑊 = ∅ → 𝑊 = ∅) |
75 | 74, 74 | xpeq12d 5709 |
. . . . . . . 8
⊢ (𝑊 = ∅ → (𝑊 × 𝑊) = (∅ ×
∅)) |
76 | | 0xp 5776 |
. . . . . . . 8
⊢ (∅
× ∅) = ∅ |
77 | 75, 76 | eqtrdi 2781 |
. . . . . . 7
⊢ (𝑊 = ∅ → (𝑊 × 𝑊) = ∅) |
78 | 73, 77 | syl 17 |
. . . . . 6
⊢ (¬
𝑅 ∈ V → (𝑊 × 𝑊) = ∅) |
79 | 78 | adantl 480 |
. . . . 5
⊢ ((𝜑 ∧ ¬ 𝑅 ∈ V) → (𝑊 × 𝑊) = ∅) |
80 | 67, 79 | sseqtrd 4017 |
. . . 4
⊢ ((𝜑 ∧ ¬ 𝑅 ∈ V) → ∼ ⊆
∅) |
81 | | ss0 4400 |
. . . 4
⊢ ( ∼
⊆ ∅ → ∼ =
∅) |
82 | 80, 81 | syl 17 |
. . 3
⊢ ((𝜑 ∧ ¬ 𝑅 ∈ V) → ∼ =
∅) |
83 | 65, 82 | eqtr4d 2768 |
. 2
⊢ ((𝜑 ∧ ¬ 𝑅 ∈ V) → (𝑅 ~RL 𝑆) = ∼ ) |
84 | 62, 83 | pm2.61dan 811 |
1
⊢ (𝜑 → (𝑅 ~RL 𝑆) = ∼ ) |