MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-estrc Structured version   Visualization version   GIF version

Definition df-estrc 18073
Description: Definition of the category ExtStr of extensible structures. This is the category whose objects are all sets in a universe 𝑒 regarded as extensible structures and whose morphisms are the functions between their base sets. If a set is not a real extensible structure, it is regarded as extensible structure with an empty base set. Because of bascnvimaeqv 18071 we do not need to restrict the universe to sets which "have a base". Generally, we will take 𝑒 to be a weak universe or Grothendieck universe, because these sets have closure properties as good as the real thing. (Proposed by Mario Carneiro, 5-Mar-2020.) (Contributed by AV, 7-Mar-2020.)
Assertion
Ref Expression
df-estrc ExtStrCat = (𝑒 ∈ V ↦ {⟨(Baseβ€˜ndx), π‘’βŸ©, ⟨(Hom β€˜ndx), (π‘₯ ∈ 𝑒, 𝑦 ∈ 𝑒 ↦ ((Baseβ€˜π‘¦) ↑m (Baseβ€˜π‘₯)))⟩, ⟨(compβ€˜ndx), (𝑣 ∈ (𝑒 Γ— 𝑒), 𝑧 ∈ 𝑒 ↦ (𝑔 ∈ ((Baseβ€˜π‘§) ↑m (Baseβ€˜(2nd β€˜π‘£))), 𝑓 ∈ ((Baseβ€˜(2nd β€˜π‘£)) ↑m (Baseβ€˜(1st β€˜π‘£))) ↦ (𝑔 ∘ 𝑓)))⟩})
Distinct variable group:   𝑓,𝑔,𝑒,𝑣,π‘₯,𝑦,𝑧

Detailed syntax breakdown of Definition df-estrc
StepHypRef Expression
1 cestrc 18072 . 2 class ExtStrCat
2 vu . . 3 setvar 𝑒
3 cvv 3474 . . 3 class V
4 cnx 17125 . . . . . 6 class ndx
5 cbs 17143 . . . . . 6 class Base
64, 5cfv 6543 . . . . 5 class (Baseβ€˜ndx)
72cv 1540 . . . . 5 class 𝑒
86, 7cop 4634 . . . 4 class ⟨(Baseβ€˜ndx), π‘’βŸ©
9 chom 17207 . . . . . 6 class Hom
104, 9cfv 6543 . . . . 5 class (Hom β€˜ndx)
11 vx . . . . . 6 setvar π‘₯
12 vy . . . . . 6 setvar 𝑦
1312cv 1540 . . . . . . . 8 class 𝑦
1413, 5cfv 6543 . . . . . . 7 class (Baseβ€˜π‘¦)
1511cv 1540 . . . . . . . 8 class π‘₯
1615, 5cfv 6543 . . . . . . 7 class (Baseβ€˜π‘₯)
17 cmap 8819 . . . . . . 7 class ↑m
1814, 16, 17co 7408 . . . . . 6 class ((Baseβ€˜π‘¦) ↑m (Baseβ€˜π‘₯))
1911, 12, 7, 7, 18cmpo 7410 . . . . 5 class (π‘₯ ∈ 𝑒, 𝑦 ∈ 𝑒 ↦ ((Baseβ€˜π‘¦) ↑m (Baseβ€˜π‘₯)))
2010, 19cop 4634 . . . 4 class ⟨(Hom β€˜ndx), (π‘₯ ∈ 𝑒, 𝑦 ∈ 𝑒 ↦ ((Baseβ€˜π‘¦) ↑m (Baseβ€˜π‘₯)))⟩
21 cco 17208 . . . . . 6 class comp
224, 21cfv 6543 . . . . 5 class (compβ€˜ndx)
23 vv . . . . . 6 setvar 𝑣
24 vz . . . . . 6 setvar 𝑧
257, 7cxp 5674 . . . . . 6 class (𝑒 Γ— 𝑒)
26 vg . . . . . . 7 setvar 𝑔
27 vf . . . . . . 7 setvar 𝑓
2824cv 1540 . . . . . . . . 9 class 𝑧
2928, 5cfv 6543 . . . . . . . 8 class (Baseβ€˜π‘§)
3023cv 1540 . . . . . . . . . 10 class 𝑣
31 c2nd 7973 . . . . . . . . . 10 class 2nd
3230, 31cfv 6543 . . . . . . . . 9 class (2nd β€˜π‘£)
3332, 5cfv 6543 . . . . . . . 8 class (Baseβ€˜(2nd β€˜π‘£))
3429, 33, 17co 7408 . . . . . . 7 class ((Baseβ€˜π‘§) ↑m (Baseβ€˜(2nd β€˜π‘£)))
35 c1st 7972 . . . . . . . . . 10 class 1st
3630, 35cfv 6543 . . . . . . . . 9 class (1st β€˜π‘£)
3736, 5cfv 6543 . . . . . . . 8 class (Baseβ€˜(1st β€˜π‘£))
3833, 37, 17co 7408 . . . . . . 7 class ((Baseβ€˜(2nd β€˜π‘£)) ↑m (Baseβ€˜(1st β€˜π‘£)))
3926cv 1540 . . . . . . . 8 class 𝑔
4027cv 1540 . . . . . . . 8 class 𝑓
4139, 40ccom 5680 . . . . . . 7 class (𝑔 ∘ 𝑓)
4226, 27, 34, 38, 41cmpo 7410 . . . . . 6 class (𝑔 ∈ ((Baseβ€˜π‘§) ↑m (Baseβ€˜(2nd β€˜π‘£))), 𝑓 ∈ ((Baseβ€˜(2nd β€˜π‘£)) ↑m (Baseβ€˜(1st β€˜π‘£))) ↦ (𝑔 ∘ 𝑓))
4323, 24, 25, 7, 42cmpo 7410 . . . . 5 class (𝑣 ∈ (𝑒 Γ— 𝑒), 𝑧 ∈ 𝑒 ↦ (𝑔 ∈ ((Baseβ€˜π‘§) ↑m (Baseβ€˜(2nd β€˜π‘£))), 𝑓 ∈ ((Baseβ€˜(2nd β€˜π‘£)) ↑m (Baseβ€˜(1st β€˜π‘£))) ↦ (𝑔 ∘ 𝑓)))
4422, 43cop 4634 . . . 4 class ⟨(compβ€˜ndx), (𝑣 ∈ (𝑒 Γ— 𝑒), 𝑧 ∈ 𝑒 ↦ (𝑔 ∈ ((Baseβ€˜π‘§) ↑m (Baseβ€˜(2nd β€˜π‘£))), 𝑓 ∈ ((Baseβ€˜(2nd β€˜π‘£)) ↑m (Baseβ€˜(1st β€˜π‘£))) ↦ (𝑔 ∘ 𝑓)))⟩
458, 20, 44ctp 4632 . . 3 class {⟨(Baseβ€˜ndx), π‘’βŸ©, ⟨(Hom β€˜ndx), (π‘₯ ∈ 𝑒, 𝑦 ∈ 𝑒 ↦ ((Baseβ€˜π‘¦) ↑m (Baseβ€˜π‘₯)))⟩, ⟨(compβ€˜ndx), (𝑣 ∈ (𝑒 Γ— 𝑒), 𝑧 ∈ 𝑒 ↦ (𝑔 ∈ ((Baseβ€˜π‘§) ↑m (Baseβ€˜(2nd β€˜π‘£))), 𝑓 ∈ ((Baseβ€˜(2nd β€˜π‘£)) ↑m (Baseβ€˜(1st β€˜π‘£))) ↦ (𝑔 ∘ 𝑓)))⟩}
462, 3, 45cmpt 5231 . 2 class (𝑒 ∈ V ↦ {⟨(Baseβ€˜ndx), π‘’βŸ©, ⟨(Hom β€˜ndx), (π‘₯ ∈ 𝑒, 𝑦 ∈ 𝑒 ↦ ((Baseβ€˜π‘¦) ↑m (Baseβ€˜π‘₯)))⟩, ⟨(compβ€˜ndx), (𝑣 ∈ (𝑒 Γ— 𝑒), 𝑧 ∈ 𝑒 ↦ (𝑔 ∈ ((Baseβ€˜π‘§) ↑m (Baseβ€˜(2nd β€˜π‘£))), 𝑓 ∈ ((Baseβ€˜(2nd β€˜π‘£)) ↑m (Baseβ€˜(1st β€˜π‘£))) ↦ (𝑔 ∘ 𝑓)))⟩})
471, 46wceq 1541 1 wff ExtStrCat = (𝑒 ∈ V ↦ {⟨(Baseβ€˜ndx), π‘’βŸ©, ⟨(Hom β€˜ndx), (π‘₯ ∈ 𝑒, 𝑦 ∈ 𝑒 ↦ ((Baseβ€˜π‘¦) ↑m (Baseβ€˜π‘₯)))⟩, ⟨(compβ€˜ndx), (𝑣 ∈ (𝑒 Γ— 𝑒), 𝑧 ∈ 𝑒 ↦ (𝑔 ∈ ((Baseβ€˜π‘§) ↑m (Baseβ€˜(2nd β€˜π‘£))), 𝑓 ∈ ((Baseβ€˜(2nd β€˜π‘£)) ↑m (Baseβ€˜(1st β€˜π‘£))) ↦ (𝑔 ∘ 𝑓)))⟩})
Colors of variables: wff setvar class
This definition is referenced by:  estrcval  18074
  Copyright terms: Public domain W3C validator