Step | Hyp | Ref
| Expression |
1 | | cestrc 18072 |
. 2
class
ExtStrCat |
2 | | vu |
. . 3
setvar π’ |
3 | | cvv 3474 |
. . 3
class
V |
4 | | cnx 17125 |
. . . . . 6
class
ndx |
5 | | cbs 17143 |
. . . . . 6
class
Base |
6 | 4, 5 | cfv 6543 |
. . . . 5
class
(Baseβndx) |
7 | 2 | cv 1540 |
. . . . 5
class π’ |
8 | 6, 7 | cop 4634 |
. . . 4
class
β¨(Baseβndx), π’β© |
9 | | chom 17207 |
. . . . . 6
class
Hom |
10 | 4, 9 | cfv 6543 |
. . . . 5
class (Hom
βndx) |
11 | | vx |
. . . . . 6
setvar π₯ |
12 | | vy |
. . . . . 6
setvar π¦ |
13 | 12 | cv 1540 |
. . . . . . . 8
class π¦ |
14 | 13, 5 | cfv 6543 |
. . . . . . 7
class
(Baseβπ¦) |
15 | 11 | cv 1540 |
. . . . . . . 8
class π₯ |
16 | 15, 5 | cfv 6543 |
. . . . . . 7
class
(Baseβπ₯) |
17 | | cmap 8819 |
. . . . . . 7
class
βm |
18 | 14, 16, 17 | co 7408 |
. . . . . 6
class
((Baseβπ¦)
βm (Baseβπ₯)) |
19 | 11, 12, 7, 7, 18 | cmpo 7410 |
. . . . 5
class (π₯ β π’, π¦ β π’ β¦ ((Baseβπ¦) βm (Baseβπ₯))) |
20 | 10, 19 | cop 4634 |
. . . 4
class
β¨(Hom βndx), (π₯ β π’, π¦ β π’ β¦ ((Baseβπ¦) βm (Baseβπ₯)))β© |
21 | | cco 17208 |
. . . . . 6
class
comp |
22 | 4, 21 | cfv 6543 |
. . . . 5
class
(compβndx) |
23 | | vv |
. . . . . 6
setvar π£ |
24 | | vz |
. . . . . 6
setvar π§ |
25 | 7, 7 | cxp 5674 |
. . . . . 6
class (π’ Γ π’) |
26 | | vg |
. . . . . . 7
setvar π |
27 | | vf |
. . . . . . 7
setvar π |
28 | 24 | cv 1540 |
. . . . . . . . 9
class π§ |
29 | 28, 5 | cfv 6543 |
. . . . . . . 8
class
(Baseβπ§) |
30 | 23 | cv 1540 |
. . . . . . . . . 10
class π£ |
31 | | c2nd 7973 |
. . . . . . . . . 10
class
2nd |
32 | 30, 31 | cfv 6543 |
. . . . . . . . 9
class
(2nd βπ£) |
33 | 32, 5 | cfv 6543 |
. . . . . . . 8
class
(Baseβ(2nd βπ£)) |
34 | 29, 33, 17 | co 7408 |
. . . . . . 7
class
((Baseβπ§)
βm (Baseβ(2nd βπ£))) |
35 | | c1st 7972 |
. . . . . . . . . 10
class
1st |
36 | 30, 35 | cfv 6543 |
. . . . . . . . 9
class
(1st βπ£) |
37 | 36, 5 | cfv 6543 |
. . . . . . . 8
class
(Baseβ(1st βπ£)) |
38 | 33, 37, 17 | co 7408 |
. . . . . . 7
class
((Baseβ(2nd βπ£)) βm
(Baseβ(1st βπ£))) |
39 | 26 | cv 1540 |
. . . . . . . 8
class π |
40 | 27 | cv 1540 |
. . . . . . . 8
class π |
41 | 39, 40 | ccom 5680 |
. . . . . . 7
class (π β π) |
42 | 26, 27, 34, 38, 41 | cmpo 7410 |
. . . . . 6
class (π β ((Baseβπ§) βm
(Baseβ(2nd βπ£))), π β ((Baseβ(2nd
βπ£))
βm (Baseβ(1st βπ£))) β¦ (π β π)) |
43 | 23, 24, 25, 7, 42 | cmpo 7410 |
. . . . 5
class (π£ β (π’ Γ π’), π§ β π’ β¦ (π β ((Baseβπ§) βm
(Baseβ(2nd βπ£))), π β ((Baseβ(2nd
βπ£))
βm (Baseβ(1st βπ£))) β¦ (π β π))) |
44 | 22, 43 | cop 4634 |
. . . 4
class
β¨(compβndx), (π£ β (π’ Γ π’), π§ β π’ β¦ (π β ((Baseβπ§) βm
(Baseβ(2nd βπ£))), π β ((Baseβ(2nd
βπ£))
βm (Baseβ(1st βπ£))) β¦ (π β π)))β© |
45 | 8, 20, 44 | ctp 4632 |
. . 3
class
{β¨(Baseβndx), π’β©, β¨(Hom βndx), (π₯ β π’, π¦ β π’ β¦ ((Baseβπ¦) βm (Baseβπ₯)))β©,
β¨(compβndx), (π£
β (π’ Γ π’), π§ β π’ β¦ (π β ((Baseβπ§) βm
(Baseβ(2nd βπ£))), π β ((Baseβ(2nd
βπ£))
βm (Baseβ(1st βπ£))) β¦ (π β π)))β©} |
46 | 2, 3, 45 | cmpt 5231 |
. 2
class (π’ β V β¦
{β¨(Baseβndx), π’β©, β¨(Hom βndx), (π₯ β π’, π¦ β π’ β¦ ((Baseβπ¦) βm (Baseβπ₯)))β©,
β¨(compβndx), (π£
β (π’ Γ π’), π§ β π’ β¦ (π β ((Baseβπ§) βm
(Baseβ(2nd βπ£))), π β ((Baseβ(2nd
βπ£))
βm (Baseβ(1st βπ£))) β¦ (π β π)))β©}) |
47 | 1, 46 | wceq 1541 |
1
wff ExtStrCat =
(π’ β V β¦
{β¨(Baseβndx), π’β©, β¨(Hom βndx), (π₯ β π’, π¦ β π’ β¦ ((Baseβπ¦) βm (Baseβπ₯)))β©,
β¨(compβndx), (π£
β (π’ Γ π’), π§ β π’ β¦ (π β ((Baseβπ§) βm
(Baseβ(2nd βπ£))), π β ((Baseβ(2nd
βπ£))
βm (Baseβ(1st βπ£))) β¦ (π β π)))β©}) |