MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  estrcval Structured version   Visualization version   GIF version

Theorem estrcval 18025
Description: Value of the category of extensible structures (in a universe). (Contributed by AV, 7-Mar-2020.)
Hypotheses
Ref Expression
estrcval.c 𝐶 = (ExtStrCat‘𝑈)
estrcval.u (𝜑𝑈𝑉)
estrcval.h (𝜑𝐻 = (𝑥𝑈, 𝑦𝑈 ↦ ((Base‘𝑦) ↑m (Base‘𝑥))))
estrcval.o (𝜑· = (𝑣 ∈ (𝑈 × 𝑈), 𝑧𝑈 ↦ (𝑔 ∈ ((Base‘𝑧) ↑m (Base‘(2nd𝑣))), 𝑓 ∈ ((Base‘(2nd𝑣)) ↑m (Base‘(1st𝑣))) ↦ (𝑔𝑓))))
Assertion
Ref Expression
estrcval (𝜑𝐶 = {⟨(Base‘ndx), 𝑈⟩, ⟨(Hom ‘ndx), 𝐻⟩, ⟨(comp‘ndx), · ⟩})
Distinct variable groups:   𝑓,𝑔,𝑣,𝑥,𝑦,𝑧   𝜑,𝑣,𝑥,𝑦,𝑧   𝑣,𝑈,𝑥,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑓,𝑔)   𝐶(𝑥,𝑦,𝑧,𝑣,𝑓,𝑔)   · (𝑥,𝑦,𝑧,𝑣,𝑓,𝑔)   𝑈(𝑓,𝑔)   𝐻(𝑥,𝑦,𝑧,𝑣,𝑓,𝑔)   𝑉(𝑥,𝑦,𝑧,𝑣,𝑓,𝑔)

Proof of Theorem estrcval
Dummy variable 𝑢 is distinct from all other variables.
StepHypRef Expression
1 estrcval.c . 2 𝐶 = (ExtStrCat‘𝑈)
2 df-estrc 18024 . . 3 ExtStrCat = (𝑢 ∈ V ↦ {⟨(Base‘ndx), 𝑢⟩, ⟨(Hom ‘ndx), (𝑥𝑢, 𝑦𝑢 ↦ ((Base‘𝑦) ↑m (Base‘𝑥)))⟩, ⟨(comp‘ndx), (𝑣 ∈ (𝑢 × 𝑢), 𝑧𝑢 ↦ (𝑔 ∈ ((Base‘𝑧) ↑m (Base‘(2nd𝑣))), 𝑓 ∈ ((Base‘(2nd𝑣)) ↑m (Base‘(1st𝑣))) ↦ (𝑔𝑓)))⟩})
3 simpr 485 . . . . 5 ((𝜑𝑢 = 𝑈) → 𝑢 = 𝑈)
43opeq2d 4842 . . . 4 ((𝜑𝑢 = 𝑈) → ⟨(Base‘ndx), 𝑢⟩ = ⟨(Base‘ndx), 𝑈⟩)
5 eqidd 2732 . . . . . . 7 ((𝜑𝑢 = 𝑈) → ((Base‘𝑦) ↑m (Base‘𝑥)) = ((Base‘𝑦) ↑m (Base‘𝑥)))
63, 3, 5mpoeq123dv 7437 . . . . . 6 ((𝜑𝑢 = 𝑈) → (𝑥𝑢, 𝑦𝑢 ↦ ((Base‘𝑦) ↑m (Base‘𝑥))) = (𝑥𝑈, 𝑦𝑈 ↦ ((Base‘𝑦) ↑m (Base‘𝑥))))
7 estrcval.h . . . . . . 7 (𝜑𝐻 = (𝑥𝑈, 𝑦𝑈 ↦ ((Base‘𝑦) ↑m (Base‘𝑥))))
87adantr 481 . . . . . 6 ((𝜑𝑢 = 𝑈) → 𝐻 = (𝑥𝑈, 𝑦𝑈 ↦ ((Base‘𝑦) ↑m (Base‘𝑥))))
96, 8eqtr4d 2774 . . . . 5 ((𝜑𝑢 = 𝑈) → (𝑥𝑢, 𝑦𝑢 ↦ ((Base‘𝑦) ↑m (Base‘𝑥))) = 𝐻)
109opeq2d 4842 . . . 4 ((𝜑𝑢 = 𝑈) → ⟨(Hom ‘ndx), (𝑥𝑢, 𝑦𝑢 ↦ ((Base‘𝑦) ↑m (Base‘𝑥)))⟩ = ⟨(Hom ‘ndx), 𝐻⟩)
113sqxpeqd 5670 . . . . . . 7 ((𝜑𝑢 = 𝑈) → (𝑢 × 𝑢) = (𝑈 × 𝑈))
12 eqidd 2732 . . . . . . 7 ((𝜑𝑢 = 𝑈) → (𝑔 ∈ ((Base‘𝑧) ↑m (Base‘(2nd𝑣))), 𝑓 ∈ ((Base‘(2nd𝑣)) ↑m (Base‘(1st𝑣))) ↦ (𝑔𝑓)) = (𝑔 ∈ ((Base‘𝑧) ↑m (Base‘(2nd𝑣))), 𝑓 ∈ ((Base‘(2nd𝑣)) ↑m (Base‘(1st𝑣))) ↦ (𝑔𝑓)))
1311, 3, 12mpoeq123dv 7437 . . . . . 6 ((𝜑𝑢 = 𝑈) → (𝑣 ∈ (𝑢 × 𝑢), 𝑧𝑢 ↦ (𝑔 ∈ ((Base‘𝑧) ↑m (Base‘(2nd𝑣))), 𝑓 ∈ ((Base‘(2nd𝑣)) ↑m (Base‘(1st𝑣))) ↦ (𝑔𝑓))) = (𝑣 ∈ (𝑈 × 𝑈), 𝑧𝑈 ↦ (𝑔 ∈ ((Base‘𝑧) ↑m (Base‘(2nd𝑣))), 𝑓 ∈ ((Base‘(2nd𝑣)) ↑m (Base‘(1st𝑣))) ↦ (𝑔𝑓))))
14 estrcval.o . . . . . . 7 (𝜑· = (𝑣 ∈ (𝑈 × 𝑈), 𝑧𝑈 ↦ (𝑔 ∈ ((Base‘𝑧) ↑m (Base‘(2nd𝑣))), 𝑓 ∈ ((Base‘(2nd𝑣)) ↑m (Base‘(1st𝑣))) ↦ (𝑔𝑓))))
1514adantr 481 . . . . . 6 ((𝜑𝑢 = 𝑈) → · = (𝑣 ∈ (𝑈 × 𝑈), 𝑧𝑈 ↦ (𝑔 ∈ ((Base‘𝑧) ↑m (Base‘(2nd𝑣))), 𝑓 ∈ ((Base‘(2nd𝑣)) ↑m (Base‘(1st𝑣))) ↦ (𝑔𝑓))))
1613, 15eqtr4d 2774 . . . . 5 ((𝜑𝑢 = 𝑈) → (𝑣 ∈ (𝑢 × 𝑢), 𝑧𝑢 ↦ (𝑔 ∈ ((Base‘𝑧) ↑m (Base‘(2nd𝑣))), 𝑓 ∈ ((Base‘(2nd𝑣)) ↑m (Base‘(1st𝑣))) ↦ (𝑔𝑓))) = · )
1716opeq2d 4842 . . . 4 ((𝜑𝑢 = 𝑈) → ⟨(comp‘ndx), (𝑣 ∈ (𝑢 × 𝑢), 𝑧𝑢 ↦ (𝑔 ∈ ((Base‘𝑧) ↑m (Base‘(2nd𝑣))), 𝑓 ∈ ((Base‘(2nd𝑣)) ↑m (Base‘(1st𝑣))) ↦ (𝑔𝑓)))⟩ = ⟨(comp‘ndx), · ⟩)
184, 10, 17tpeq123d 4714 . . 3 ((𝜑𝑢 = 𝑈) → {⟨(Base‘ndx), 𝑢⟩, ⟨(Hom ‘ndx), (𝑥𝑢, 𝑦𝑢 ↦ ((Base‘𝑦) ↑m (Base‘𝑥)))⟩, ⟨(comp‘ndx), (𝑣 ∈ (𝑢 × 𝑢), 𝑧𝑢 ↦ (𝑔 ∈ ((Base‘𝑧) ↑m (Base‘(2nd𝑣))), 𝑓 ∈ ((Base‘(2nd𝑣)) ↑m (Base‘(1st𝑣))) ↦ (𝑔𝑓)))⟩} = {⟨(Base‘ndx), 𝑈⟩, ⟨(Hom ‘ndx), 𝐻⟩, ⟨(comp‘ndx), · ⟩})
19 estrcval.u . . . 4 (𝜑𝑈𝑉)
2019elexd 3466 . . 3 (𝜑𝑈 ∈ V)
21 tpex 7686 . . . 4 {⟨(Base‘ndx), 𝑈⟩, ⟨(Hom ‘ndx), 𝐻⟩, ⟨(comp‘ndx), · ⟩} ∈ V
2221a1i 11 . . 3 (𝜑 → {⟨(Base‘ndx), 𝑈⟩, ⟨(Hom ‘ndx), 𝐻⟩, ⟨(comp‘ndx), · ⟩} ∈ V)
232, 18, 20, 22fvmptd2 6961 . 2 (𝜑 → (ExtStrCat‘𝑈) = {⟨(Base‘ndx), 𝑈⟩, ⟨(Hom ‘ndx), 𝐻⟩, ⟨(comp‘ndx), · ⟩})
241, 23eqtrid 2783 1 (𝜑𝐶 = {⟨(Base‘ndx), 𝑈⟩, ⟨(Hom ‘ndx), 𝐻⟩, ⟨(comp‘ndx), · ⟩})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wcel 2106  Vcvv 3446  {ctp 4595  cop 4597   × cxp 5636  ccom 5642  cfv 6501  (class class class)co 7362  cmpo 7364  1st c1st 7924  2nd c2nd 7925  m cmap 8772  ndxcnx 17076  Basecbs 17094  Hom chom 17158  compcco 17159  ExtStrCatcestrc 18023
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2702  ax-sep 5261  ax-nul 5268  ax-pr 5389  ax-un 7677
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ral 3061  df-rex 3070  df-rab 3406  df-v 3448  df-sbc 3743  df-csb 3859  df-dif 3916  df-un 3918  df-in 3920  df-ss 3930  df-nul 4288  df-if 4492  df-sn 4592  df-pr 4594  df-tp 4596  df-op 4598  df-uni 4871  df-br 5111  df-opab 5173  df-mpt 5194  df-id 5536  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-iota 6453  df-fun 6503  df-fv 6509  df-oprab 7366  df-mpo 7367  df-estrc 18024
This theorem is referenced by:  estrcbas  18026  estrchomfval  18027  estrccofval  18030  dfrngc2  46390  dfringc2  46436
  Copyright terms: Public domain W3C validator