Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  bascnvimaeqv Structured version   Visualization version   GIF version

Theorem bascnvimaeqv 17366
 Description: The inverse image of the universal class V under the base function is the universal class V itself. (Proposed by Mario Carneiro, 7-Mar-2020.) (Contributed by AV, 7-Mar-2020.)
Assertion
Ref Expression
bascnvimaeqv (Base “ V) = V

Proof of Theorem bascnvimaeqv
StepHypRef Expression
1 basfn 16498 . 2 Base Fn V
2 fncnvimaeqv 17365 . 2 (Base Fn V → (Base “ V) = V)
31, 2ax-mp 5 1 (Base “ V) = V
 Colors of variables: wff setvar class Syntax hints:   = wceq 1538  Vcvv 3444  ◡ccnv 5522   “ cima 5526   Fn wfn 6323  Basecbs 16478 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-sep 5170  ax-nul 5177  ax-pr 5298 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-ral 3114  df-rex 3115  df-rab 3118  df-v 3446  df-sbc 3724  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-nul 4247  df-if 4429  df-sn 4529  df-pr 4531  df-op 4535  df-uni 4804  df-br 5034  df-opab 5096  df-mpt 5114  df-id 5428  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-iota 6287  df-fun 6330  df-fn 6331  df-fv 6336  df-slot 16482  df-base 16484 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator