Detailed syntax breakdown of Definition df-eupth
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | ceupth 30216 | . 2
class
EulerPaths | 
| 2 |  | vg | . . 3
setvar 𝑔 | 
| 3 |  | cvv 3480 | . . 3
class
V | 
| 4 |  | vf | . . . . . . 7
setvar 𝑓 | 
| 5 | 4 | cv 1539 | . . . . . 6
class 𝑓 | 
| 6 |  | vp | . . . . . . 7
setvar 𝑝 | 
| 7 | 6 | cv 1539 | . . . . . 6
class 𝑝 | 
| 8 | 2 | cv 1539 | . . . . . . 7
class 𝑔 | 
| 9 |  | ctrls 29708 | . . . . . . 7
class
Trails | 
| 10 | 8, 9 | cfv 6561 | . . . . . 6
class
(Trails‘𝑔) | 
| 11 | 5, 7, 10 | wbr 5143 | . . . . 5
wff 𝑓(Trails‘𝑔)𝑝 | 
| 12 |  | cc0 11155 | . . . . . . 7
class
0 | 
| 13 |  | chash 14369 | . . . . . . . 8
class
♯ | 
| 14 | 5, 13 | cfv 6561 | . . . . . . 7
class
(♯‘𝑓) | 
| 15 |  | cfzo 13694 | . . . . . . 7
class
..^ | 
| 16 | 12, 14, 15 | co 7431 | . . . . . 6
class
(0..^(♯‘𝑓)) | 
| 17 |  | ciedg 29014 | . . . . . . . 8
class
iEdg | 
| 18 | 8, 17 | cfv 6561 | . . . . . . 7
class
(iEdg‘𝑔) | 
| 19 | 18 | cdm 5685 | . . . . . 6
class dom
(iEdg‘𝑔) | 
| 20 | 16, 19, 5 | wfo 6559 | . . . . 5
wff 𝑓:(0..^(♯‘𝑓))–onto→dom (iEdg‘𝑔) | 
| 21 | 11, 20 | wa 395 | . . . 4
wff (𝑓(Trails‘𝑔)𝑝 ∧ 𝑓:(0..^(♯‘𝑓))–onto→dom (iEdg‘𝑔)) | 
| 22 | 21, 4, 6 | copab 5205 | . . 3
class
{〈𝑓, 𝑝〉 ∣ (𝑓(Trails‘𝑔)𝑝 ∧ 𝑓:(0..^(♯‘𝑓))–onto→dom (iEdg‘𝑔))} | 
| 23 | 2, 3, 22 | cmpt 5225 | . 2
class (𝑔 ∈ V ↦ {〈𝑓, 𝑝〉 ∣ (𝑓(Trails‘𝑔)𝑝 ∧ 𝑓:(0..^(♯‘𝑓))–onto→dom (iEdg‘𝑔))}) | 
| 24 | 1, 23 | wceq 1540 | 1
wff EulerPaths
= (𝑔 ∈ V ↦
{〈𝑓, 𝑝〉 ∣ (𝑓(Trails‘𝑔)𝑝 ∧ 𝑓:(0..^(♯‘𝑓))–onto→dom (iEdg‘𝑔))}) |