![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > releupth | Structured version Visualization version GIF version |
Description: The set (EulerPaths‘𝐺) of all Eulerian paths on 𝐺 is a set of pairs by our definition of an Eulerian path, and so is a relation. (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by AV, 18-Feb-2021.) |
Ref | Expression |
---|---|
releupth | ⊢ Rel (EulerPaths‘𝐺) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-eupth 30028 | . 2 ⊢ EulerPaths = (𝑔 ∈ V ↦ {⟨𝑓, 𝑝⟩ ∣ (𝑓(Trails‘𝑔)𝑝 ∧ 𝑓:(0..^(♯‘𝑓))–onto→dom (iEdg‘𝑔))}) | |
2 | 1 | relmptopab 7677 | 1 ⊢ Rel (EulerPaths‘𝐺) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 394 Vcvv 3473 class class class wbr 5152 dom cdm 5682 Rel wrel 5687 –onto→wfo 6551 ‘cfv 6553 (class class class)co 7426 0cc0 11146 ..^cfzo 13667 ♯chash 14329 iEdgciedg 28830 Trailsctrls 29524 EulerPathsceupth 30027 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-sep 5303 ax-nul 5310 ax-pr 5433 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ral 3059 df-rex 3068 df-rab 3431 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4327 df-if 4533 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-br 5153 df-opab 5215 df-mpt 5236 df-id 5580 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-iota 6505 df-fun 6555 df-fv 6561 df-eupth 30028 |
This theorem is referenced by: eulerpath 30071 |
Copyright terms: Public domain | W3C validator |