| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eupths | Structured version Visualization version GIF version | ||
| Description: The Eulerian paths on the graph 𝐺. (Contributed by AV, 18-Feb-2021.) (Revised by AV, 29-Oct-2021.) |
| Ref | Expression |
|---|---|
| eupths.i | ⊢ 𝐼 = (iEdg‘𝐺) |
| Ref | Expression |
|---|---|
| eupths | ⊢ (EulerPaths‘𝐺) = {〈𝑓, 𝑝〉 ∣ (𝑓(Trails‘𝐺)𝑝 ∧ 𝑓:(0..^(♯‘𝑓))–onto→dom 𝐼)} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 6858 | . . . . 5 ⊢ (𝑔 = 𝐺 → (iEdg‘𝑔) = (iEdg‘𝐺)) | |
| 2 | eupths.i | . . . . 5 ⊢ 𝐼 = (iEdg‘𝐺) | |
| 3 | 1, 2 | eqtr4di 2782 | . . . 4 ⊢ (𝑔 = 𝐺 → (iEdg‘𝑔) = 𝐼) |
| 4 | 3 | dmeqd 5869 | . . 3 ⊢ (𝑔 = 𝐺 → dom (iEdg‘𝑔) = dom 𝐼) |
| 5 | foeq3 6770 | . . 3 ⊢ (dom (iEdg‘𝑔) = dom 𝐼 → (𝑓:(0..^(♯‘𝑓))–onto→dom (iEdg‘𝑔) ↔ 𝑓:(0..^(♯‘𝑓))–onto→dom 𝐼)) | |
| 6 | 4, 5 | syl 17 | . 2 ⊢ (𝑔 = 𝐺 → (𝑓:(0..^(♯‘𝑓))–onto→dom (iEdg‘𝑔) ↔ 𝑓:(0..^(♯‘𝑓))–onto→dom 𝐼)) |
| 7 | df-eupth 30127 | . 2 ⊢ EulerPaths = (𝑔 ∈ V ↦ {〈𝑓, 𝑝〉 ∣ (𝑓(Trails‘𝑔)𝑝 ∧ 𝑓:(0..^(♯‘𝑓))–onto→dom (iEdg‘𝑔))}) | |
| 8 | 6, 7 | fvmptopab 7443 | 1 ⊢ (EulerPaths‘𝐺) = {〈𝑓, 𝑝〉 ∣ (𝑓(Trails‘𝐺)𝑝 ∧ 𝑓:(0..^(♯‘𝑓))–onto→dom 𝐼)} |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 class class class wbr 5107 {copab 5169 dom cdm 5638 –onto→wfo 6509 ‘cfv 6511 (class class class)co 7387 0cc0 11068 ..^cfzo 13615 ♯chash 14295 iEdgciedg 28924 Trailsctrls 29618 EulerPathsceupth 30126 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-iota 6464 df-fun 6513 df-fo 6517 df-fv 6519 df-eupth 30127 |
| This theorem is referenced by: iseupth 30130 |
| Copyright terms: Public domain | W3C validator |