![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eupths | Structured version Visualization version GIF version |
Description: The Eulerian paths on the graph 𝐺. (Contributed by AV, 18-Feb-2021.) (Revised by AV, 29-Oct-2021.) |
Ref | Expression |
---|---|
eupths.i | ⊢ 𝐼 = (iEdg‘𝐺) |
Ref | Expression |
---|---|
eupths | ⊢ (EulerPaths‘𝐺) = {〈𝑓, 𝑝〉 ∣ (𝑓(Trails‘𝐺)𝑝 ∧ 𝑓:(0..^(♯‘𝑓))–onto→dom 𝐼)} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6901 | . . . . 5 ⊢ (𝑔 = 𝐺 → (iEdg‘𝑔) = (iEdg‘𝐺)) | |
2 | eupths.i | . . . . 5 ⊢ 𝐼 = (iEdg‘𝐺) | |
3 | 1, 2 | eqtr4di 2784 | . . . 4 ⊢ (𝑔 = 𝐺 → (iEdg‘𝑔) = 𝐼) |
4 | 3 | dmeqd 5912 | . . 3 ⊢ (𝑔 = 𝐺 → dom (iEdg‘𝑔) = dom 𝐼) |
5 | foeq3 6813 | . . 3 ⊢ (dom (iEdg‘𝑔) = dom 𝐼 → (𝑓:(0..^(♯‘𝑓))–onto→dom (iEdg‘𝑔) ↔ 𝑓:(0..^(♯‘𝑓))–onto→dom 𝐼)) | |
6 | 4, 5 | syl 17 | . 2 ⊢ (𝑔 = 𝐺 → (𝑓:(0..^(♯‘𝑓))–onto→dom (iEdg‘𝑔) ↔ 𝑓:(0..^(♯‘𝑓))–onto→dom 𝐼)) |
7 | df-eupth 30131 | . 2 ⊢ EulerPaths = (𝑔 ∈ V ↦ {〈𝑓, 𝑝〉 ∣ (𝑓(Trails‘𝑔)𝑝 ∧ 𝑓:(0..^(♯‘𝑓))–onto→dom (iEdg‘𝑔))}) | |
8 | 6, 7 | fvmptopab 7479 | 1 ⊢ (EulerPaths‘𝐺) = {〈𝑓, 𝑝〉 ∣ (𝑓(Trails‘𝐺)𝑝 ∧ 𝑓:(0..^(♯‘𝑓))–onto→dom 𝐼)} |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 394 = wceq 1534 class class class wbr 5153 {copab 5215 dom cdm 5682 –onto→wfo 6552 ‘cfv 6554 (class class class)co 7424 0cc0 11158 ..^cfzo 13681 ♯chash 14347 iEdgciedg 28933 Trailsctrls 29627 EulerPathsceupth 30130 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-sep 5304 ax-nul 5311 ax-pr 5433 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-ral 3052 df-rex 3061 df-rab 3420 df-v 3464 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4326 df-if 4534 df-sn 4634 df-pr 4636 df-op 4640 df-uni 4914 df-br 5154 df-opab 5216 df-mpt 5237 df-id 5580 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-iota 6506 df-fun 6556 df-fo 6560 df-fv 6562 df-eupth 30131 |
This theorem is referenced by: iseupth 30134 |
Copyright terms: Public domain | W3C validator |