MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eupths Structured version   Visualization version   GIF version

Theorem eupths 30136
Description: The Eulerian paths on the graph 𝐺. (Contributed by AV, 18-Feb-2021.) (Revised by AV, 29-Oct-2021.)
Hypothesis
Ref Expression
eupths.i 𝐼 = (iEdg‘𝐺)
Assertion
Ref Expression
eupths (EulerPaths‘𝐺) = {⟨𝑓, 𝑝⟩ ∣ (𝑓(Trails‘𝐺)𝑝𝑓:(0..^(♯‘𝑓))–onto→dom 𝐼)}
Distinct variable group:   𝑓,𝐺,𝑝
Allowed substitution hints:   𝐼(𝑓,𝑝)

Proof of Theorem eupths
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6861 . . . . 5 (𝑔 = 𝐺 → (iEdg‘𝑔) = (iEdg‘𝐺))
2 eupths.i . . . . 5 𝐼 = (iEdg‘𝐺)
31, 2eqtr4di 2783 . . . 4 (𝑔 = 𝐺 → (iEdg‘𝑔) = 𝐼)
43dmeqd 5872 . . 3 (𝑔 = 𝐺 → dom (iEdg‘𝑔) = dom 𝐼)
5 foeq3 6773 . . 3 (dom (iEdg‘𝑔) = dom 𝐼 → (𝑓:(0..^(♯‘𝑓))–onto→dom (iEdg‘𝑔) ↔ 𝑓:(0..^(♯‘𝑓))–onto→dom 𝐼))
64, 5syl 17 . 2 (𝑔 = 𝐺 → (𝑓:(0..^(♯‘𝑓))–onto→dom (iEdg‘𝑔) ↔ 𝑓:(0..^(♯‘𝑓))–onto→dom 𝐼))
7 df-eupth 30134 . 2 EulerPaths = (𝑔 ∈ V ↦ {⟨𝑓, 𝑝⟩ ∣ (𝑓(Trails‘𝑔)𝑝𝑓:(0..^(♯‘𝑓))–onto→dom (iEdg‘𝑔))})
86, 7fvmptopab 7446 1 (EulerPaths‘𝐺) = {⟨𝑓, 𝑝⟩ ∣ (𝑓(Trails‘𝐺)𝑝𝑓:(0..^(♯‘𝑓))–onto→dom 𝐼)}
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540   class class class wbr 5110  {copab 5172  dom cdm 5641  ontowfo 6512  cfv 6514  (class class class)co 7390  0cc0 11075  ..^cfzo 13622  chash 14302  iEdgciedg 28931  Trailsctrls 29625  EulerPathsceupth 30133
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-iota 6467  df-fun 6516  df-fo 6520  df-fv 6522  df-eupth 30134
This theorem is referenced by:  iseupth  30137
  Copyright terms: Public domain W3C validator