MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eupths Structured version   Visualization version   GIF version

Theorem eupths 29442
Description: The Eulerian paths on the graph 𝐺. (Contributed by AV, 18-Feb-2021.) (Revised by AV, 29-Oct-2021.)
Hypothesis
Ref Expression
eupths.i 𝐼 = (iEdgβ€˜πΊ)
Assertion
Ref Expression
eupths (EulerPathsβ€˜πΊ) = {βŸ¨π‘“, π‘βŸ© ∣ (𝑓(Trailsβ€˜πΊ)𝑝 ∧ 𝑓:(0..^(β™―β€˜π‘“))–ontoβ†’dom 𝐼)}
Distinct variable group:   𝑓,𝐺,𝑝
Allowed substitution hints:   𝐼(𝑓,𝑝)

Proof of Theorem eupths
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6888 . . . . 5 (𝑔 = 𝐺 β†’ (iEdgβ€˜π‘”) = (iEdgβ€˜πΊ))
2 eupths.i . . . . 5 𝐼 = (iEdgβ€˜πΊ)
31, 2eqtr4di 2790 . . . 4 (𝑔 = 𝐺 β†’ (iEdgβ€˜π‘”) = 𝐼)
43dmeqd 5903 . . 3 (𝑔 = 𝐺 β†’ dom (iEdgβ€˜π‘”) = dom 𝐼)
5 foeq3 6800 . . 3 (dom (iEdgβ€˜π‘”) = dom 𝐼 β†’ (𝑓:(0..^(β™―β€˜π‘“))–ontoβ†’dom (iEdgβ€˜π‘”) ↔ 𝑓:(0..^(β™―β€˜π‘“))–ontoβ†’dom 𝐼))
64, 5syl 17 . 2 (𝑔 = 𝐺 β†’ (𝑓:(0..^(β™―β€˜π‘“))–ontoβ†’dom (iEdgβ€˜π‘”) ↔ 𝑓:(0..^(β™―β€˜π‘“))–ontoβ†’dom 𝐼))
7 df-eupth 29440 . 2 EulerPaths = (𝑔 ∈ V ↦ {βŸ¨π‘“, π‘βŸ© ∣ (𝑓(Trailsβ€˜π‘”)𝑝 ∧ 𝑓:(0..^(β™―β€˜π‘“))–ontoβ†’dom (iEdgβ€˜π‘”))})
86, 7fvmptopab 7459 1 (EulerPathsβ€˜πΊ) = {βŸ¨π‘“, π‘βŸ© ∣ (𝑓(Trailsβ€˜πΊ)𝑝 ∧ 𝑓:(0..^(β™―β€˜π‘“))–ontoβ†’dom 𝐼)}
Colors of variables: wff setvar class
Syntax hints:   ↔ wb 205   ∧ wa 396   = wceq 1541   class class class wbr 5147  {copab 5209  dom cdm 5675  β€“ontoβ†’wfo 6538  β€˜cfv 6540  (class class class)co 7405  0cc0 11106  ..^cfzo 13623  β™―chash 14286  iEdgciedg 28246  Trailsctrls 28936  EulerPathsceupth 29439
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pr 5426
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-iota 6492  df-fun 6542  df-fo 6546  df-fv 6548  df-eupth 29440
This theorem is referenced by:  iseupth  29443
  Copyright terms: Public domain W3C validator