MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eupths Structured version   Visualization version   GIF version

Theorem eupths 30144
Description: The Eulerian paths on the graph 𝐺. (Contributed by AV, 18-Feb-2021.) (Revised by AV, 29-Oct-2021.)
Hypothesis
Ref Expression
eupths.i 𝐼 = (iEdg‘𝐺)
Assertion
Ref Expression
eupths (EulerPaths‘𝐺) = {⟨𝑓, 𝑝⟩ ∣ (𝑓(Trails‘𝐺)𝑝𝑓:(0..^(♯‘𝑓))–onto→dom 𝐼)}
Distinct variable group:   𝑓,𝐺,𝑝
Allowed substitution hints:   𝐼(𝑓,𝑝)

Proof of Theorem eupths
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6822 . . . . 5 (𝑔 = 𝐺 → (iEdg‘𝑔) = (iEdg‘𝐺))
2 eupths.i . . . . 5 𝐼 = (iEdg‘𝐺)
31, 2eqtr4di 2782 . . . 4 (𝑔 = 𝐺 → (iEdg‘𝑔) = 𝐼)
43dmeqd 5848 . . 3 (𝑔 = 𝐺 → dom (iEdg‘𝑔) = dom 𝐼)
5 foeq3 6734 . . 3 (dom (iEdg‘𝑔) = dom 𝐼 → (𝑓:(0..^(♯‘𝑓))–onto→dom (iEdg‘𝑔) ↔ 𝑓:(0..^(♯‘𝑓))–onto→dom 𝐼))
64, 5syl 17 . 2 (𝑔 = 𝐺 → (𝑓:(0..^(♯‘𝑓))–onto→dom (iEdg‘𝑔) ↔ 𝑓:(0..^(♯‘𝑓))–onto→dom 𝐼))
7 df-eupth 30142 . 2 EulerPaths = (𝑔 ∈ V ↦ {⟨𝑓, 𝑝⟩ ∣ (𝑓(Trails‘𝑔)𝑝𝑓:(0..^(♯‘𝑓))–onto→dom (iEdg‘𝑔))})
86, 7fvmptopab 7404 1 (EulerPaths‘𝐺) = {⟨𝑓, 𝑝⟩ ∣ (𝑓(Trails‘𝐺)𝑝𝑓:(0..^(♯‘𝑓))–onto→dom 𝐼)}
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540   class class class wbr 5092  {copab 5154  dom cdm 5619  ontowfo 6480  cfv 6482  (class class class)co 7349  0cc0 11009  ..^cfzo 13557  chash 14237  iEdgciedg 28942  Trailsctrls 29634  EulerPathsceupth 30141
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pr 5371
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-iota 6438  df-fun 6484  df-fo 6488  df-fv 6490  df-eupth 30142
This theorem is referenced by:  iseupth  30145
  Copyright terms: Public domain W3C validator