![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eupths | Structured version Visualization version GIF version |
Description: The Eulerian paths on the graph πΊ. (Contributed by AV, 18-Feb-2021.) (Revised by AV, 29-Oct-2021.) |
Ref | Expression |
---|---|
eupths.i | β’ πΌ = (iEdgβπΊ) |
Ref | Expression |
---|---|
eupths | β’ (EulerPathsβπΊ) = {β¨π, πβ© β£ (π(TrailsβπΊ)π β§ π:(0..^(β―βπ))βontoβdom πΌ)} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6888 | . . . . 5 β’ (π = πΊ β (iEdgβπ) = (iEdgβπΊ)) | |
2 | eupths.i | . . . . 5 β’ πΌ = (iEdgβπΊ) | |
3 | 1, 2 | eqtr4di 2790 | . . . 4 β’ (π = πΊ β (iEdgβπ) = πΌ) |
4 | 3 | dmeqd 5903 | . . 3 β’ (π = πΊ β dom (iEdgβπ) = dom πΌ) |
5 | foeq3 6800 | . . 3 β’ (dom (iEdgβπ) = dom πΌ β (π:(0..^(β―βπ))βontoβdom (iEdgβπ) β π:(0..^(β―βπ))βontoβdom πΌ)) | |
6 | 4, 5 | syl 17 | . 2 β’ (π = πΊ β (π:(0..^(β―βπ))βontoβdom (iEdgβπ) β π:(0..^(β―βπ))βontoβdom πΌ)) |
7 | df-eupth 29440 | . 2 β’ EulerPaths = (π β V β¦ {β¨π, πβ© β£ (π(Trailsβπ)π β§ π:(0..^(β―βπ))βontoβdom (iEdgβπ))}) | |
8 | 6, 7 | fvmptopab 7459 | 1 β’ (EulerPathsβπΊ) = {β¨π, πβ© β£ (π(TrailsβπΊ)π β§ π:(0..^(β―βπ))βontoβdom πΌ)} |
Colors of variables: wff setvar class |
Syntax hints: β wb 205 β§ wa 396 = wceq 1541 class class class wbr 5147 {copab 5209 dom cdm 5675 βontoβwfo 6538 βcfv 6540 (class class class)co 7405 0cc0 11106 ..^cfzo 13623 β―chash 14286 iEdgciedg 28246 Trailsctrls 28936 EulerPathsceupth 29439 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-iota 6492 df-fun 6542 df-fo 6546 df-fv 6548 df-eupth 29440 |
This theorem is referenced by: iseupth 29443 |
Copyright terms: Public domain | W3C validator |