| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eupths | Structured version Visualization version GIF version | ||
| Description: The Eulerian paths on the graph 𝐺. (Contributed by AV, 18-Feb-2021.) (Revised by AV, 29-Oct-2021.) |
| Ref | Expression |
|---|---|
| eupths.i | ⊢ 𝐼 = (iEdg‘𝐺) |
| Ref | Expression |
|---|---|
| eupths | ⊢ (EulerPaths‘𝐺) = {〈𝑓, 𝑝〉 ∣ (𝑓(Trails‘𝐺)𝑝 ∧ 𝑓:(0..^(♯‘𝑓))–onto→dom 𝐼)} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 6822 | . . . . 5 ⊢ (𝑔 = 𝐺 → (iEdg‘𝑔) = (iEdg‘𝐺)) | |
| 2 | eupths.i | . . . . 5 ⊢ 𝐼 = (iEdg‘𝐺) | |
| 3 | 1, 2 | eqtr4di 2784 | . . . 4 ⊢ (𝑔 = 𝐺 → (iEdg‘𝑔) = 𝐼) |
| 4 | 3 | dmeqd 5844 | . . 3 ⊢ (𝑔 = 𝐺 → dom (iEdg‘𝑔) = dom 𝐼) |
| 5 | foeq3 6733 | . . 3 ⊢ (dom (iEdg‘𝑔) = dom 𝐼 → (𝑓:(0..^(♯‘𝑓))–onto→dom (iEdg‘𝑔) ↔ 𝑓:(0..^(♯‘𝑓))–onto→dom 𝐼)) | |
| 6 | 4, 5 | syl 17 | . 2 ⊢ (𝑔 = 𝐺 → (𝑓:(0..^(♯‘𝑓))–onto→dom (iEdg‘𝑔) ↔ 𝑓:(0..^(♯‘𝑓))–onto→dom 𝐼)) |
| 7 | df-eupth 30178 | . 2 ⊢ EulerPaths = (𝑔 ∈ V ↦ {〈𝑓, 𝑝〉 ∣ (𝑓(Trails‘𝑔)𝑝 ∧ 𝑓:(0..^(♯‘𝑓))–onto→dom (iEdg‘𝑔))}) | |
| 8 | 6, 7 | fvmptopab 7401 | 1 ⊢ (EulerPaths‘𝐺) = {〈𝑓, 𝑝〉 ∣ (𝑓(Trails‘𝐺)𝑝 ∧ 𝑓:(0..^(♯‘𝑓))–onto→dom 𝐼)} |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1541 class class class wbr 5089 {copab 5151 dom cdm 5614 –onto→wfo 6479 ‘cfv 6481 (class class class)co 7346 0cc0 11006 ..^cfzo 13554 ♯chash 14237 iEdgciedg 28975 Trailsctrls 29667 EulerPathsceupth 30177 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-iota 6437 df-fun 6483 df-fo 6487 df-fv 6489 df-eupth 30178 |
| This theorem is referenced by: iseupth 30181 |
| Copyright terms: Public domain | W3C validator |