Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-evl1 Structured version   Visualization version   GIF version

Definition df-evl1 20185
 Description: Define the evaluation map for the univariate polynomial algebra. The function (eval1‘𝑅):𝑉⟶(𝑅 ↑𝑚 𝑅) makes sense when 𝑅 is a ring, and 𝑉 is the set of polynomials in (Poly1‘𝑅). This function maps an element of the formal polynomial algebra (with coefficients in 𝑅) to a function from assignments to the variable from 𝑅 into an element of 𝑅 formed by evaluating the polynomial with the given assignment. (Contributed by Mario Carneiro, 12-Jun-2015.)
Assertion
Ref Expression
df-evl1 eval1 = (𝑟 ∈ V ↦ (Base‘𝑟) / 𝑏((𝑥 ∈ (𝑏𝑚 (𝑏𝑚 1o)) ↦ (𝑥 ∘ (𝑦𝑏 ↦ (1o × {𝑦})))) ∘ (1o eval 𝑟)))
Distinct variable group:   𝑟,𝑏,𝑥,𝑦

Detailed syntax breakdown of Definition df-evl1
StepHypRef Expression
1 ce1 20183 . 2 class eval1
2 vr . . 3 setvar 𝑟
3 cvv 3415 . . 3 class V
4 vb . . . 4 setvar 𝑏
52cv 1506 . . . . 5 class 𝑟
6 cbs 16342 . . . . 5 class Base
75, 6cfv 6190 . . . 4 class (Base‘𝑟)
8 vx . . . . . 6 setvar 𝑥
94cv 1506 . . . . . . 7 class 𝑏
10 c1o 7900 . . . . . . . 8 class 1o
11 cmap 8208 . . . . . . . 8 class 𝑚
129, 10, 11co 6978 . . . . . . 7 class (𝑏𝑚 1o)
139, 12, 11co 6978 . . . . . 6 class (𝑏𝑚 (𝑏𝑚 1o))
148cv 1506 . . . . . . 7 class 𝑥
15 vy . . . . . . . 8 setvar 𝑦
1615cv 1506 . . . . . . . . . 10 class 𝑦
1716csn 4442 . . . . . . . . 9 class {𝑦}
1810, 17cxp 5406 . . . . . . . 8 class (1o × {𝑦})
1915, 9, 18cmpt 5009 . . . . . . 7 class (𝑦𝑏 ↦ (1o × {𝑦}))
2014, 19ccom 5412 . . . . . 6 class (𝑥 ∘ (𝑦𝑏 ↦ (1o × {𝑦})))
218, 13, 20cmpt 5009 . . . . 5 class (𝑥 ∈ (𝑏𝑚 (𝑏𝑚 1o)) ↦ (𝑥 ∘ (𝑦𝑏 ↦ (1o × {𝑦}))))
22 cevl 20001 . . . . . 6 class eval
2310, 5, 22co 6978 . . . . 5 class (1o eval 𝑟)
2421, 23ccom 5412 . . . 4 class ((𝑥 ∈ (𝑏𝑚 (𝑏𝑚 1o)) ↦ (𝑥 ∘ (𝑦𝑏 ↦ (1o × {𝑦})))) ∘ (1o eval 𝑟))
254, 7, 24csb 3788 . . 3 class (Base‘𝑟) / 𝑏((𝑥 ∈ (𝑏𝑚 (𝑏𝑚 1o)) ↦ (𝑥 ∘ (𝑦𝑏 ↦ (1o × {𝑦})))) ∘ (1o eval 𝑟))
262, 3, 25cmpt 5009 . 2 class (𝑟 ∈ V ↦ (Base‘𝑟) / 𝑏((𝑥 ∈ (𝑏𝑚 (𝑏𝑚 1o)) ↦ (𝑥 ∘ (𝑦𝑏 ↦ (1o × {𝑦})))) ∘ (1o eval 𝑟)))
271, 26wceq 1507 1 wff eval1 = (𝑟 ∈ V ↦ (Base‘𝑟) / 𝑏((𝑥 ∈ (𝑏𝑚 (𝑏𝑚 1o)) ↦ (𝑥 ∘ (𝑦𝑏 ↦ (1o × {𝑦})))) ∘ (1o eval 𝑟)))
 Colors of variables: wff setvar class This definition is referenced by:  evl1fval  20196
 Copyright terms: Public domain W3C validator