MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  evl1fval Structured version   Visualization version   GIF version

Theorem evl1fval 21244
Description: Value of the simple/same ring evaluation map. (Contributed by Mario Carneiro, 12-Jun-2015.)
Hypotheses
Ref Expression
evl1fval.o 𝑂 = (eval1𝑅)
evl1fval.q 𝑄 = (1o eval 𝑅)
evl1fval.b 𝐵 = (Base‘𝑅)
Assertion
Ref Expression
evl1fval 𝑂 = ((𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦})))) ∘ 𝑄)
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝑄   𝑥,𝑅
Allowed substitution hints:   𝑄(𝑦)   𝑅(𝑦)   𝑂(𝑥,𝑦)

Proof of Theorem evl1fval
Dummy variables 𝑖 𝑟 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 evl1fval.o . . 3 𝑂 = (eval1𝑅)
2 fvexd 6732 . . . . 5 (𝑟 = 𝑅 → (Base‘𝑟) ∈ V)
3 id 22 . . . . . . . . 9 (𝑏 = (Base‘𝑟) → 𝑏 = (Base‘𝑟))
4 fveq2 6717 . . . . . . . . . 10 (𝑟 = 𝑅 → (Base‘𝑟) = (Base‘𝑅))
5 evl1fval.b . . . . . . . . . 10 𝐵 = (Base‘𝑅)
64, 5eqtr4di 2796 . . . . . . . . 9 (𝑟 = 𝑅 → (Base‘𝑟) = 𝐵)
73, 6sylan9eqr 2800 . . . . . . . 8 ((𝑟 = 𝑅𝑏 = (Base‘𝑟)) → 𝑏 = 𝐵)
87oveq1d 7228 . . . . . . . 8 ((𝑟 = 𝑅𝑏 = (Base‘𝑟)) → (𝑏m 1o) = (𝐵m 1o))
97, 8oveq12d 7231 . . . . . . 7 ((𝑟 = 𝑅𝑏 = (Base‘𝑟)) → (𝑏m (𝑏m 1o)) = (𝐵m (𝐵m 1o)))
107mpteq1d 5144 . . . . . . . 8 ((𝑟 = 𝑅𝑏 = (Base‘𝑟)) → (𝑦𝑏 ↦ (1o × {𝑦})) = (𝑦𝐵 ↦ (1o × {𝑦})))
1110coeq2d 5731 . . . . . . 7 ((𝑟 = 𝑅𝑏 = (Base‘𝑟)) → (𝑥 ∘ (𝑦𝑏 ↦ (1o × {𝑦}))) = (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦}))))
129, 11mpteq12dv 5140 . . . . . 6 ((𝑟 = 𝑅𝑏 = (Base‘𝑟)) → (𝑥 ∈ (𝑏m (𝑏m 1o)) ↦ (𝑥 ∘ (𝑦𝑏 ↦ (1o × {𝑦})))) = (𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦})))))
13 simpl 486 . . . . . . . 8 ((𝑟 = 𝑅𝑏 = (Base‘𝑟)) → 𝑟 = 𝑅)
1413oveq2d 7229 . . . . . . 7 ((𝑟 = 𝑅𝑏 = (Base‘𝑟)) → (1o eval 𝑟) = (1o eval 𝑅))
15 evl1fval.q . . . . . . 7 𝑄 = (1o eval 𝑅)
1614, 15eqtr4di 2796 . . . . . 6 ((𝑟 = 𝑅𝑏 = (Base‘𝑟)) → (1o eval 𝑟) = 𝑄)
1712, 16coeq12d 5733 . . . . 5 ((𝑟 = 𝑅𝑏 = (Base‘𝑟)) → ((𝑥 ∈ (𝑏m (𝑏m 1o)) ↦ (𝑥 ∘ (𝑦𝑏 ↦ (1o × {𝑦})))) ∘ (1o eval 𝑟)) = ((𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦})))) ∘ 𝑄))
182, 17csbied 3849 . . . 4 (𝑟 = 𝑅(Base‘𝑟) / 𝑏((𝑥 ∈ (𝑏m (𝑏m 1o)) ↦ (𝑥 ∘ (𝑦𝑏 ↦ (1o × {𝑦})))) ∘ (1o eval 𝑟)) = ((𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦})))) ∘ 𝑄))
19 df-evl1 21232 . . . 4 eval1 = (𝑟 ∈ V ↦ (Base‘𝑟) / 𝑏((𝑥 ∈ (𝑏m (𝑏m 1o)) ↦ (𝑥 ∘ (𝑦𝑏 ↦ (1o × {𝑦})))) ∘ (1o eval 𝑟)))
20 ovex 7246 . . . . . 6 (𝐵m (𝐵m 1o)) ∈ V
2120mptex 7039 . . . . 5 (𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦})))) ∈ V
2215ovexi 7247 . . . . 5 𝑄 ∈ V
2321, 22coex 7708 . . . 4 ((𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦})))) ∘ 𝑄) ∈ V
2418, 19, 23fvmpt 6818 . . 3 (𝑅 ∈ V → (eval1𝑅) = ((𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦})))) ∘ 𝑄))
251, 24syl5eq 2790 . 2 (𝑅 ∈ V → 𝑂 = ((𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦})))) ∘ 𝑄))
26 fvprc 6709 . . . . 5 𝑅 ∈ V → (eval1𝑅) = ∅)
271, 26syl5eq 2790 . . . 4 𝑅 ∈ V → 𝑂 = ∅)
28 co02 6124 . . . 4 ((𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦})))) ∘ ∅) = ∅
2927, 28eqtr4di 2796 . . 3 𝑅 ∈ V → 𝑂 = ((𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦})))) ∘ ∅))
30 df-evl 21033 . . . . . . 7 eval = (𝑖 ∈ V, 𝑟 ∈ V ↦ ((𝑖 evalSub 𝑟)‘(Base‘𝑟)))
3130reldmmpo 7344 . . . . . 6 Rel dom eval
3231ovprc2 7253 . . . . 5 𝑅 ∈ V → (1o eval 𝑅) = ∅)
3315, 32syl5eq 2790 . . . 4 𝑅 ∈ V → 𝑄 = ∅)
3433coeq2d 5731 . . 3 𝑅 ∈ V → ((𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦})))) ∘ 𝑄) = ((𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦})))) ∘ ∅))
3529, 34eqtr4d 2780 . 2 𝑅 ∈ V → 𝑂 = ((𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦})))) ∘ 𝑄))
3625, 35pm2.61i 185 1 𝑂 = ((𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦})))) ∘ 𝑄)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 399   = wceq 1543  wcel 2110  Vcvv 3408  csb 3811  c0 4237  {csn 4541  cmpt 5135   × cxp 5549  ccom 5555  cfv 6380  (class class class)co 7213  1oc1o 8195  m cmap 8508  Basecbs 16760   evalSub ces 21030   eval cevl 21031  eval1ce1 21230
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-op 4548  df-uni 4820  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-id 5455  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-ov 7216  df-oprab 7217  df-mpo 7218  df-evl 21033  df-evl1 21232
This theorem is referenced by:  evl1val  21245  evl1fval1lem  21246  evl1rhm  21248  pf1rcl  21265
  Copyright terms: Public domain W3C validator