MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  evl1fval Structured version   Visualization version   GIF version

Theorem evl1fval 21710
Description: Value of the simple/same ring evaluation map. (Contributed by Mario Carneiro, 12-Jun-2015.)
Hypotheses
Ref Expression
evl1fval.o 𝑂 = (eval1𝑅)
evl1fval.q 𝑄 = (1o eval 𝑅)
evl1fval.b 𝐵 = (Base‘𝑅)
Assertion
Ref Expression
evl1fval 𝑂 = ((𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦})))) ∘ 𝑄)
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝑄   𝑥,𝑅
Allowed substitution hints:   𝑄(𝑦)   𝑅(𝑦)   𝑂(𝑥,𝑦)

Proof of Theorem evl1fval
Dummy variables 𝑖 𝑟 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 evl1fval.o . . 3 𝑂 = (eval1𝑅)
2 fvexd 6862 . . . . 5 (𝑟 = 𝑅 → (Base‘𝑟) ∈ V)
3 id 22 . . . . . . . . 9 (𝑏 = (Base‘𝑟) → 𝑏 = (Base‘𝑟))
4 fveq2 6847 . . . . . . . . . 10 (𝑟 = 𝑅 → (Base‘𝑟) = (Base‘𝑅))
5 evl1fval.b . . . . . . . . . 10 𝐵 = (Base‘𝑅)
64, 5eqtr4di 2795 . . . . . . . . 9 (𝑟 = 𝑅 → (Base‘𝑟) = 𝐵)
73, 6sylan9eqr 2799 . . . . . . . 8 ((𝑟 = 𝑅𝑏 = (Base‘𝑟)) → 𝑏 = 𝐵)
87oveq1d 7377 . . . . . . . 8 ((𝑟 = 𝑅𝑏 = (Base‘𝑟)) → (𝑏m 1o) = (𝐵m 1o))
97, 8oveq12d 7380 . . . . . . 7 ((𝑟 = 𝑅𝑏 = (Base‘𝑟)) → (𝑏m (𝑏m 1o)) = (𝐵m (𝐵m 1o)))
107mpteq1d 5205 . . . . . . . 8 ((𝑟 = 𝑅𝑏 = (Base‘𝑟)) → (𝑦𝑏 ↦ (1o × {𝑦})) = (𝑦𝐵 ↦ (1o × {𝑦})))
1110coeq2d 5823 . . . . . . 7 ((𝑟 = 𝑅𝑏 = (Base‘𝑟)) → (𝑥 ∘ (𝑦𝑏 ↦ (1o × {𝑦}))) = (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦}))))
129, 11mpteq12dv 5201 . . . . . 6 ((𝑟 = 𝑅𝑏 = (Base‘𝑟)) → (𝑥 ∈ (𝑏m (𝑏m 1o)) ↦ (𝑥 ∘ (𝑦𝑏 ↦ (1o × {𝑦})))) = (𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦})))))
13 simpl 484 . . . . . . . 8 ((𝑟 = 𝑅𝑏 = (Base‘𝑟)) → 𝑟 = 𝑅)
1413oveq2d 7378 . . . . . . 7 ((𝑟 = 𝑅𝑏 = (Base‘𝑟)) → (1o eval 𝑟) = (1o eval 𝑅))
15 evl1fval.q . . . . . . 7 𝑄 = (1o eval 𝑅)
1614, 15eqtr4di 2795 . . . . . 6 ((𝑟 = 𝑅𝑏 = (Base‘𝑟)) → (1o eval 𝑟) = 𝑄)
1712, 16coeq12d 5825 . . . . 5 ((𝑟 = 𝑅𝑏 = (Base‘𝑟)) → ((𝑥 ∈ (𝑏m (𝑏m 1o)) ↦ (𝑥 ∘ (𝑦𝑏 ↦ (1o × {𝑦})))) ∘ (1o eval 𝑟)) = ((𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦})))) ∘ 𝑄))
182, 17csbied 3898 . . . 4 (𝑟 = 𝑅(Base‘𝑟) / 𝑏((𝑥 ∈ (𝑏m (𝑏m 1o)) ↦ (𝑥 ∘ (𝑦𝑏 ↦ (1o × {𝑦})))) ∘ (1o eval 𝑟)) = ((𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦})))) ∘ 𝑄))
19 df-evl1 21698 . . . 4 eval1 = (𝑟 ∈ V ↦ (Base‘𝑟) / 𝑏((𝑥 ∈ (𝑏m (𝑏m 1o)) ↦ (𝑥 ∘ (𝑦𝑏 ↦ (1o × {𝑦})))) ∘ (1o eval 𝑟)))
20 ovex 7395 . . . . . 6 (𝐵m (𝐵m 1o)) ∈ V
2120mptex 7178 . . . . 5 (𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦})))) ∈ V
2215ovexi 7396 . . . . 5 𝑄 ∈ V
2321, 22coex 7872 . . . 4 ((𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦})))) ∘ 𝑄) ∈ V
2418, 19, 23fvmpt 6953 . . 3 (𝑅 ∈ V → (eval1𝑅) = ((𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦})))) ∘ 𝑄))
251, 24eqtrid 2789 . 2 (𝑅 ∈ V → 𝑂 = ((𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦})))) ∘ 𝑄))
26 fvprc 6839 . . . . 5 𝑅 ∈ V → (eval1𝑅) = ∅)
271, 26eqtrid 2789 . . . 4 𝑅 ∈ V → 𝑂 = ∅)
28 co02 6217 . . . 4 ((𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦})))) ∘ ∅) = ∅
2927, 28eqtr4di 2795 . . 3 𝑅 ∈ V → 𝑂 = ((𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦})))) ∘ ∅))
30 df-evl 21499 . . . . . . 7 eval = (𝑖 ∈ V, 𝑟 ∈ V ↦ ((𝑖 evalSub 𝑟)‘(Base‘𝑟)))
3130reldmmpo 7495 . . . . . 6 Rel dom eval
3231ovprc2 7402 . . . . 5 𝑅 ∈ V → (1o eval 𝑅) = ∅)
3315, 32eqtrid 2789 . . . 4 𝑅 ∈ V → 𝑄 = ∅)
3433coeq2d 5823 . . 3 𝑅 ∈ V → ((𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦})))) ∘ 𝑄) = ((𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦})))) ∘ ∅))
3529, 34eqtr4d 2780 . 2 𝑅 ∈ V → 𝑂 = ((𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦})))) ∘ 𝑄))
3625, 35pm2.61i 182 1 𝑂 = ((𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦})))) ∘ 𝑄)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 397   = wceq 1542  wcel 2107  Vcvv 3448  csb 3860  c0 4287  {csn 4591  cmpt 5193   × cxp 5636  ccom 5642  cfv 6501  (class class class)co 7362  1oc1o 8410  m cmap 8772  Basecbs 17090   evalSub ces 21496   eval cevl 21497  eval1ce1 21696
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2708  ax-rep 5247  ax-sep 5261  ax-nul 5268  ax-pow 5325  ax-pr 5389  ax-un 7677
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2890  df-ne 2945  df-ral 3066  df-rex 3075  df-reu 3357  df-rab 3411  df-v 3450  df-sbc 3745  df-csb 3861  df-dif 3918  df-un 3920  df-in 3922  df-ss 3932  df-nul 4288  df-if 4492  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4871  df-iun 4961  df-br 5111  df-opab 5173  df-mpt 5194  df-id 5536  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6453  df-fun 6503  df-fn 6504  df-f 6505  df-f1 6506  df-fo 6507  df-f1o 6508  df-fv 6509  df-ov 7365  df-oprab 7366  df-mpo 7367  df-evl 21499  df-evl1 21698
This theorem is referenced by:  evl1val  21711  evl1fval1lem  21712  evl1rhm  21714  pf1rcl  21731
  Copyright terms: Public domain W3C validator