MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  evl1fval Structured version   Visualization version   GIF version

Theorem evl1fval 22266
Description: Value of the simple/same ring evaluation map. (Contributed by Mario Carneiro, 12-Jun-2015.)
Hypotheses
Ref Expression
evl1fval.o 𝑂 = (eval1𝑅)
evl1fval.q 𝑄 = (1o eval 𝑅)
evl1fval.b 𝐵 = (Base‘𝑅)
Assertion
Ref Expression
evl1fval 𝑂 = ((𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦})))) ∘ 𝑄)
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝑄   𝑥,𝑅
Allowed substitution hints:   𝑄(𝑦)   𝑅(𝑦)   𝑂(𝑥,𝑦)

Proof of Theorem evl1fval
Dummy variables 𝑖 𝑟 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 evl1fval.o . . 3 𝑂 = (eval1𝑅)
2 fvexd 6891 . . . . 5 (𝑟 = 𝑅 → (Base‘𝑟) ∈ V)
3 id 22 . . . . . . . . 9 (𝑏 = (Base‘𝑟) → 𝑏 = (Base‘𝑟))
4 fveq2 6876 . . . . . . . . . 10 (𝑟 = 𝑅 → (Base‘𝑟) = (Base‘𝑅))
5 evl1fval.b . . . . . . . . . 10 𝐵 = (Base‘𝑅)
64, 5eqtr4di 2788 . . . . . . . . 9 (𝑟 = 𝑅 → (Base‘𝑟) = 𝐵)
73, 6sylan9eqr 2792 . . . . . . . 8 ((𝑟 = 𝑅𝑏 = (Base‘𝑟)) → 𝑏 = 𝐵)
87oveq1d 7420 . . . . . . . 8 ((𝑟 = 𝑅𝑏 = (Base‘𝑟)) → (𝑏m 1o) = (𝐵m 1o))
97, 8oveq12d 7423 . . . . . . 7 ((𝑟 = 𝑅𝑏 = (Base‘𝑟)) → (𝑏m (𝑏m 1o)) = (𝐵m (𝐵m 1o)))
107mpteq1d 5210 . . . . . . . 8 ((𝑟 = 𝑅𝑏 = (Base‘𝑟)) → (𝑦𝑏 ↦ (1o × {𝑦})) = (𝑦𝐵 ↦ (1o × {𝑦})))
1110coeq2d 5842 . . . . . . 7 ((𝑟 = 𝑅𝑏 = (Base‘𝑟)) → (𝑥 ∘ (𝑦𝑏 ↦ (1o × {𝑦}))) = (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦}))))
129, 11mpteq12dv 5207 . . . . . 6 ((𝑟 = 𝑅𝑏 = (Base‘𝑟)) → (𝑥 ∈ (𝑏m (𝑏m 1o)) ↦ (𝑥 ∘ (𝑦𝑏 ↦ (1o × {𝑦})))) = (𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦})))))
13 simpl 482 . . . . . . . 8 ((𝑟 = 𝑅𝑏 = (Base‘𝑟)) → 𝑟 = 𝑅)
1413oveq2d 7421 . . . . . . 7 ((𝑟 = 𝑅𝑏 = (Base‘𝑟)) → (1o eval 𝑟) = (1o eval 𝑅))
15 evl1fval.q . . . . . . 7 𝑄 = (1o eval 𝑅)
1614, 15eqtr4di 2788 . . . . . 6 ((𝑟 = 𝑅𝑏 = (Base‘𝑟)) → (1o eval 𝑟) = 𝑄)
1712, 16coeq12d 5844 . . . . 5 ((𝑟 = 𝑅𝑏 = (Base‘𝑟)) → ((𝑥 ∈ (𝑏m (𝑏m 1o)) ↦ (𝑥 ∘ (𝑦𝑏 ↦ (1o × {𝑦})))) ∘ (1o eval 𝑟)) = ((𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦})))) ∘ 𝑄))
182, 17csbied 3910 . . . 4 (𝑟 = 𝑅(Base‘𝑟) / 𝑏((𝑥 ∈ (𝑏m (𝑏m 1o)) ↦ (𝑥 ∘ (𝑦𝑏 ↦ (1o × {𝑦})))) ∘ (1o eval 𝑟)) = ((𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦})))) ∘ 𝑄))
19 df-evl1 22254 . . . 4 eval1 = (𝑟 ∈ V ↦ (Base‘𝑟) / 𝑏((𝑥 ∈ (𝑏m (𝑏m 1o)) ↦ (𝑥 ∘ (𝑦𝑏 ↦ (1o × {𝑦})))) ∘ (1o eval 𝑟)))
20 ovex 7438 . . . . . 6 (𝐵m (𝐵m 1o)) ∈ V
2120mptex 7215 . . . . 5 (𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦})))) ∈ V
2215ovexi 7439 . . . . 5 𝑄 ∈ V
2321, 22coex 7926 . . . 4 ((𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦})))) ∘ 𝑄) ∈ V
2418, 19, 23fvmpt 6986 . . 3 (𝑅 ∈ V → (eval1𝑅) = ((𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦})))) ∘ 𝑄))
251, 24eqtrid 2782 . 2 (𝑅 ∈ V → 𝑂 = ((𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦})))) ∘ 𝑄))
26 fvprc 6868 . . . . 5 𝑅 ∈ V → (eval1𝑅) = ∅)
271, 26eqtrid 2782 . . . 4 𝑅 ∈ V → 𝑂 = ∅)
28 co02 6249 . . . 4 ((𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦})))) ∘ ∅) = ∅
2927, 28eqtr4di 2788 . . 3 𝑅 ∈ V → 𝑂 = ((𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦})))) ∘ ∅))
30 df-evl 22033 . . . . . . 7 eval = (𝑖 ∈ V, 𝑟 ∈ V ↦ ((𝑖 evalSub 𝑟)‘(Base‘𝑟)))
3130reldmmpo 7541 . . . . . 6 Rel dom eval
3231ovprc2 7445 . . . . 5 𝑅 ∈ V → (1o eval 𝑅) = ∅)
3315, 32eqtrid 2782 . . . 4 𝑅 ∈ V → 𝑄 = ∅)
3433coeq2d 5842 . . 3 𝑅 ∈ V → ((𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦})))) ∘ 𝑄) = ((𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦})))) ∘ ∅))
3529, 34eqtr4d 2773 . 2 𝑅 ∈ V → 𝑂 = ((𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦})))) ∘ 𝑄))
3625, 35pm2.61i 182 1 𝑂 = ((𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦})))) ∘ 𝑄)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395   = wceq 1540  wcel 2108  Vcvv 3459  csb 3874  c0 4308  {csn 4601  cmpt 5201   × cxp 5652  ccom 5658  cfv 6531  (class class class)co 7405  1oc1o 8473  m cmap 8840  Basecbs 17228   evalSub ces 22030   eval cevl 22031  eval1ce1 22252
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-ov 7408  df-oprab 7409  df-mpo 7410  df-evl 22033  df-evl1 22254
This theorem is referenced by:  evl1val  22267  evl1fval1lem  22268  evl1rhm  22270  pf1rcl  22287
  Copyright terms: Public domain W3C validator