MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  evl1fval Structured version   Visualization version   GIF version

Theorem evl1fval 19964
Description: Value of the simple/same ring evaluation map. (Contributed by Mario Carneiro, 12-Jun-2015.)
Hypotheses
Ref Expression
evl1fval.o 𝑂 = (eval1𝑅)
evl1fval.q 𝑄 = (1𝑜 eval 𝑅)
evl1fval.b 𝐵 = (Base‘𝑅)
Assertion
Ref Expression
evl1fval 𝑂 = ((𝑥 ∈ (𝐵𝑚 (𝐵𝑚 1𝑜)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1𝑜 × {𝑦})))) ∘ 𝑄)
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝑄   𝑥,𝑅
Allowed substitution hints:   𝑄(𝑦)   𝑅(𝑦)   𝑂(𝑥,𝑦)

Proof of Theorem evl1fval
Dummy variables 𝑖 𝑟 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 evl1fval.o . . 3 𝑂 = (eval1𝑅)
2 fvexd 6389 . . . . 5 (𝑟 = 𝑅 → (Base‘𝑟) ∈ V)
3 id 22 . . . . . . . . 9 (𝑏 = (Base‘𝑟) → 𝑏 = (Base‘𝑟))
4 fveq2 6374 . . . . . . . . . 10 (𝑟 = 𝑅 → (Base‘𝑟) = (Base‘𝑅))
5 evl1fval.b . . . . . . . . . 10 𝐵 = (Base‘𝑅)
64, 5syl6eqr 2816 . . . . . . . . 9 (𝑟 = 𝑅 → (Base‘𝑟) = 𝐵)
73, 6sylan9eqr 2820 . . . . . . . 8 ((𝑟 = 𝑅𝑏 = (Base‘𝑟)) → 𝑏 = 𝐵)
87oveq1d 6856 . . . . . . . 8 ((𝑟 = 𝑅𝑏 = (Base‘𝑟)) → (𝑏𝑚 1𝑜) = (𝐵𝑚 1𝑜))
97, 8oveq12d 6859 . . . . . . 7 ((𝑟 = 𝑅𝑏 = (Base‘𝑟)) → (𝑏𝑚 (𝑏𝑚 1𝑜)) = (𝐵𝑚 (𝐵𝑚 1𝑜)))
107mpteq1d 4896 . . . . . . . 8 ((𝑟 = 𝑅𝑏 = (Base‘𝑟)) → (𝑦𝑏 ↦ (1𝑜 × {𝑦})) = (𝑦𝐵 ↦ (1𝑜 × {𝑦})))
1110coeq2d 5452 . . . . . . 7 ((𝑟 = 𝑅𝑏 = (Base‘𝑟)) → (𝑥 ∘ (𝑦𝑏 ↦ (1𝑜 × {𝑦}))) = (𝑥 ∘ (𝑦𝐵 ↦ (1𝑜 × {𝑦}))))
129, 11mpteq12dv 4891 . . . . . 6 ((𝑟 = 𝑅𝑏 = (Base‘𝑟)) → (𝑥 ∈ (𝑏𝑚 (𝑏𝑚 1𝑜)) ↦ (𝑥 ∘ (𝑦𝑏 ↦ (1𝑜 × {𝑦})))) = (𝑥 ∈ (𝐵𝑚 (𝐵𝑚 1𝑜)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1𝑜 × {𝑦})))))
13 simpl 474 . . . . . . . 8 ((𝑟 = 𝑅𝑏 = (Base‘𝑟)) → 𝑟 = 𝑅)
1413oveq2d 6857 . . . . . . 7 ((𝑟 = 𝑅𝑏 = (Base‘𝑟)) → (1𝑜 eval 𝑟) = (1𝑜 eval 𝑅))
15 evl1fval.q . . . . . . 7 𝑄 = (1𝑜 eval 𝑅)
1614, 15syl6eqr 2816 . . . . . 6 ((𝑟 = 𝑅𝑏 = (Base‘𝑟)) → (1𝑜 eval 𝑟) = 𝑄)
1712, 16coeq12d 5454 . . . . 5 ((𝑟 = 𝑅𝑏 = (Base‘𝑟)) → ((𝑥 ∈ (𝑏𝑚 (𝑏𝑚 1𝑜)) ↦ (𝑥 ∘ (𝑦𝑏 ↦ (1𝑜 × {𝑦})))) ∘ (1𝑜 eval 𝑟)) = ((𝑥 ∈ (𝐵𝑚 (𝐵𝑚 1𝑜)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1𝑜 × {𝑦})))) ∘ 𝑄))
182, 17csbied 3717 . . . 4 (𝑟 = 𝑅(Base‘𝑟) / 𝑏((𝑥 ∈ (𝑏𝑚 (𝑏𝑚 1𝑜)) ↦ (𝑥 ∘ (𝑦𝑏 ↦ (1𝑜 × {𝑦})))) ∘ (1𝑜 eval 𝑟)) = ((𝑥 ∈ (𝐵𝑚 (𝐵𝑚 1𝑜)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1𝑜 × {𝑦})))) ∘ 𝑄))
19 df-evl1 19953 . . . 4 eval1 = (𝑟 ∈ V ↦ (Base‘𝑟) / 𝑏((𝑥 ∈ (𝑏𝑚 (𝑏𝑚 1𝑜)) ↦ (𝑥 ∘ (𝑦𝑏 ↦ (1𝑜 × {𝑦})))) ∘ (1𝑜 eval 𝑟)))
20 ovex 6873 . . . . . 6 (𝐵𝑚 (𝐵𝑚 1𝑜)) ∈ V
2120mptex 6678 . . . . 5 (𝑥 ∈ (𝐵𝑚 (𝐵𝑚 1𝑜)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1𝑜 × {𝑦})))) ∈ V
22 ovex 6873 . . . . . 6 (1𝑜 eval 𝑅) ∈ V
2315, 22eqeltri 2839 . . . . 5 𝑄 ∈ V
2421, 23coex 7315 . . . 4 ((𝑥 ∈ (𝐵𝑚 (𝐵𝑚 1𝑜)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1𝑜 × {𝑦})))) ∘ 𝑄) ∈ V
2518, 19, 24fvmpt 6470 . . 3 (𝑅 ∈ V → (eval1𝑅) = ((𝑥 ∈ (𝐵𝑚 (𝐵𝑚 1𝑜)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1𝑜 × {𝑦})))) ∘ 𝑄))
261, 25syl5eq 2810 . 2 (𝑅 ∈ V → 𝑂 = ((𝑥 ∈ (𝐵𝑚 (𝐵𝑚 1𝑜)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1𝑜 × {𝑦})))) ∘ 𝑄))
27 fvprc 6367 . . . . 5 𝑅 ∈ V → (eval1𝑅) = ∅)
281, 27syl5eq 2810 . . . 4 𝑅 ∈ V → 𝑂 = ∅)
29 co02 5834 . . . 4 ((𝑥 ∈ (𝐵𝑚 (𝐵𝑚 1𝑜)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1𝑜 × {𝑦})))) ∘ ∅) = ∅
3028, 29syl6eqr 2816 . . 3 𝑅 ∈ V → 𝑂 = ((𝑥 ∈ (𝐵𝑚 (𝐵𝑚 1𝑜)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1𝑜 × {𝑦})))) ∘ ∅))
31 df-evl 19779 . . . . . . 7 eval = (𝑖 ∈ V, 𝑟 ∈ V ↦ ((𝑖 evalSub 𝑟)‘(Base‘𝑟)))
3231reldmmpt2 6968 . . . . . 6 Rel dom eval
3332ovprc2 6880 . . . . 5 𝑅 ∈ V → (1𝑜 eval 𝑅) = ∅)
3415, 33syl5eq 2810 . . . 4 𝑅 ∈ V → 𝑄 = ∅)
3534coeq2d 5452 . . 3 𝑅 ∈ V → ((𝑥 ∈ (𝐵𝑚 (𝐵𝑚 1𝑜)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1𝑜 × {𝑦})))) ∘ 𝑄) = ((𝑥 ∈ (𝐵𝑚 (𝐵𝑚 1𝑜)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1𝑜 × {𝑦})))) ∘ ∅))
3630, 35eqtr4d 2801 . 2 𝑅 ∈ V → 𝑂 = ((𝑥 ∈ (𝐵𝑚 (𝐵𝑚 1𝑜)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1𝑜 × {𝑦})))) ∘ 𝑄))
3726, 36pm2.61i 176 1 𝑂 = ((𝑥 ∈ (𝐵𝑚 (𝐵𝑚 1𝑜)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1𝑜 × {𝑦})))) ∘ 𝑄)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 384   = wceq 1652  wcel 2155  Vcvv 3349  csb 3690  c0 4078  {csn 4333  cmpt 4887   × cxp 5274  ccom 5280  cfv 6067  (class class class)co 6841  1𝑜c1o 7756  𝑚 cmap 8059  Basecbs 16131   evalSub ces 19776   eval cevl 19777  eval1ce1 19951
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2069  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2349  ax-ext 2742  ax-rep 4929  ax-sep 4940  ax-nul 4948  ax-pow 5000  ax-pr 5061  ax-un 7146
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2062  df-mo 2564  df-eu 2581  df-clab 2751  df-cleq 2757  df-clel 2760  df-nfc 2895  df-ne 2937  df-ral 3059  df-rex 3060  df-reu 3061  df-rab 3063  df-v 3351  df-sbc 3596  df-csb 3691  df-dif 3734  df-un 3736  df-in 3738  df-ss 3745  df-nul 4079  df-if 4243  df-pw 4316  df-sn 4334  df-pr 4336  df-op 4340  df-uni 4594  df-iun 4677  df-br 4809  df-opab 4871  df-mpt 4888  df-id 5184  df-xp 5282  df-rel 5283  df-cnv 5284  df-co 5285  df-dm 5286  df-rn 5287  df-res 5288  df-ima 5289  df-iota 6030  df-fun 6069  df-fn 6070  df-f 6071  df-f1 6072  df-fo 6073  df-f1o 6074  df-fv 6075  df-ov 6844  df-oprab 6845  df-mpt2 6846  df-evl 19779  df-evl1 19953
This theorem is referenced by:  evl1val  19965  evl1fval1lem  19966  evl1rhm  19968  pf1rcl  19985
  Copyright terms: Public domain W3C validator