Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > reldmevls1 | Structured version Visualization version GIF version |
Description: Well-behaved binary operation property of evalSub1. (Contributed by AV, 7-Sep-2019.) |
Ref | Expression |
---|---|
reldmevls1 | ⊢ Rel dom evalSub1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-evls1 21462 | . 2 ⊢ evalSub1 = (𝑠 ∈ V, 𝑟 ∈ 𝒫 (Base‘𝑠) ↦ ⦋(Base‘𝑠) / 𝑏⦌((𝑥 ∈ (𝑏 ↑m (𝑏 ↑m 1o)) ↦ (𝑥 ∘ (𝑦 ∈ 𝑏 ↦ (1o × {𝑦})))) ∘ ((1o evalSub 𝑠)‘𝑟))) | |
2 | 1 | reldmmpo 7399 | 1 ⊢ Rel dom evalSub1 |
Colors of variables: wff setvar class |
Syntax hints: Vcvv 3430 ⦋csb 3836 𝒫 cpw 4538 {csn 4566 ↦ cmpt 5161 × cxp 5586 dom cdm 5588 ∘ ccom 5592 Rel wrel 5593 ‘cfv 6430 (class class class)co 7268 1oc1o 8274 ↑m cmap 8589 Basecbs 16893 evalSub ces 21261 evalSub1 ces1 21460 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pr 5355 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-rab 3074 df-v 3432 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-sn 4567 df-pr 4569 df-op 4573 df-br 5079 df-opab 5141 df-xp 5594 df-rel 5595 df-dm 5598 df-oprab 7272 df-mpo 7273 df-evls1 21462 |
This theorem is referenced by: evl1fval1 21478 |
Copyright terms: Public domain | W3C validator |