MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reldmevls1 Structured version   Visualization version   GIF version

Theorem reldmevls1 22204
Description: Well-behaved binary operation property of evalSub1. (Contributed by AV, 7-Sep-2019.)
Assertion
Ref Expression
reldmevls1 Rel dom evalSub1

Proof of Theorem reldmevls1
Dummy variables 𝑟 𝑏 𝑠 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-evls1 22202 . 2 evalSub1 = (𝑠 ∈ V, 𝑟 ∈ 𝒫 (Base‘𝑠) ↦ (Base‘𝑠) / 𝑏((𝑥 ∈ (𝑏m (𝑏m 1o)) ↦ (𝑥 ∘ (𝑦𝑏 ↦ (1o × {𝑦})))) ∘ ((1o evalSub 𝑠)‘𝑟)))
21reldmmpo 7523 1 Rel dom evalSub1
Colors of variables: wff setvar class
Syntax hints:  Vcvv 3447  csb 3862  𝒫 cpw 4563  {csn 4589  cmpt 5188   × cxp 5636  dom cdm 5638  ccom 5642  Rel wrel 5643  cfv 6511  (class class class)co 7387  1oc1o 8427  m cmap 8799  Basecbs 17179   evalSub ces 21979   evalSub1 ces1 22200
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-br 5108  df-opab 5170  df-xp 5644  df-rel 5645  df-dm 5648  df-oprab 7391  df-mpo 7392  df-evls1 22202
This theorem is referenced by:  evl1fval1  22218
  Copyright terms: Public domain W3C validator