![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > reldmevls1 | Structured version Visualization version GIF version |
Description: Well-behaved binary operation property of evalSub1. (Contributed by AV, 7-Sep-2019.) |
Ref | Expression |
---|---|
reldmevls1 | ⊢ Rel dom evalSub1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-evls1 22259 | . 2 ⊢ evalSub1 = (𝑠 ∈ V, 𝑟 ∈ 𝒫 (Base‘𝑠) ↦ ⦋(Base‘𝑠) / 𝑏⦌((𝑥 ∈ (𝑏 ↑m (𝑏 ↑m 1o)) ↦ (𝑥 ∘ (𝑦 ∈ 𝑏 ↦ (1o × {𝑦})))) ∘ ((1o evalSub 𝑠)‘𝑟))) | |
2 | 1 | reldmmpo 7555 | 1 ⊢ Rel dom evalSub1 |
Colors of variables: wff setvar class |
Syntax hints: Vcvv 3461 ⦋csb 3889 𝒫 cpw 4604 {csn 4630 ↦ cmpt 5232 × cxp 5676 dom cdm 5678 ∘ ccom 5682 Rel wrel 5683 ‘cfv 6549 (class class class)co 7419 1oc1o 8480 ↑m cmap 8845 Basecbs 17183 evalSub ces 22038 evalSub1 ces1 22257 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5300 ax-nul 5307 ax-pr 5429 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-rab 3419 df-v 3463 df-dif 3947 df-un 3949 df-ss 3961 df-nul 4323 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-br 5150 df-opab 5212 df-xp 5684 df-rel 5685 df-dm 5688 df-oprab 7423 df-mpo 7424 df-evls1 22259 |
This theorem is referenced by: evl1fval1 22275 |
Copyright terms: Public domain | W3C validator |