MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reldmevls1 Structured version   Visualization version   GIF version

Theorem reldmevls1 22346
Description: Well-behaved binary operation property of evalSub1. (Contributed by AV, 7-Sep-2019.)
Assertion
Ref Expression
reldmevls1 Rel dom evalSub1

Proof of Theorem reldmevls1
Dummy variables 𝑟 𝑏 𝑠 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-evls1 22344 . 2 evalSub1 = (𝑠 ∈ V, 𝑟 ∈ 𝒫 (Base‘𝑠) ↦ (Base‘𝑠) / 𝑏((𝑥 ∈ (𝑏m (𝑏m 1o)) ↦ (𝑥 ∘ (𝑦𝑏 ↦ (1o × {𝑦})))) ∘ ((1o evalSub 𝑠)‘𝑟)))
21reldmmpo 7574 1 Rel dom evalSub1
Colors of variables: wff setvar class
Syntax hints:  Vcvv 3481  csb 3911  𝒫 cpw 4608  {csn 4634  cmpt 5234   × cxp 5691  dom cdm 5693  ccom 5697  Rel wrel 5698  cfv 6569  (class class class)co 7438  1oc1o 8507  m cmap 8874  Basecbs 17254   evalSub ces 22123   evalSub1 ces1 22342
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5305  ax-nul 5315  ax-pr 5441
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-rab 3437  df-v 3483  df-dif 3969  df-un 3971  df-ss 3983  df-nul 4343  df-if 4535  df-sn 4635  df-pr 4637  df-op 4641  df-br 5152  df-opab 5214  df-xp 5699  df-rel 5700  df-dm 5703  df-oprab 7442  df-mpo 7443  df-evls1 22344
This theorem is referenced by:  evl1fval1  22360
  Copyright terms: Public domain W3C validator