HomeHome Metamath Proof Explorer
Theorem List (p. 219 of 481)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-30640)
  Hilbert Space Explorer  Hilbert Space Explorer
(30641-32163)
  Users' Mathboxes  Users' Mathboxes
(32164-48040)
 

Theorem List for Metamath Proof Explorer - 21801-21900   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
TheoremgsumbagdiagOLD 21801* Obsolete version of gsumbagdiag 21804 as of 6-Aug-2024. (Contributed by Mario Carneiro, 5-Jan-2015.) (Proof modification is discouraged.) (New usage is discouraged.)
𝐷 = {𝑓 ∈ (β„•0 ↑m 𝐼) ∣ (◑𝑓 β€œ β„•) ∈ Fin}    &   π‘† = {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≀ 𝐹}    &   (πœ‘ β†’ 𝐼 ∈ 𝑉)    &   (πœ‘ β†’ 𝐹 ∈ 𝐷)    &   π΅ = (Baseβ€˜πΊ)    &   (πœ‘ β†’ 𝐺 ∈ CMnd)    &   ((πœ‘ ∧ (𝑗 ∈ 𝑆 ∧ π‘˜ ∈ {π‘₯ ∈ 𝐷 ∣ π‘₯ ∘r ≀ (𝐹 ∘f βˆ’ 𝑗)})) β†’ 𝑋 ∈ 𝐡)    β‡’   (πœ‘ β†’ (𝐺 Ξ£g (𝑗 ∈ 𝑆, π‘˜ ∈ {π‘₯ ∈ 𝐷 ∣ π‘₯ ∘r ≀ (𝐹 ∘f βˆ’ 𝑗)} ↦ 𝑋)) = (𝐺 Ξ£g (π‘˜ ∈ 𝑆, 𝑗 ∈ {π‘₯ ∈ 𝐷 ∣ π‘₯ ∘r ≀ (𝐹 ∘f βˆ’ π‘˜)} ↦ 𝑋)))
 
Theorempsrass1lemOLD 21802* Obsolete version of psrass1lem 21805 as of 7-Aug-2024. (Contributed by Mario Carneiro, 5-Jan-2015.) (New usage is discouraged.) (Proof modification is discouraged.)
𝐷 = {𝑓 ∈ (β„•0 ↑m 𝐼) ∣ (◑𝑓 β€œ β„•) ∈ Fin}    &   π‘† = {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≀ 𝐹}    &   (πœ‘ β†’ 𝐼 ∈ 𝑉)    &   (πœ‘ β†’ 𝐹 ∈ 𝐷)    &   π΅ = (Baseβ€˜πΊ)    &   (πœ‘ β†’ 𝐺 ∈ CMnd)    &   ((πœ‘ ∧ (𝑗 ∈ 𝑆 ∧ π‘˜ ∈ {π‘₯ ∈ 𝐷 ∣ π‘₯ ∘r ≀ (𝐹 ∘f βˆ’ 𝑗)})) β†’ 𝑋 ∈ 𝐡)    &   (π‘˜ = (𝑛 ∘f βˆ’ 𝑗) β†’ 𝑋 = π‘Œ)    β‡’   (πœ‘ β†’ (𝐺 Ξ£g (𝑛 ∈ 𝑆 ↦ (𝐺 Ξ£g (𝑗 ∈ {π‘₯ ∈ 𝐷 ∣ π‘₯ ∘r ≀ 𝑛} ↦ π‘Œ)))) = (𝐺 Ξ£g (𝑗 ∈ 𝑆 ↦ (𝐺 Ξ£g (π‘˜ ∈ {π‘₯ ∈ 𝐷 ∣ π‘₯ ∘r ≀ (𝐹 ∘f βˆ’ 𝑗)} ↦ 𝑋)))))
 
Theoremgsumbagdiaglem 21803* Lemma for gsumbagdiag 21804. (Contributed by Mario Carneiro, 5-Jan-2015.) Remove a sethood hypothesis. (Revised by SN, 6-Aug-2024.)
𝐷 = {𝑓 ∈ (β„•0 ↑m 𝐼) ∣ (◑𝑓 β€œ β„•) ∈ Fin}    &   π‘† = {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≀ 𝐹}    &   (πœ‘ β†’ 𝐹 ∈ 𝐷)    β‡’   ((πœ‘ ∧ (𝑋 ∈ 𝑆 ∧ π‘Œ ∈ {π‘₯ ∈ 𝐷 ∣ π‘₯ ∘r ≀ (𝐹 ∘f βˆ’ 𝑋)})) β†’ (π‘Œ ∈ 𝑆 ∧ 𝑋 ∈ {π‘₯ ∈ 𝐷 ∣ π‘₯ ∘r ≀ (𝐹 ∘f βˆ’ π‘Œ)}))
 
Theoremgsumbagdiag 21804* Two-dimensional commutation of a group sum over a "triangular" region. fsum0diag 15720 analogue for finite bags. (Contributed by Mario Carneiro, 5-Jan-2015.) Remove a sethood hypothesis. (Revised by SN, 6-Aug-2024.)
𝐷 = {𝑓 ∈ (β„•0 ↑m 𝐼) ∣ (◑𝑓 β€œ β„•) ∈ Fin}    &   π‘† = {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≀ 𝐹}    &   (πœ‘ β†’ 𝐹 ∈ 𝐷)    &   π΅ = (Baseβ€˜πΊ)    &   (πœ‘ β†’ 𝐺 ∈ CMnd)    &   ((πœ‘ ∧ (𝑗 ∈ 𝑆 ∧ π‘˜ ∈ {π‘₯ ∈ 𝐷 ∣ π‘₯ ∘r ≀ (𝐹 ∘f βˆ’ 𝑗)})) β†’ 𝑋 ∈ 𝐡)    β‡’   (πœ‘ β†’ (𝐺 Ξ£g (𝑗 ∈ 𝑆, π‘˜ ∈ {π‘₯ ∈ 𝐷 ∣ π‘₯ ∘r ≀ (𝐹 ∘f βˆ’ 𝑗)} ↦ 𝑋)) = (𝐺 Ξ£g (π‘˜ ∈ 𝑆, 𝑗 ∈ {π‘₯ ∈ 𝐷 ∣ π‘₯ ∘r ≀ (𝐹 ∘f βˆ’ π‘˜)} ↦ 𝑋)))
 
Theorempsrass1lem 21805* A group sum commutation used by psrass1 21835. (Contributed by Mario Carneiro, 5-Jan-2015.) Remove a sethood hypothesis. (Revised by SN, 7-Aug-2024.)
𝐷 = {𝑓 ∈ (β„•0 ↑m 𝐼) ∣ (◑𝑓 β€œ β„•) ∈ Fin}    &   π‘† = {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≀ 𝐹}    &   (πœ‘ β†’ 𝐹 ∈ 𝐷)    &   π΅ = (Baseβ€˜πΊ)    &   (πœ‘ β†’ 𝐺 ∈ CMnd)    &   ((πœ‘ ∧ (𝑗 ∈ 𝑆 ∧ π‘˜ ∈ {π‘₯ ∈ 𝐷 ∣ π‘₯ ∘r ≀ (𝐹 ∘f βˆ’ 𝑗)})) β†’ 𝑋 ∈ 𝐡)    &   (π‘˜ = (𝑛 ∘f βˆ’ 𝑗) β†’ 𝑋 = π‘Œ)    β‡’   (πœ‘ β†’ (𝐺 Ξ£g (𝑛 ∈ 𝑆 ↦ (𝐺 Ξ£g (𝑗 ∈ {π‘₯ ∈ 𝐷 ∣ π‘₯ ∘r ≀ 𝑛} ↦ π‘Œ)))) = (𝐺 Ξ£g (𝑗 ∈ 𝑆 ↦ (𝐺 Ξ£g (π‘˜ ∈ {π‘₯ ∈ 𝐷 ∣ π‘₯ ∘r ≀ (𝐹 ∘f βˆ’ 𝑗)} ↦ 𝑋)))))
 
Theorempsrbas 21806* The base set of the multivariate power series structure. (Contributed by Mario Carneiro, 28-Dec-2014.) (Revised by Mario Carneiro, 2-Oct-2015.) (Proof shortened by AV, 8-Jul-2019.)
𝑆 = (𝐼 mPwSer 𝑅)    &   πΎ = (Baseβ€˜π‘…)    &   π· = {𝑓 ∈ (β„•0 ↑m 𝐼) ∣ (◑𝑓 β€œ β„•) ∈ Fin}    &   π΅ = (Baseβ€˜π‘†)    &   (πœ‘ β†’ 𝐼 ∈ 𝑉)    β‡’   (πœ‘ β†’ 𝐡 = (𝐾 ↑m 𝐷))
 
Theorempsrelbas 21807* An element of the set of power series is a function on the coefficients. (Contributed by Mario Carneiro, 28-Dec-2014.)
𝑆 = (𝐼 mPwSer 𝑅)    &   πΎ = (Baseβ€˜π‘…)    &   π· = {𝑓 ∈ (β„•0 ↑m 𝐼) ∣ (◑𝑓 β€œ β„•) ∈ Fin}    &   π΅ = (Baseβ€˜π‘†)    &   (πœ‘ β†’ 𝑋 ∈ 𝐡)    β‡’   (πœ‘ β†’ 𝑋:𝐷⟢𝐾)
 
Theorempsrelbasfun 21808 An element of the set of power series is a function. (Contributed by AV, 17-Jul-2019.)
𝑆 = (𝐼 mPwSer 𝑅)    &   π΅ = (Baseβ€˜π‘†)    β‡’   (𝑋 ∈ 𝐡 β†’ Fun 𝑋)
 
Theorempsrplusg 21809 The addition operation of the multivariate power series structure. (Contributed by Mario Carneiro, 28-Dec-2014.) (Revised by Mario Carneiro, 2-Oct-2015.)
𝑆 = (𝐼 mPwSer 𝑅)    &   π΅ = (Baseβ€˜π‘†)    &    + = (+gβ€˜π‘…)    &    ✚ = (+gβ€˜π‘†)    β‡’    ✚ = ( ∘f + β†Ύ (𝐡 Γ— 𝐡))
 
Theorempsradd 21810 The addition operation of the multivariate power series structure. (Contributed by Mario Carneiro, 28-Dec-2014.)
𝑆 = (𝐼 mPwSer 𝑅)    &   π΅ = (Baseβ€˜π‘†)    &    + = (+gβ€˜π‘…)    &    ✚ = (+gβ€˜π‘†)    &   (πœ‘ β†’ 𝑋 ∈ 𝐡)    &   (πœ‘ β†’ π‘Œ ∈ 𝐡)    β‡’   (πœ‘ β†’ (𝑋 ✚ π‘Œ) = (𝑋 ∘f + π‘Œ))
 
Theorempsraddcl 21811 Closure of the power series addition operation. (Contributed by Mario Carneiro, 28-Dec-2014.) Generalize to magmas. (Revised by SN, 12-Apr-2025.)
𝑆 = (𝐼 mPwSer 𝑅)    &   π΅ = (Baseβ€˜π‘†)    &    + = (+gβ€˜π‘†)    &   (πœ‘ β†’ 𝑅 ∈ Mgm)    &   (πœ‘ β†’ 𝑋 ∈ 𝐡)    &   (πœ‘ β†’ π‘Œ ∈ 𝐡)    β‡’   (πœ‘ β†’ (𝑋 + π‘Œ) ∈ 𝐡)
 
TheorempsraddclOLD 21812 Obsolete version of psraddcl 21811 as of 12-Apr-2025. (Contributed by Mario Carneiro, 28-Dec-2014.) (Proof modification is discouraged.) (New usage is discouraged.)
𝑆 = (𝐼 mPwSer 𝑅)    &   π΅ = (Baseβ€˜π‘†)    &    + = (+gβ€˜π‘†)    &   (πœ‘ β†’ 𝑅 ∈ Grp)    &   (πœ‘ β†’ 𝑋 ∈ 𝐡)    &   (πœ‘ β†’ π‘Œ ∈ 𝐡)    β‡’   (πœ‘ β†’ (𝑋 + π‘Œ) ∈ 𝐡)
 
Theorempsrmulr 21813* The multiplication operation of the multivariate power series structure. (Contributed by Mario Carneiro, 28-Dec-2014.) (Revised by Mario Carneiro, 2-Oct-2015.) (Proof shortened by AV, 2-Mar-2024.)
𝑆 = (𝐼 mPwSer 𝑅)    &   π΅ = (Baseβ€˜π‘†)    &    Β· = (.rβ€˜π‘…)    &    βˆ™ = (.rβ€˜π‘†)    &   π· = {β„Ž ∈ (β„•0 ↑m 𝐼) ∣ (β—‘β„Ž β€œ β„•) ∈ Fin}    β‡’    βˆ™ = (𝑓 ∈ 𝐡, 𝑔 ∈ 𝐡 ↦ (π‘˜ ∈ 𝐷 ↦ (𝑅 Ξ£g (π‘₯ ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≀ π‘˜} ↦ ((π‘“β€˜π‘₯) Β· (π‘”β€˜(π‘˜ ∘f βˆ’ π‘₯)))))))
 
Theorempsrmulfval 21814* The multiplication operation of the multivariate power series structure. (Contributed by Mario Carneiro, 28-Dec-2014.)
𝑆 = (𝐼 mPwSer 𝑅)    &   π΅ = (Baseβ€˜π‘†)    &    Β· = (.rβ€˜π‘…)    &    βˆ™ = (.rβ€˜π‘†)    &   π· = {β„Ž ∈ (β„•0 ↑m 𝐼) ∣ (β—‘β„Ž β€œ β„•) ∈ Fin}    &   (πœ‘ β†’ 𝐹 ∈ 𝐡)    &   (πœ‘ β†’ 𝐺 ∈ 𝐡)    β‡’   (πœ‘ β†’ (𝐹 βˆ™ 𝐺) = (π‘˜ ∈ 𝐷 ↦ (𝑅 Ξ£g (π‘₯ ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≀ π‘˜} ↦ ((πΉβ€˜π‘₯) Β· (πΊβ€˜(π‘˜ ∘f βˆ’ π‘₯)))))))
 
Theorempsrmulval 21815* The multiplication operation of the multivariate power series structure. (Contributed by Mario Carneiro, 28-Dec-2014.)
𝑆 = (𝐼 mPwSer 𝑅)    &   π΅ = (Baseβ€˜π‘†)    &    Β· = (.rβ€˜π‘…)    &    βˆ™ = (.rβ€˜π‘†)    &   π· = {β„Ž ∈ (β„•0 ↑m 𝐼) ∣ (β—‘β„Ž β€œ β„•) ∈ Fin}    &   (πœ‘ β†’ 𝐹 ∈ 𝐡)    &   (πœ‘ β†’ 𝐺 ∈ 𝐡)    &   (πœ‘ β†’ 𝑋 ∈ 𝐷)    β‡’   (πœ‘ β†’ ((𝐹 βˆ™ 𝐺)β€˜π‘‹) = (𝑅 Ξ£g (π‘˜ ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≀ 𝑋} ↦ ((πΉβ€˜π‘˜) Β· (πΊβ€˜(𝑋 ∘f βˆ’ π‘˜))))))
 
Theorempsrmulcllem 21816* Closure of the power series multiplication operation. (Contributed by Mario Carneiro, 29-Dec-2014.)
𝑆 = (𝐼 mPwSer 𝑅)    &   π΅ = (Baseβ€˜π‘†)    &    Β· = (.rβ€˜π‘†)    &   (πœ‘ β†’ 𝑅 ∈ Ring)    &   (πœ‘ β†’ 𝑋 ∈ 𝐡)    &   (πœ‘ β†’ π‘Œ ∈ 𝐡)    &   π· = {𝑓 ∈ (β„•0 ↑m 𝐼) ∣ (◑𝑓 β€œ β„•) ∈ Fin}    β‡’   (πœ‘ β†’ (𝑋 Β· π‘Œ) ∈ 𝐡)
 
Theorempsrmulcl 21817 Closure of the power series multiplication operation. (Contributed by Mario Carneiro, 29-Dec-2014.)
𝑆 = (𝐼 mPwSer 𝑅)    &   π΅ = (Baseβ€˜π‘†)    &    Β· = (.rβ€˜π‘†)    &   (πœ‘ β†’ 𝑅 ∈ Ring)    &   (πœ‘ β†’ 𝑋 ∈ 𝐡)    &   (πœ‘ β†’ π‘Œ ∈ 𝐡)    β‡’   (πœ‘ β†’ (𝑋 Β· π‘Œ) ∈ 𝐡)
 
Theorempsrsca 21818 The scalar field of the multivariate power series structure. (Contributed by Mario Carneiro, 28-Dec-2014.)
𝑆 = (𝐼 mPwSer 𝑅)    &   (πœ‘ β†’ 𝐼 ∈ 𝑉)    &   (πœ‘ β†’ 𝑅 ∈ π‘Š)    β‡’   (πœ‘ β†’ 𝑅 = (Scalarβ€˜π‘†))
 
Theorempsrvscafval 21819* The scalar multiplication operation of the multivariate power series structure. (Contributed by Mario Carneiro, 28-Dec-2014.) (Revised by Mario Carneiro, 2-Oct-2015.) (Proof shortened by AV, 2-Nov-2024.)
𝑆 = (𝐼 mPwSer 𝑅)    &    βˆ™ = ( ·𝑠 β€˜π‘†)    &   πΎ = (Baseβ€˜π‘…)    &   π΅ = (Baseβ€˜π‘†)    &    Β· = (.rβ€˜π‘…)    &   π· = {β„Ž ∈ (β„•0 ↑m 𝐼) ∣ (β—‘β„Ž β€œ β„•) ∈ Fin}    β‡’    βˆ™ = (π‘₯ ∈ 𝐾, 𝑓 ∈ 𝐡 ↦ ((𝐷 Γ— {π‘₯}) ∘f Β· 𝑓))
 
Theorempsrvsca 21820* The scalar multiplication operation of the multivariate power series structure. (Contributed by Mario Carneiro, 28-Dec-2014.)
𝑆 = (𝐼 mPwSer 𝑅)    &    βˆ™ = ( ·𝑠 β€˜π‘†)    &   πΎ = (Baseβ€˜π‘…)    &   π΅ = (Baseβ€˜π‘†)    &    Β· = (.rβ€˜π‘…)    &   π· = {β„Ž ∈ (β„•0 ↑m 𝐼) ∣ (β—‘β„Ž β€œ β„•) ∈ Fin}    &   (πœ‘ β†’ 𝑋 ∈ 𝐾)    &   (πœ‘ β†’ 𝐹 ∈ 𝐡)    β‡’   (πœ‘ β†’ (𝑋 βˆ™ 𝐹) = ((𝐷 Γ— {𝑋}) ∘f Β· 𝐹))
 
Theorempsrvscaval 21821* The scalar multiplication operation of the multivariate power series structure. (Contributed by Mario Carneiro, 28-Dec-2014.)
𝑆 = (𝐼 mPwSer 𝑅)    &    βˆ™ = ( ·𝑠 β€˜π‘†)    &   πΎ = (Baseβ€˜π‘…)    &   π΅ = (Baseβ€˜π‘†)    &    Β· = (.rβ€˜π‘…)    &   π· = {β„Ž ∈ (β„•0 ↑m 𝐼) ∣ (β—‘β„Ž β€œ β„•) ∈ Fin}    &   (πœ‘ β†’ 𝑋 ∈ 𝐾)    &   (πœ‘ β†’ 𝐹 ∈ 𝐡)    &   (πœ‘ β†’ π‘Œ ∈ 𝐷)    β‡’   (πœ‘ β†’ ((𝑋 βˆ™ 𝐹)β€˜π‘Œ) = (𝑋 Β· (πΉβ€˜π‘Œ)))
 
Theorempsrvscacl 21822 Closure of the power series scalar multiplication operation. (Contributed by Mario Carneiro, 29-Dec-2014.)
𝑆 = (𝐼 mPwSer 𝑅)    &    Β· = ( ·𝑠 β€˜π‘†)    &   πΎ = (Baseβ€˜π‘…)    &   π΅ = (Baseβ€˜π‘†)    &   (πœ‘ β†’ 𝑅 ∈ Ring)    &   (πœ‘ β†’ 𝑋 ∈ 𝐾)    &   (πœ‘ β†’ 𝐹 ∈ 𝐡)    β‡’   (πœ‘ β†’ (𝑋 Β· 𝐹) ∈ 𝐡)
 
Theorempsr0cl 21823* The zero element of the ring of power series. (Contributed by Mario Carneiro, 29-Dec-2014.)
𝑆 = (𝐼 mPwSer 𝑅)    &   (πœ‘ β†’ 𝐼 ∈ 𝑉)    &   (πœ‘ β†’ 𝑅 ∈ Grp)    &   π· = {𝑓 ∈ (β„•0 ↑m 𝐼) ∣ (◑𝑓 β€œ β„•) ∈ Fin}    &    0 = (0gβ€˜π‘…)    &   π΅ = (Baseβ€˜π‘†)    β‡’   (πœ‘ β†’ (𝐷 Γ— { 0 }) ∈ 𝐡)
 
Theorempsr0lid 21824* The zero element of the ring of power series is a left identity. (Contributed by Mario Carneiro, 29-Dec-2014.)
𝑆 = (𝐼 mPwSer 𝑅)    &   (πœ‘ β†’ 𝐼 ∈ 𝑉)    &   (πœ‘ β†’ 𝑅 ∈ Grp)    &   π· = {𝑓 ∈ (β„•0 ↑m 𝐼) ∣ (◑𝑓 β€œ β„•) ∈ Fin}    &    0 = (0gβ€˜π‘…)    &   π΅ = (Baseβ€˜π‘†)    &    + = (+gβ€˜π‘†)    &   (πœ‘ β†’ 𝑋 ∈ 𝐡)    β‡’   (πœ‘ β†’ ((𝐷 Γ— { 0 }) + 𝑋) = 𝑋)
 
Theorempsrnegcl 21825* The negative function in the ring of power series. (Contributed by Mario Carneiro, 29-Dec-2014.)
𝑆 = (𝐼 mPwSer 𝑅)    &   (πœ‘ β†’ 𝐼 ∈ 𝑉)    &   (πœ‘ β†’ 𝑅 ∈ Grp)    &   π· = {𝑓 ∈ (β„•0 ↑m 𝐼) ∣ (◑𝑓 β€œ β„•) ∈ Fin}    &   π‘ = (invgβ€˜π‘…)    &   π΅ = (Baseβ€˜π‘†)    &   (πœ‘ β†’ 𝑋 ∈ 𝐡)    β‡’   (πœ‘ β†’ (𝑁 ∘ 𝑋) ∈ 𝐡)
 
Theorempsrlinv 21826* The negative function in the ring of power series. (Contributed by Mario Carneiro, 29-Dec-2014.)
𝑆 = (𝐼 mPwSer 𝑅)    &   (πœ‘ β†’ 𝐼 ∈ 𝑉)    &   (πœ‘ β†’ 𝑅 ∈ Grp)    &   π· = {𝑓 ∈ (β„•0 ↑m 𝐼) ∣ (◑𝑓 β€œ β„•) ∈ Fin}    &   π‘ = (invgβ€˜π‘…)    &   π΅ = (Baseβ€˜π‘†)    &   (πœ‘ β†’ 𝑋 ∈ 𝐡)    &    0 = (0gβ€˜π‘…)    &    + = (+gβ€˜π‘†)    β‡’   (πœ‘ β†’ ((𝑁 ∘ 𝑋) + 𝑋) = (𝐷 Γ— { 0 }))
 
Theorempsrgrp 21827 The ring of power series is a group. (Contributed by Mario Carneiro, 29-Dec-2014.) (Proof shortened by SN, 7-Feb-2025.)
𝑆 = (𝐼 mPwSer 𝑅)    &   (πœ‘ β†’ 𝐼 ∈ 𝑉)    &   (πœ‘ β†’ 𝑅 ∈ Grp)    β‡’   (πœ‘ β†’ 𝑆 ∈ Grp)
 
TheorempsrgrpOLD 21828 Obsolete proof of psrgrp 21827 as of 7-Feb-2025. (Contributed by Mario Carneiro, 29-Dec-2014.) (Proof modification is discouraged.) (New usage is discouraged.)
𝑆 = (𝐼 mPwSer 𝑅)    &   (πœ‘ β†’ 𝐼 ∈ 𝑉)    &   (πœ‘ β†’ 𝑅 ∈ Grp)    β‡’   (πœ‘ β†’ 𝑆 ∈ Grp)
 
Theorempsr0 21829* The zero element of the ring of power series. (Contributed by Mario Carneiro, 29-Dec-2014.)
𝑆 = (𝐼 mPwSer 𝑅)    &   (πœ‘ β†’ 𝐼 ∈ 𝑉)    &   (πœ‘ β†’ 𝑅 ∈ Grp)    &   π· = {𝑓 ∈ (β„•0 ↑m 𝐼) ∣ (◑𝑓 β€œ β„•) ∈ Fin}    &   π‘‚ = (0gβ€˜π‘…)    &    0 = (0gβ€˜π‘†)    β‡’   (πœ‘ β†’ 0 = (𝐷 Γ— {𝑂}))
 
Theorempsrneg 21830* The negative function of the ring of power series. (Contributed by Mario Carneiro, 29-Dec-2014.)
𝑆 = (𝐼 mPwSer 𝑅)    &   (πœ‘ β†’ 𝐼 ∈ 𝑉)    &   (πœ‘ β†’ 𝑅 ∈ Grp)    &   π· = {𝑓 ∈ (β„•0 ↑m 𝐼) ∣ (◑𝑓 β€œ β„•) ∈ Fin}    &   π‘ = (invgβ€˜π‘…)    &   π΅ = (Baseβ€˜π‘†)    &   π‘€ = (invgβ€˜π‘†)    &   (πœ‘ β†’ 𝑋 ∈ 𝐡)    β‡’   (πœ‘ β†’ (π‘€β€˜π‘‹) = (𝑁 ∘ 𝑋))
 
Theorempsrlmod 21831 The ring of power series is a left module. (Contributed by Mario Carneiro, 29-Dec-2014.)
𝑆 = (𝐼 mPwSer 𝑅)    &   (πœ‘ β†’ 𝐼 ∈ 𝑉)    &   (πœ‘ β†’ 𝑅 ∈ Ring)    β‡’   (πœ‘ β†’ 𝑆 ∈ LMod)
 
Theorempsr1cl 21832* The identity element of the ring of power series. (Contributed by Mario Carneiro, 29-Dec-2014.)
𝑆 = (𝐼 mPwSer 𝑅)    &   (πœ‘ β†’ 𝐼 ∈ 𝑉)    &   (πœ‘ β†’ 𝑅 ∈ Ring)    &   π· = {𝑓 ∈ (β„•0 ↑m 𝐼) ∣ (◑𝑓 β€œ β„•) ∈ Fin}    &    0 = (0gβ€˜π‘…)    &    1 = (1rβ€˜π‘…)    &   π‘ˆ = (π‘₯ ∈ 𝐷 ↦ if(π‘₯ = (𝐼 Γ— {0}), 1 , 0 ))    &   π΅ = (Baseβ€˜π‘†)    β‡’   (πœ‘ β†’ π‘ˆ ∈ 𝐡)
 
Theorempsrlidm 21833* The identity element of the ring of power series is a left identity. (Contributed by Mario Carneiro, 29-Dec-2014.) (Proof shortened by AV, 8-Jul-2019.)
𝑆 = (𝐼 mPwSer 𝑅)    &   (πœ‘ β†’ 𝐼 ∈ 𝑉)    &   (πœ‘ β†’ 𝑅 ∈ Ring)    &   π· = {𝑓 ∈ (β„•0 ↑m 𝐼) ∣ (◑𝑓 β€œ β„•) ∈ Fin}    &    0 = (0gβ€˜π‘…)    &    1 = (1rβ€˜π‘…)    &   π‘ˆ = (π‘₯ ∈ 𝐷 ↦ if(π‘₯ = (𝐼 Γ— {0}), 1 , 0 ))    &   π΅ = (Baseβ€˜π‘†)    &    Β· = (.rβ€˜π‘†)    &   (πœ‘ β†’ 𝑋 ∈ 𝐡)    β‡’   (πœ‘ β†’ (π‘ˆ Β· 𝑋) = 𝑋)
 
Theorempsrridm 21834* The identity element of the ring of power series is a right identity. (Contributed by Mario Carneiro, 29-Dec-2014.) (Proof shortened by AV, 8-Jul-2019.)
𝑆 = (𝐼 mPwSer 𝑅)    &   (πœ‘ β†’ 𝐼 ∈ 𝑉)    &   (πœ‘ β†’ 𝑅 ∈ Ring)    &   π· = {𝑓 ∈ (β„•0 ↑m 𝐼) ∣ (◑𝑓 β€œ β„•) ∈ Fin}    &    0 = (0gβ€˜π‘…)    &    1 = (1rβ€˜π‘…)    &   π‘ˆ = (π‘₯ ∈ 𝐷 ↦ if(π‘₯ = (𝐼 Γ— {0}), 1 , 0 ))    &   π΅ = (Baseβ€˜π‘†)    &    Β· = (.rβ€˜π‘†)    &   (πœ‘ β†’ 𝑋 ∈ 𝐡)    β‡’   (πœ‘ β†’ (𝑋 Β· π‘ˆ) = 𝑋)
 
Theorempsrass1 21835* Associative identity for the ring of power series. (Contributed by Mario Carneiro, 5-Jan-2015.)
𝑆 = (𝐼 mPwSer 𝑅)    &   (πœ‘ β†’ 𝐼 ∈ 𝑉)    &   (πœ‘ β†’ 𝑅 ∈ Ring)    &   π· = {𝑓 ∈ (β„•0 ↑m 𝐼) ∣ (◑𝑓 β€œ β„•) ∈ Fin}    &    Γ— = (.rβ€˜π‘†)    &   π΅ = (Baseβ€˜π‘†)    &   (πœ‘ β†’ 𝑋 ∈ 𝐡)    &   (πœ‘ β†’ π‘Œ ∈ 𝐡)    &   (πœ‘ β†’ 𝑍 ∈ 𝐡)    β‡’   (πœ‘ β†’ ((𝑋 Γ— π‘Œ) Γ— 𝑍) = (𝑋 Γ— (π‘Œ Γ— 𝑍)))
 
Theorempsrdi 21836* Distributive law for the ring of power series (left-distributivity). (Contributed by Mario Carneiro, 7-Jan-2015.)
𝑆 = (𝐼 mPwSer 𝑅)    &   (πœ‘ β†’ 𝐼 ∈ 𝑉)    &   (πœ‘ β†’ 𝑅 ∈ Ring)    &   π· = {𝑓 ∈ (β„•0 ↑m 𝐼) ∣ (◑𝑓 β€œ β„•) ∈ Fin}    &    Γ— = (.rβ€˜π‘†)    &   π΅ = (Baseβ€˜π‘†)    &   (πœ‘ β†’ 𝑋 ∈ 𝐡)    &   (πœ‘ β†’ π‘Œ ∈ 𝐡)    &   (πœ‘ β†’ 𝑍 ∈ 𝐡)    &    + = (+gβ€˜π‘†)    β‡’   (πœ‘ β†’ (𝑋 Γ— (π‘Œ + 𝑍)) = ((𝑋 Γ— π‘Œ) + (𝑋 Γ— 𝑍)))
 
Theorempsrdir 21837* Distributive law for the ring of power series (right-distributivity). (Contributed by Mario Carneiro, 7-Jan-2015.)
𝑆 = (𝐼 mPwSer 𝑅)    &   (πœ‘ β†’ 𝐼 ∈ 𝑉)    &   (πœ‘ β†’ 𝑅 ∈ Ring)    &   π· = {𝑓 ∈ (β„•0 ↑m 𝐼) ∣ (◑𝑓 β€œ β„•) ∈ Fin}    &    Γ— = (.rβ€˜π‘†)    &   π΅ = (Baseβ€˜π‘†)    &   (πœ‘ β†’ 𝑋 ∈ 𝐡)    &   (πœ‘ β†’ π‘Œ ∈ 𝐡)    &   (πœ‘ β†’ 𝑍 ∈ 𝐡)    &    + = (+gβ€˜π‘†)    β‡’   (πœ‘ β†’ ((𝑋 + π‘Œ) Γ— 𝑍) = ((𝑋 Γ— 𝑍) + (π‘Œ Γ— 𝑍)))
 
Theorempsrass23l 21838* Associative identity for the ring of power series. Part of psrass23 21840 which does not require the scalar ring to be commutative. (Contributed by Mario Carneiro, 7-Jan-2015.) (Revised by AV, 14-Aug-2019.)
𝑆 = (𝐼 mPwSer 𝑅)    &   (πœ‘ β†’ 𝐼 ∈ 𝑉)    &   (πœ‘ β†’ 𝑅 ∈ Ring)    &   π· = {𝑓 ∈ (β„•0 ↑m 𝐼) ∣ (◑𝑓 β€œ β„•) ∈ Fin}    &    Γ— = (.rβ€˜π‘†)    &   π΅ = (Baseβ€˜π‘†)    &   (πœ‘ β†’ 𝑋 ∈ 𝐡)    &   (πœ‘ β†’ π‘Œ ∈ 𝐡)    &   πΎ = (Baseβ€˜π‘…)    &    Β· = ( ·𝑠 β€˜π‘†)    &   (πœ‘ β†’ 𝐴 ∈ 𝐾)    β‡’   (πœ‘ β†’ ((𝐴 Β· 𝑋) Γ— π‘Œ) = (𝐴 Β· (𝑋 Γ— π‘Œ)))
 
Theorempsrcom 21839* Commutative law for the ring of power series. (Contributed by Mario Carneiro, 7-Jan-2015.)
𝑆 = (𝐼 mPwSer 𝑅)    &   (πœ‘ β†’ 𝐼 ∈ 𝑉)    &   (πœ‘ β†’ 𝑅 ∈ Ring)    &   π· = {𝑓 ∈ (β„•0 ↑m 𝐼) ∣ (◑𝑓 β€œ β„•) ∈ Fin}    &    Γ— = (.rβ€˜π‘†)    &   π΅ = (Baseβ€˜π‘†)    &   (πœ‘ β†’ 𝑋 ∈ 𝐡)    &   (πœ‘ β†’ π‘Œ ∈ 𝐡)    &   (πœ‘ β†’ 𝑅 ∈ CRing)    β‡’   (πœ‘ β†’ (𝑋 Γ— π‘Œ) = (π‘Œ Γ— 𝑋))
 
Theorempsrass23 21840* Associative identities for the ring of power series. (Contributed by Mario Carneiro, 7-Jan-2015.) (Proof shortened by AV, 25-Nov-2019.)
𝑆 = (𝐼 mPwSer 𝑅)    &   (πœ‘ β†’ 𝐼 ∈ 𝑉)    &   (πœ‘ β†’ 𝑅 ∈ Ring)    &   π· = {𝑓 ∈ (β„•0 ↑m 𝐼) ∣ (◑𝑓 β€œ β„•) ∈ Fin}    &    Γ— = (.rβ€˜π‘†)    &   π΅ = (Baseβ€˜π‘†)    &   (πœ‘ β†’ 𝑋 ∈ 𝐡)    &   (πœ‘ β†’ π‘Œ ∈ 𝐡)    &   (πœ‘ β†’ 𝑅 ∈ CRing)    &   πΎ = (Baseβ€˜π‘…)    &    Β· = ( ·𝑠 β€˜π‘†)    &   (πœ‘ β†’ 𝐴 ∈ 𝐾)    β‡’   (πœ‘ β†’ (((𝐴 Β· 𝑋) Γ— π‘Œ) = (𝐴 Β· (𝑋 Γ— π‘Œ)) ∧ (𝑋 Γ— (𝐴 Β· π‘Œ)) = (𝐴 Β· (𝑋 Γ— π‘Œ))))
 
Theorempsrring 21841 The ring of power series is a ring. (Contributed by Mario Carneiro, 29-Dec-2014.)
𝑆 = (𝐼 mPwSer 𝑅)    &   (πœ‘ β†’ 𝐼 ∈ 𝑉)    &   (πœ‘ β†’ 𝑅 ∈ Ring)    β‡’   (πœ‘ β†’ 𝑆 ∈ Ring)
 
Theorempsr1 21842* The identity element of the ring of power series. (Contributed by Mario Carneiro, 8-Jan-2015.)
𝑆 = (𝐼 mPwSer 𝑅)    &   (πœ‘ β†’ 𝐼 ∈ 𝑉)    &   (πœ‘ β†’ 𝑅 ∈ Ring)    &   π· = {𝑓 ∈ (β„•0 ↑m 𝐼) ∣ (◑𝑓 β€œ β„•) ∈ Fin}    &    0 = (0gβ€˜π‘…)    &    1 = (1rβ€˜π‘…)    &   π‘ˆ = (1rβ€˜π‘†)    β‡’   (πœ‘ β†’ π‘ˆ = (π‘₯ ∈ 𝐷 ↦ if(π‘₯ = (𝐼 Γ— {0}), 1 , 0 )))
 
Theorempsrcrng 21843 The ring of power series is commutative ring. (Contributed by Mario Carneiro, 10-Jan-2015.)
𝑆 = (𝐼 mPwSer 𝑅)    &   (πœ‘ β†’ 𝐼 ∈ 𝑉)    &   (πœ‘ β†’ 𝑅 ∈ CRing)    β‡’   (πœ‘ β†’ 𝑆 ∈ CRing)
 
Theorempsrassa 21844 The ring of power series is an associative algebra. (Contributed by Mario Carneiro, 29-Dec-2014.)
𝑆 = (𝐼 mPwSer 𝑅)    &   (πœ‘ β†’ 𝐼 ∈ 𝑉)    &   (πœ‘ β†’ 𝑅 ∈ CRing)    β‡’   (πœ‘ β†’ 𝑆 ∈ AssAlg)
 
Theoremresspsrbas 21845 A restricted power series algebra has the same base set. (Contributed by Mario Carneiro, 3-Jul-2015.)
𝑆 = (𝐼 mPwSer 𝑅)    &   π» = (𝑅 β†Ύs 𝑇)    &   π‘ˆ = (𝐼 mPwSer 𝐻)    &   π΅ = (Baseβ€˜π‘ˆ)    &   π‘ƒ = (𝑆 β†Ύs 𝐡)    &   (πœ‘ β†’ 𝑇 ∈ (SubRingβ€˜π‘…))    β‡’   (πœ‘ β†’ 𝐡 = (Baseβ€˜π‘ƒ))
 
Theoremresspsradd 21846 A restricted power series algebra has the same addition operation. (Contributed by Mario Carneiro, 3-Jul-2015.)
𝑆 = (𝐼 mPwSer 𝑅)    &   π» = (𝑅 β†Ύs 𝑇)    &   π‘ˆ = (𝐼 mPwSer 𝐻)    &   π΅ = (Baseβ€˜π‘ˆ)    &   π‘ƒ = (𝑆 β†Ύs 𝐡)    &   (πœ‘ β†’ 𝑇 ∈ (SubRingβ€˜π‘…))    β‡’   ((πœ‘ ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡)) β†’ (𝑋(+gβ€˜π‘ˆ)π‘Œ) = (𝑋(+gβ€˜π‘ƒ)π‘Œ))
 
Theoremresspsrmul 21847 A restricted power series algebra has the same multiplication operation. (Contributed by Mario Carneiro, 3-Jul-2015.)
𝑆 = (𝐼 mPwSer 𝑅)    &   π» = (𝑅 β†Ύs 𝑇)    &   π‘ˆ = (𝐼 mPwSer 𝐻)    &   π΅ = (Baseβ€˜π‘ˆ)    &   π‘ƒ = (𝑆 β†Ύs 𝐡)    &   (πœ‘ β†’ 𝑇 ∈ (SubRingβ€˜π‘…))    β‡’   ((πœ‘ ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡)) β†’ (𝑋(.rβ€˜π‘ˆ)π‘Œ) = (𝑋(.rβ€˜π‘ƒ)π‘Œ))
 
Theoremresspsrvsca 21848 A restricted power series algebra has the same scalar multiplication operation. (Contributed by Mario Carneiro, 3-Jul-2015.)
𝑆 = (𝐼 mPwSer 𝑅)    &   π» = (𝑅 β†Ύs 𝑇)    &   π‘ˆ = (𝐼 mPwSer 𝐻)    &   π΅ = (Baseβ€˜π‘ˆ)    &   π‘ƒ = (𝑆 β†Ύs 𝐡)    &   (πœ‘ β†’ 𝑇 ∈ (SubRingβ€˜π‘…))    β‡’   ((πœ‘ ∧ (𝑋 ∈ 𝑇 ∧ π‘Œ ∈ 𝐡)) β†’ (𝑋( ·𝑠 β€˜π‘ˆ)π‘Œ) = (𝑋( ·𝑠 β€˜π‘ƒ)π‘Œ))
 
Theoremsubrgpsr 21849 A subring of the base ring induces a subring of power series. (Contributed by Mario Carneiro, 3-Jul-2015.)
𝑆 = (𝐼 mPwSer 𝑅)    &   π» = (𝑅 β†Ύs 𝑇)    &   π‘ˆ = (𝐼 mPwSer 𝐻)    &   π΅ = (Baseβ€˜π‘ˆ)    β‡’   ((𝐼 ∈ 𝑉 ∧ 𝑇 ∈ (SubRingβ€˜π‘…)) β†’ 𝐡 ∈ (SubRingβ€˜π‘†))
 
Theoremmvrfval 21850* Value of the generating elements of the power series structure. (Contributed by Mario Carneiro, 7-Jan-2015.)
𝑉 = (𝐼 mVar 𝑅)    &   π· = {β„Ž ∈ (β„•0 ↑m 𝐼) ∣ (β—‘β„Ž β€œ β„•) ∈ Fin}    &    0 = (0gβ€˜π‘…)    &    1 = (1rβ€˜π‘…)    &   (πœ‘ β†’ 𝐼 ∈ π‘Š)    &   (πœ‘ β†’ 𝑅 ∈ π‘Œ)    β‡’   (πœ‘ β†’ 𝑉 = (π‘₯ ∈ 𝐼 ↦ (𝑓 ∈ 𝐷 ↦ if(𝑓 = (𝑦 ∈ 𝐼 ↦ if(𝑦 = π‘₯, 1, 0)), 1 , 0 ))))
 
Theoremmvrval 21851* Value of the generating elements of the power series structure. (Contributed by Mario Carneiro, 7-Jan-2015.)
𝑉 = (𝐼 mVar 𝑅)    &   π· = {β„Ž ∈ (β„•0 ↑m 𝐼) ∣ (β—‘β„Ž β€œ β„•) ∈ Fin}    &    0 = (0gβ€˜π‘…)    &    1 = (1rβ€˜π‘…)    &   (πœ‘ β†’ 𝐼 ∈ π‘Š)    &   (πœ‘ β†’ 𝑅 ∈ π‘Œ)    &   (πœ‘ β†’ 𝑋 ∈ 𝐼)    β‡’   (πœ‘ β†’ (π‘‰β€˜π‘‹) = (𝑓 ∈ 𝐷 ↦ if(𝑓 = (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)), 1 , 0 )))
 
Theoremmvrval2 21852* Value of the generating elements of the power series structure. (Contributed by Mario Carneiro, 7-Jan-2015.)
𝑉 = (𝐼 mVar 𝑅)    &   π· = {β„Ž ∈ (β„•0 ↑m 𝐼) ∣ (β—‘β„Ž β€œ β„•) ∈ Fin}    &    0 = (0gβ€˜π‘…)    &    1 = (1rβ€˜π‘…)    &   (πœ‘ β†’ 𝐼 ∈ π‘Š)    &   (πœ‘ β†’ 𝑅 ∈ π‘Œ)    &   (πœ‘ β†’ 𝑋 ∈ 𝐼)    &   (πœ‘ β†’ 𝐹 ∈ 𝐷)    β‡’   (πœ‘ β†’ ((π‘‰β€˜π‘‹)β€˜πΉ) = if(𝐹 = (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)), 1 , 0 ))
 
Theoremmvrid 21853* The 𝑋𝑖-th coefficient of the term 𝑋𝑖 is 1. (Contributed by Mario Carneiro, 7-Jan-2015.)
𝑉 = (𝐼 mVar 𝑅)    &   π· = {β„Ž ∈ (β„•0 ↑m 𝐼) ∣ (β—‘β„Ž β€œ β„•) ∈ Fin}    &    0 = (0gβ€˜π‘…)    &    1 = (1rβ€˜π‘…)    &   (πœ‘ β†’ 𝐼 ∈ π‘Š)    &   (πœ‘ β†’ 𝑅 ∈ π‘Œ)    &   (πœ‘ β†’ 𝑋 ∈ 𝐼)    β‡’   (πœ‘ β†’ ((π‘‰β€˜π‘‹)β€˜(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = 1 )
 
Theoremmvrf 21854 The power series variable function is a function from the index set to elements of the power series structure representing 𝑋𝑖 for each 𝑖. (Contributed by Mario Carneiro, 29-Dec-2014.)
𝑆 = (𝐼 mPwSer 𝑅)    &   π‘‰ = (𝐼 mVar 𝑅)    &   π΅ = (Baseβ€˜π‘†)    &   (πœ‘ β†’ 𝐼 ∈ π‘Š)    &   (πœ‘ β†’ 𝑅 ∈ Ring)    β‡’   (πœ‘ β†’ 𝑉:𝐼⟢𝐡)
 
Theoremmvrf1 21855 The power series variable function is injective if the base ring is nonzero. (Contributed by Mario Carneiro, 29-Dec-2014.)
𝑆 = (𝐼 mPwSer 𝑅)    &   π‘‰ = (𝐼 mVar 𝑅)    &   π΅ = (Baseβ€˜π‘†)    &   (πœ‘ β†’ 𝐼 ∈ π‘Š)    &   (πœ‘ β†’ 𝑅 ∈ Ring)    &    0 = (0gβ€˜π‘…)    &    1 = (1rβ€˜π‘…)    &   (πœ‘ β†’ 1 β‰  0 )    β‡’   (πœ‘ β†’ 𝑉:𝐼–1-1→𝐡)
 
Theoremmvrcl2 21856 A power series variable is an element of the base set. (Contributed by Mario Carneiro, 29-Dec-2014.)
𝑆 = (𝐼 mPwSer 𝑅)    &   π‘‰ = (𝐼 mVar 𝑅)    &   π΅ = (Baseβ€˜π‘†)    &   (πœ‘ β†’ 𝐼 ∈ π‘Š)    &   (πœ‘ β†’ 𝑅 ∈ Ring)    &   (πœ‘ β†’ 𝑋 ∈ 𝐼)    β‡’   (πœ‘ β†’ (π‘‰β€˜π‘‹) ∈ 𝐡)
 
Theoremreldmmpl 21857 The multivariate polynomial constructor is a proper binary operator. (Contributed by Mario Carneiro, 21-Mar-2015.)
Rel dom mPoly
 
Theoremmplval 21858* Value of the set of multivariate polynomials. (Contributed by Mario Carneiro, 7-Jan-2015.) (Revised by Mario Carneiro, 2-Oct-2015.) (Revised by AV, 25-Jun-2019.)
𝑃 = (𝐼 mPoly 𝑅)    &   π‘† = (𝐼 mPwSer 𝑅)    &   π΅ = (Baseβ€˜π‘†)    &    0 = (0gβ€˜π‘…)    &   π‘ˆ = {𝑓 ∈ 𝐡 ∣ 𝑓 finSupp 0 }    β‡’   π‘ƒ = (𝑆 β†Ύs π‘ˆ)
 
Theoremmplbas 21859* Base set of the set of multivariate polynomials. (Contributed by Mario Carneiro, 7-Jan-2015.) (Revised by Mario Carneiro, 2-Oct-2015.) (Revised by AV, 25-Jun-2019.)
𝑃 = (𝐼 mPoly 𝑅)    &   π‘† = (𝐼 mPwSer 𝑅)    &   π΅ = (Baseβ€˜π‘†)    &    0 = (0gβ€˜π‘…)    &   π‘ˆ = (Baseβ€˜π‘ƒ)    β‡’   π‘ˆ = {𝑓 ∈ 𝐡 ∣ 𝑓 finSupp 0 }
 
Theoremmplelbas 21860 Property of being a polynomial. (Contributed by Mario Carneiro, 7-Jan-2015.) (Revised by Mario Carneiro, 2-Oct-2015.) (Revised by AV, 25-Jun-2019.)
𝑃 = (𝐼 mPoly 𝑅)    &   π‘† = (𝐼 mPwSer 𝑅)    &   π΅ = (Baseβ€˜π‘†)    &    0 = (0gβ€˜π‘…)    &   π‘ˆ = (Baseβ€˜π‘ƒ)    β‡’   (𝑋 ∈ π‘ˆ ↔ (𝑋 ∈ 𝐡 ∧ 𝑋 finSupp 0 ))
 
Theoremmvrcl 21861 A power series variable is a polynomial. (Contributed by Mario Carneiro, 9-Jan-2015.)
𝑃 = (𝐼 mPoly 𝑅)    &   π‘‰ = (𝐼 mVar 𝑅)    &   π΅ = (Baseβ€˜π‘ƒ)    &   (πœ‘ β†’ 𝐼 ∈ π‘Š)    &   (πœ‘ β†’ 𝑅 ∈ Ring)    &   (πœ‘ β†’ 𝑋 ∈ 𝐼)    β‡’   (πœ‘ β†’ (π‘‰β€˜π‘‹) ∈ 𝐡)
 
Theoremmvrf2 21862 The power series/polynomial variable function maps indices to polynomials. (Contributed by Stefan O'Rear, 8-Mar-2015.)
𝑃 = (𝐼 mPoly 𝑅)    &   π‘‰ = (𝐼 mVar 𝑅)    &   π΅ = (Baseβ€˜π‘ƒ)    &   (πœ‘ β†’ 𝐼 ∈ π‘Š)    &   (πœ‘ β†’ 𝑅 ∈ Ring)    β‡’   (πœ‘ β†’ 𝑉:𝐼⟢𝐡)
 
Theoremmplrcl 21863 Reverse closure for the polynomial index set. (Contributed by Stefan O'Rear, 19-Mar-2015.) (Revised by Mario Carneiro, 30-Aug-2015.)
𝑃 = (𝐼 mPoly 𝑅)    &   π΅ = (Baseβ€˜π‘ƒ)    β‡’   (𝑋 ∈ 𝐡 β†’ 𝐼 ∈ V)
 
Theoremmplelsfi 21864 A polynomial treated as a coefficient function has finitely many nonzero terms. (Contributed by Stefan O'Rear, 22-Mar-2015.) (Revised by AV, 25-Jun-2019.)
𝑃 = (𝐼 mPoly 𝑅)    &   π΅ = (Baseβ€˜π‘ƒ)    &    0 = (0gβ€˜π‘…)    &   (πœ‘ β†’ 𝐹 ∈ 𝐡)    &   (πœ‘ β†’ 𝑅 ∈ 𝑉)    β‡’   (πœ‘ β†’ 𝐹 finSupp 0 )
 
Theoremmplval2 21865 Self-referential expression for the set of multivariate polynomials. (Contributed by Mario Carneiro, 7-Jan-2015.) (Revised by Mario Carneiro, 2-Oct-2015.)
𝑃 = (𝐼 mPoly 𝑅)    &   π‘† = (𝐼 mPwSer 𝑅)    &   π‘ˆ = (Baseβ€˜π‘ƒ)    β‡’   π‘ƒ = (𝑆 β†Ύs π‘ˆ)
 
Theoremmplbasss 21866 The set of polynomials is a subset of the set of power series. (Contributed by Mario Carneiro, 7-Jan-2015.) (Revised by Mario Carneiro, 2-Oct-2015.)
𝑃 = (𝐼 mPoly 𝑅)    &   π‘† = (𝐼 mPwSer 𝑅)    &   π‘ˆ = (Baseβ€˜π‘ƒ)    &   π΅ = (Baseβ€˜π‘†)    β‡’   π‘ˆ βŠ† 𝐡
 
Theoremmplelf 21867* A polynomial is defined as a function on the coefficients. (Contributed by Mario Carneiro, 7-Jan-2015.) (Revised by Mario Carneiro, 2-Oct-2015.)
𝑃 = (𝐼 mPoly 𝑅)    &   πΎ = (Baseβ€˜π‘…)    &   π΅ = (Baseβ€˜π‘ƒ)    &   π· = {𝑓 ∈ (β„•0 ↑m 𝐼) ∣ (◑𝑓 β€œ β„•) ∈ Fin}    &   (πœ‘ β†’ 𝑋 ∈ 𝐡)    β‡’   (πœ‘ β†’ 𝑋:𝐷⟢𝐾)
 
Theoremmplsubglem 21868* If 𝐴 is an ideal of sets (a nonempty collection closed under subset and binary union) of the set 𝐷 of finite bags (the primary applications being 𝐴 = Fin and 𝐴 = 𝒫 𝐡 for some 𝐡), then the set of all power series whose coefficient functions are supported on an element of 𝐴 is a subgroup of the set of all power series. (Contributed by Mario Carneiro, 12-Jan-2015.) (Revised by AV, 16-Jul-2019.)
𝑆 = (𝐼 mPwSer 𝑅)    &   π΅ = (Baseβ€˜π‘†)    &    0 = (0gβ€˜π‘…)    &   π· = {𝑓 ∈ (β„•0 ↑m 𝐼) ∣ (◑𝑓 β€œ β„•) ∈ Fin}    &   (πœ‘ β†’ 𝐼 ∈ π‘Š)    &   (πœ‘ β†’ βˆ… ∈ 𝐴)    &   ((πœ‘ ∧ (π‘₯ ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) β†’ (π‘₯ βˆͺ 𝑦) ∈ 𝐴)    &   ((πœ‘ ∧ (π‘₯ ∈ 𝐴 ∧ 𝑦 βŠ† π‘₯)) β†’ 𝑦 ∈ 𝐴)    &   (πœ‘ β†’ π‘ˆ = {𝑔 ∈ 𝐡 ∣ (𝑔 supp 0 ) ∈ 𝐴})    &   (πœ‘ β†’ 𝑅 ∈ Grp)    β‡’   (πœ‘ β†’ π‘ˆ ∈ (SubGrpβ€˜π‘†))
 
Theoremmpllsslem 21869* If 𝐴 is an ideal of subsets (a nonempty collection closed under subset and binary union) of the set 𝐷 of finite bags (the primary applications being 𝐴 = Fin and 𝐴 = 𝒫 𝐡 for some 𝐡), then the set of all power series whose coefficient functions are supported on an element of 𝐴 is a linear subspace of the set of all power series. (Contributed by Mario Carneiro, 12-Jan-2015.) (Revised by AV, 16-Jul-2019.)
𝑆 = (𝐼 mPwSer 𝑅)    &   π΅ = (Baseβ€˜π‘†)    &    0 = (0gβ€˜π‘…)    &   π· = {𝑓 ∈ (β„•0 ↑m 𝐼) ∣ (◑𝑓 β€œ β„•) ∈ Fin}    &   (πœ‘ β†’ 𝐼 ∈ π‘Š)    &   (πœ‘ β†’ βˆ… ∈ 𝐴)    &   ((πœ‘ ∧ (π‘₯ ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) β†’ (π‘₯ βˆͺ 𝑦) ∈ 𝐴)    &   ((πœ‘ ∧ (π‘₯ ∈ 𝐴 ∧ 𝑦 βŠ† π‘₯)) β†’ 𝑦 ∈ 𝐴)    &   (πœ‘ β†’ π‘ˆ = {𝑔 ∈ 𝐡 ∣ (𝑔 supp 0 ) ∈ 𝐴})    &   (πœ‘ β†’ 𝑅 ∈ Ring)    β‡’   (πœ‘ β†’ π‘ˆ ∈ (LSubSpβ€˜π‘†))
 
Theoremmplsubglem2 21870* Lemma for mplsubg 21871 and mpllss 21872. (Contributed by AV, 16-Jul-2019.)
𝑆 = (𝐼 mPwSer 𝑅)    &   π‘ƒ = (𝐼 mPoly 𝑅)    &   π‘ˆ = (Baseβ€˜π‘ƒ)    &   (πœ‘ β†’ 𝐼 ∈ π‘Š)    β‡’   (πœ‘ β†’ π‘ˆ = {𝑔 ∈ (Baseβ€˜π‘†) ∣ (𝑔 supp (0gβ€˜π‘…)) ∈ Fin})
 
Theoremmplsubg 21871 The set of polynomials is closed under addition, i.e. it is a subgroup of the set of power series. (Contributed by Mario Carneiro, 8-Jan-2015.) (Proof shortened by AV, 16-Jul-2019.)
𝑆 = (𝐼 mPwSer 𝑅)    &   π‘ƒ = (𝐼 mPoly 𝑅)    &   π‘ˆ = (Baseβ€˜π‘ƒ)    &   (πœ‘ β†’ 𝐼 ∈ π‘Š)    &   (πœ‘ β†’ 𝑅 ∈ Grp)    β‡’   (πœ‘ β†’ π‘ˆ ∈ (SubGrpβ€˜π‘†))
 
Theoremmpllss 21872 The set of polynomials is closed under scalar multiplication, i.e. it is a linear subspace of the set of power series. (Contributed by Mario Carneiro, 7-Jan-2015.) (Proof shortened by AV, 16-Jul-2019.)
𝑆 = (𝐼 mPwSer 𝑅)    &   π‘ƒ = (𝐼 mPoly 𝑅)    &   π‘ˆ = (Baseβ€˜π‘ƒ)    &   (πœ‘ β†’ 𝐼 ∈ π‘Š)    &   (πœ‘ β†’ 𝑅 ∈ Ring)    β‡’   (πœ‘ β†’ π‘ˆ ∈ (LSubSpβ€˜π‘†))
 
Theoremmplsubrglem 21873* Lemma for mplsubrg 21874. (Contributed by Mario Carneiro, 9-Jan-2015.) (Revised by AV, 18-Jul-2019.)
𝑆 = (𝐼 mPwSer 𝑅)    &   π‘ƒ = (𝐼 mPoly 𝑅)    &   π‘ˆ = (Baseβ€˜π‘ƒ)    &   (πœ‘ β†’ 𝐼 ∈ π‘Š)    &   (πœ‘ β†’ 𝑅 ∈ Ring)    &   π· = {𝑓 ∈ (β„•0 ↑m 𝐼) ∣ (◑𝑓 β€œ β„•) ∈ Fin}    &    0 = (0gβ€˜π‘…)    &   π΄ = ( ∘f + β€œ ((𝑋 supp 0 ) Γ— (π‘Œ supp 0 )))    &    Β· = (.rβ€˜π‘…)    &   (πœ‘ β†’ 𝑋 ∈ π‘ˆ)    &   (πœ‘ β†’ π‘Œ ∈ π‘ˆ)    β‡’   (πœ‘ β†’ (𝑋(.rβ€˜π‘†)π‘Œ) ∈ π‘ˆ)
 
Theoremmplsubrg 21874 The set of polynomials is closed under multiplication, i.e. it is a subring of the set of power series. (Contributed by Mario Carneiro, 9-Jan-2015.)
𝑆 = (𝐼 mPwSer 𝑅)    &   π‘ƒ = (𝐼 mPoly 𝑅)    &   π‘ˆ = (Baseβ€˜π‘ƒ)    &   (πœ‘ β†’ 𝐼 ∈ π‘Š)    &   (πœ‘ β†’ 𝑅 ∈ Ring)    β‡’   (πœ‘ β†’ π‘ˆ ∈ (SubRingβ€˜π‘†))
 
Theoremmpl0 21875* The zero polynomial. (Contributed by Mario Carneiro, 9-Jan-2015.)
𝑃 = (𝐼 mPoly 𝑅)    &   π· = {𝑓 ∈ (β„•0 ↑m 𝐼) ∣ (◑𝑓 β€œ β„•) ∈ Fin}    &   π‘‚ = (0gβ€˜π‘…)    &    0 = (0gβ€˜π‘ƒ)    &   (πœ‘ β†’ 𝐼 ∈ π‘Š)    &   (πœ‘ β†’ 𝑅 ∈ Grp)    β‡’   (πœ‘ β†’ 0 = (𝐷 Γ— {𝑂}))
 
Theoremmplplusg 21876 Value of addition in a polynomial ring. (Contributed by Stefan O'Rear, 21-Mar-2015.) (Revised by Mario Carneiro, 2-Oct-2015.)
π‘Œ = (𝐼 mPoly 𝑅)    &   π‘† = (𝐼 mPwSer 𝑅)    &    + = (+gβ€˜π‘Œ)    β‡’    + = (+gβ€˜π‘†)
 
Theoremmplmulr 21877 Value of multiplication in a polynomial ring. (Contributed by Stefan O'Rear, 21-Mar-2015.) (Revised by Mario Carneiro, 2-Oct-2015.)
π‘Œ = (𝐼 mPoly 𝑅)    &   π‘† = (𝐼 mPwSer 𝑅)    &    Β· = (.rβ€˜π‘Œ)    β‡’    Β· = (.rβ€˜π‘†)
 
Theoremmpladd 21878 The addition operation on multivariate polynomials. (Contributed by Mario Carneiro, 9-Jan-2015.) (Revised by Mario Carneiro, 2-Oct-2015.)
𝑃 = (𝐼 mPoly 𝑅)    &   π΅ = (Baseβ€˜π‘ƒ)    &    + = (+gβ€˜π‘…)    &    ✚ = (+gβ€˜π‘ƒ)    &   (πœ‘ β†’ 𝑋 ∈ 𝐡)    &   (πœ‘ β†’ π‘Œ ∈ 𝐡)    β‡’   (πœ‘ β†’ (𝑋 ✚ π‘Œ) = (𝑋 ∘f + π‘Œ))
 
Theoremmplneg 21879 The negative function on multivariate polynomials. (Contributed by SN, 25-May-2024.)
𝑃 = (𝐼 mPoly 𝑅)    &   π΅ = (Baseβ€˜π‘ƒ)    &   π‘ = (invgβ€˜π‘…)    &   π‘€ = (invgβ€˜π‘ƒ)    &   (πœ‘ β†’ 𝐼 ∈ 𝑉)    &   (πœ‘ β†’ 𝑅 ∈ Grp)    &   (πœ‘ β†’ 𝑋 ∈ 𝐡)    β‡’   (πœ‘ β†’ (π‘€β€˜π‘‹) = (𝑁 ∘ 𝑋))
 
Theoremmplmul 21880* The multiplication operation on multivariate polynomials. (Contributed by Mario Carneiro, 9-Jan-2015.)
𝑃 = (𝐼 mPoly 𝑅)    &   π΅ = (Baseβ€˜π‘ƒ)    &    Β· = (.rβ€˜π‘…)    &    βˆ™ = (.rβ€˜π‘ƒ)    &   π· = {β„Ž ∈ (β„•0 ↑m 𝐼) ∣ (β—‘β„Ž β€œ β„•) ∈ Fin}    &   (πœ‘ β†’ 𝐹 ∈ 𝐡)    &   (πœ‘ β†’ 𝐺 ∈ 𝐡)    β‡’   (πœ‘ β†’ (𝐹 βˆ™ 𝐺) = (π‘˜ ∈ 𝐷 ↦ (𝑅 Ξ£g (π‘₯ ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≀ π‘˜} ↦ ((πΉβ€˜π‘₯) Β· (πΊβ€˜(π‘˜ ∘f βˆ’ π‘₯)))))))
 
Theoremmpl1 21881* The identity element of the ring of polynomials. (Contributed by Mario Carneiro, 10-Jan-2015.)
𝑃 = (𝐼 mPoly 𝑅)    &   π· = {𝑓 ∈ (β„•0 ↑m 𝐼) ∣ (◑𝑓 β€œ β„•) ∈ Fin}    &    0 = (0gβ€˜π‘…)    &    1 = (1rβ€˜π‘…)    &   π‘ˆ = (1rβ€˜π‘ƒ)    &   (πœ‘ β†’ 𝐼 ∈ π‘Š)    &   (πœ‘ β†’ 𝑅 ∈ Ring)    β‡’   (πœ‘ β†’ π‘ˆ = (π‘₯ ∈ 𝐷 ↦ if(π‘₯ = (𝐼 Γ— {0}), 1 , 0 )))
 
Theoremmplsca 21882 The scalar field of a multivariate polynomial structure. (Contributed by Mario Carneiro, 9-Jan-2015.)
𝑃 = (𝐼 mPoly 𝑅)    &   (πœ‘ β†’ 𝐼 ∈ 𝑉)    &   (πœ‘ β†’ 𝑅 ∈ π‘Š)    β‡’   (πœ‘ β†’ 𝑅 = (Scalarβ€˜π‘ƒ))
 
Theoremmplvsca2 21883 The scalar multiplication operation on multivariate polynomials. (Contributed by Mario Carneiro, 9-Jan-2015.)
𝑃 = (𝐼 mPoly 𝑅)    &   π‘† = (𝐼 mPwSer 𝑅)    &    Β· = ( ·𝑠 β€˜π‘ƒ)    β‡’    Β· = ( ·𝑠 β€˜π‘†)
 
Theoremmplvsca 21884* The scalar multiplication operation on multivariate polynomials. (Contributed by Mario Carneiro, 9-Jan-2015.) (Revised by Mario Carneiro, 2-Oct-2015.)
𝑃 = (𝐼 mPoly 𝑅)    &    βˆ™ = ( ·𝑠 β€˜π‘ƒ)    &   πΎ = (Baseβ€˜π‘…)    &   π΅ = (Baseβ€˜π‘ƒ)    &    Β· = (.rβ€˜π‘…)    &   π· = {β„Ž ∈ (β„•0 ↑m 𝐼) ∣ (β—‘β„Ž β€œ β„•) ∈ Fin}    &   (πœ‘ β†’ 𝑋 ∈ 𝐾)    &   (πœ‘ β†’ 𝐹 ∈ 𝐡)    β‡’   (πœ‘ β†’ (𝑋 βˆ™ 𝐹) = ((𝐷 Γ— {𝑋}) ∘f Β· 𝐹))
 
Theoremmplvscaval 21885* The scalar multiplication operation on multivariate polynomials. (Contributed by Mario Carneiro, 9-Jan-2015.)
𝑃 = (𝐼 mPoly 𝑅)    &    βˆ™ = ( ·𝑠 β€˜π‘ƒ)    &   πΎ = (Baseβ€˜π‘…)    &   π΅ = (Baseβ€˜π‘ƒ)    &    Β· = (.rβ€˜π‘…)    &   π· = {β„Ž ∈ (β„•0 ↑m 𝐼) ∣ (β—‘β„Ž β€œ β„•) ∈ Fin}    &   (πœ‘ β†’ 𝑋 ∈ 𝐾)    &   (πœ‘ β†’ 𝐹 ∈ 𝐡)    &   (πœ‘ β†’ π‘Œ ∈ 𝐷)    β‡’   (πœ‘ β†’ ((𝑋 βˆ™ 𝐹)β€˜π‘Œ) = (𝑋 Β· (πΉβ€˜π‘Œ)))
 
Theoremmplgrp 21886 The polynomial ring is a group. (Contributed by Mario Carneiro, 9-Jan-2015.)
𝑃 = (𝐼 mPoly 𝑅)    β‡’   ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Grp) β†’ 𝑃 ∈ Grp)
 
Theoremmpllmod 21887 The polynomial ring is a left module. (Contributed by Mario Carneiro, 9-Jan-2015.)
𝑃 = (𝐼 mPoly 𝑅)    β‡’   ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring) β†’ 𝑃 ∈ LMod)
 
Theoremmplring 21888 The polynomial ring is a ring. (Contributed by Mario Carneiro, 9-Jan-2015.)
𝑃 = (𝐼 mPoly 𝑅)    β‡’   ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring) β†’ 𝑃 ∈ Ring)
 
Theoremmpllvec 21889 The polynomial ring is a vector space. (Contributed by SN, 29-Feb-2024.)
𝑃 = (𝐼 mPoly 𝑅)    β‡’   ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ DivRing) β†’ 𝑃 ∈ LVec)
 
Theoremmplcrng 21890 The polynomial ring is a commutative ring. (Contributed by Mario Carneiro, 9-Jan-2015.)
𝑃 = (𝐼 mPoly 𝑅)    β‡’   ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ CRing) β†’ 𝑃 ∈ CRing)
 
Theoremmplassa 21891 The polynomial ring is an associative algebra. (Contributed by Mario Carneiro, 9-Jan-2015.)
𝑃 = (𝐼 mPoly 𝑅)    β‡’   ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ CRing) β†’ 𝑃 ∈ AssAlg)
 
Theoremressmplbas2 21892 The base set of a restricted polynomial algebra consists of power series in the subring which are also polynomials (in the parent ring). (Contributed by Mario Carneiro, 3-Jul-2015.)
𝑆 = (𝐼 mPoly 𝑅)    &   π» = (𝑅 β†Ύs 𝑇)    &   π‘ˆ = (𝐼 mPoly 𝐻)    &   π΅ = (Baseβ€˜π‘ˆ)    &   (πœ‘ β†’ 𝐼 ∈ 𝑉)    &   (πœ‘ β†’ 𝑇 ∈ (SubRingβ€˜π‘…))    &   π‘Š = (𝐼 mPwSer 𝐻)    &   πΆ = (Baseβ€˜π‘Š)    &   πΎ = (Baseβ€˜π‘†)    β‡’   (πœ‘ β†’ 𝐡 = (𝐢 ∩ 𝐾))
 
Theoremressmplbas 21893 A restricted polynomial algebra has the same base set. (Contributed by Mario Carneiro, 3-Jul-2015.)
𝑆 = (𝐼 mPoly 𝑅)    &   π» = (𝑅 β†Ύs 𝑇)    &   π‘ˆ = (𝐼 mPoly 𝐻)    &   π΅ = (Baseβ€˜π‘ˆ)    &   (πœ‘ β†’ 𝐼 ∈ 𝑉)    &   (πœ‘ β†’ 𝑇 ∈ (SubRingβ€˜π‘…))    &   π‘ƒ = (𝑆 β†Ύs 𝐡)    β‡’   (πœ‘ β†’ 𝐡 = (Baseβ€˜π‘ƒ))
 
Theoremressmpladd 21894 A restricted polynomial algebra has the same addition operation. (Contributed by Mario Carneiro, 3-Jul-2015.)
𝑆 = (𝐼 mPoly 𝑅)    &   π» = (𝑅 β†Ύs 𝑇)    &   π‘ˆ = (𝐼 mPoly 𝐻)    &   π΅ = (Baseβ€˜π‘ˆ)    &   (πœ‘ β†’ 𝐼 ∈ 𝑉)    &   (πœ‘ β†’ 𝑇 ∈ (SubRingβ€˜π‘…))    &   π‘ƒ = (𝑆 β†Ύs 𝐡)    β‡’   ((πœ‘ ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡)) β†’ (𝑋(+gβ€˜π‘ˆ)π‘Œ) = (𝑋(+gβ€˜π‘ƒ)π‘Œ))
 
Theoremressmplmul 21895 A restricted polynomial algebra has the same multiplication operation. (Contributed by Mario Carneiro, 3-Jul-2015.)
𝑆 = (𝐼 mPoly 𝑅)    &   π» = (𝑅 β†Ύs 𝑇)    &   π‘ˆ = (𝐼 mPoly 𝐻)    &   π΅ = (Baseβ€˜π‘ˆ)    &   (πœ‘ β†’ 𝐼 ∈ 𝑉)    &   (πœ‘ β†’ 𝑇 ∈ (SubRingβ€˜π‘…))    &   π‘ƒ = (𝑆 β†Ύs 𝐡)    β‡’   ((πœ‘ ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡)) β†’ (𝑋(.rβ€˜π‘ˆ)π‘Œ) = (𝑋(.rβ€˜π‘ƒ)π‘Œ))
 
Theoremressmplvsca 21896 A restricted power series algebra has the same scalar multiplication operation. (Contributed by Mario Carneiro, 3-Jul-2015.)
𝑆 = (𝐼 mPoly 𝑅)    &   π» = (𝑅 β†Ύs 𝑇)    &   π‘ˆ = (𝐼 mPoly 𝐻)    &   π΅ = (Baseβ€˜π‘ˆ)    &   (πœ‘ β†’ 𝐼 ∈ 𝑉)    &   (πœ‘ β†’ 𝑇 ∈ (SubRingβ€˜π‘…))    &   π‘ƒ = (𝑆 β†Ύs 𝐡)    β‡’   ((πœ‘ ∧ (𝑋 ∈ 𝑇 ∧ π‘Œ ∈ 𝐡)) β†’ (𝑋( ·𝑠 β€˜π‘ˆ)π‘Œ) = (𝑋( ·𝑠 β€˜π‘ƒ)π‘Œ))
 
Theoremsubrgmpl 21897 A subring of the base ring induces a subring of polynomials. (Contributed by Mario Carneiro, 3-Jul-2015.)
𝑆 = (𝐼 mPoly 𝑅)    &   π» = (𝑅 β†Ύs 𝑇)    &   π‘ˆ = (𝐼 mPoly 𝐻)    &   π΅ = (Baseβ€˜π‘ˆ)    β‡’   ((𝐼 ∈ 𝑉 ∧ 𝑇 ∈ (SubRingβ€˜π‘…)) β†’ 𝐡 ∈ (SubRingβ€˜π‘†))
 
Theoremsubrgmvr 21898 The variables in a subring polynomial algebra are the same as the original ring. (Contributed by Mario Carneiro, 4-Jul-2015.)
𝑉 = (𝐼 mVar 𝑅)    &   (πœ‘ β†’ 𝐼 ∈ π‘Š)    &   (πœ‘ β†’ 𝑇 ∈ (SubRingβ€˜π‘…))    &   π» = (𝑅 β†Ύs 𝑇)    β‡’   (πœ‘ β†’ 𝑉 = (𝐼 mVar 𝐻))
 
Theoremsubrgmvrf 21899 The variables in a polynomial algebra are contained in every subring algebra. (Contributed by Mario Carneiro, 4-Jul-2015.)
𝑉 = (𝐼 mVar 𝑅)    &   (πœ‘ β†’ 𝐼 ∈ π‘Š)    &   (πœ‘ β†’ 𝑇 ∈ (SubRingβ€˜π‘…))    &   π» = (𝑅 β†Ύs 𝑇)    &   π‘ˆ = (𝐼 mPoly 𝐻)    &   π΅ = (Baseβ€˜π‘ˆ)    β‡’   (πœ‘ β†’ 𝑉:𝐼⟢𝐡)
 
Theoremmplmon 21900* A monomial is a polynomial. (Contributed by Mario Carneiro, 9-Jan-2015.)
𝑃 = (𝐼 mPoly 𝑅)    &   π΅ = (Baseβ€˜π‘ƒ)    &    0 = (0gβ€˜π‘…)    &    1 = (1rβ€˜π‘…)    &   π· = {𝑓 ∈ (β„•0 ↑m 𝐼) ∣ (◑𝑓 β€œ β„•) ∈ Fin}    &   (πœ‘ β†’ 𝐼 ∈ π‘Š)    &   (πœ‘ β†’ 𝑅 ∈ Ring)    &   (πœ‘ β†’ 𝑋 ∈ 𝐷)    β‡’   (πœ‘ β†’ (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 )) ∈ 𝐡)
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42600 427 42601-42700 428 42701-42800 429 42801-42900 430 42901-43000 431 43001-43100 432 43101-43200 433 43201-43300 434 43301-43400 435 43401-43500 436 43501-43600 437 43601-43700 438 43701-43800 439 43801-43900 440 43901-44000 441 44001-44100 442 44101-44200 443 44201-44300 444 44301-44400 445 44401-44500 446 44501-44600 447 44601-44700 448 44701-44800 449 44801-44900 450 44901-45000 451 45001-45100 452 45101-45200 453 45201-45300 454 45301-45400 455 45401-45500 456 45501-45600 457 45601-45700 458 45701-45800 459 45801-45900 460 45901-46000 461 46001-46100 462 46101-46200 463 46201-46300 464 46301-46400 465 46401-46500 466 46501-46600 467 46601-46700 468 46701-46800 469 46801-46900 470 46901-47000 471 47001-47100 472 47101-47200 473 47201-47300 474 47301-47400 475 47401-47500 476 47501-47600 477 47601-47700 478 47701-47800 479 47801-47900 480 47901-48000 481 48001-48040
  Copyright terms: Public domain < Previous  Next >