![]() |
Metamath
Proof Explorer Theorem List (p. 219 of 481) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-30640) |
![]() (30641-32163) |
![]() (32164-48040) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | gsumbagdiagOLD 21801* | Obsolete version of gsumbagdiag 21804 as of 6-Aug-2024. (Contributed by Mario Carneiro, 5-Jan-2015.) (Proof modification is discouraged.) (New usage is discouraged.) |
β’ π· = {π β (β0 βm πΌ) β£ (β‘π β β) β Fin} & β’ π = {π¦ β π· β£ π¦ βr β€ πΉ} & β’ (π β πΌ β π) & β’ (π β πΉ β π·) & β’ π΅ = (BaseβπΊ) & β’ (π β πΊ β CMnd) & β’ ((π β§ (π β π β§ π β {π₯ β π· β£ π₯ βr β€ (πΉ βf β π)})) β π β π΅) β β’ (π β (πΊ Ξ£g (π β π, π β {π₯ β π· β£ π₯ βr β€ (πΉ βf β π)} β¦ π)) = (πΊ Ξ£g (π β π, π β {π₯ β π· β£ π₯ βr β€ (πΉ βf β π)} β¦ π))) | ||
Theorem | psrass1lemOLD 21802* | Obsolete version of psrass1lem 21805 as of 7-Aug-2024. (Contributed by Mario Carneiro, 5-Jan-2015.) (New usage is discouraged.) (Proof modification is discouraged.) |
β’ π· = {π β (β0 βm πΌ) β£ (β‘π β β) β Fin} & β’ π = {π¦ β π· β£ π¦ βr β€ πΉ} & β’ (π β πΌ β π) & β’ (π β πΉ β π·) & β’ π΅ = (BaseβπΊ) & β’ (π β πΊ β CMnd) & β’ ((π β§ (π β π β§ π β {π₯ β π· β£ π₯ βr β€ (πΉ βf β π)})) β π β π΅) & β’ (π = (π βf β π) β π = π) β β’ (π β (πΊ Ξ£g (π β π β¦ (πΊ Ξ£g (π β {π₯ β π· β£ π₯ βr β€ π} β¦ π)))) = (πΊ Ξ£g (π β π β¦ (πΊ Ξ£g (π β {π₯ β π· β£ π₯ βr β€ (πΉ βf β π)} β¦ π))))) | ||
Theorem | gsumbagdiaglem 21803* | Lemma for gsumbagdiag 21804. (Contributed by Mario Carneiro, 5-Jan-2015.) Remove a sethood hypothesis. (Revised by SN, 6-Aug-2024.) |
β’ π· = {π β (β0 βm πΌ) β£ (β‘π β β) β Fin} & β’ π = {π¦ β π· β£ π¦ βr β€ πΉ} & β’ (π β πΉ β π·) β β’ ((π β§ (π β π β§ π β {π₯ β π· β£ π₯ βr β€ (πΉ βf β π)})) β (π β π β§ π β {π₯ β π· β£ π₯ βr β€ (πΉ βf β π)})) | ||
Theorem | gsumbagdiag 21804* | Two-dimensional commutation of a group sum over a "triangular" region. fsum0diag 15720 analogue for finite bags. (Contributed by Mario Carneiro, 5-Jan-2015.) Remove a sethood hypothesis. (Revised by SN, 6-Aug-2024.) |
β’ π· = {π β (β0 βm πΌ) β£ (β‘π β β) β Fin} & β’ π = {π¦ β π· β£ π¦ βr β€ πΉ} & β’ (π β πΉ β π·) & β’ π΅ = (BaseβπΊ) & β’ (π β πΊ β CMnd) & β’ ((π β§ (π β π β§ π β {π₯ β π· β£ π₯ βr β€ (πΉ βf β π)})) β π β π΅) β β’ (π β (πΊ Ξ£g (π β π, π β {π₯ β π· β£ π₯ βr β€ (πΉ βf β π)} β¦ π)) = (πΊ Ξ£g (π β π, π β {π₯ β π· β£ π₯ βr β€ (πΉ βf β π)} β¦ π))) | ||
Theorem | psrass1lem 21805* | A group sum commutation used by psrass1 21835. (Contributed by Mario Carneiro, 5-Jan-2015.) Remove a sethood hypothesis. (Revised by SN, 7-Aug-2024.) |
β’ π· = {π β (β0 βm πΌ) β£ (β‘π β β) β Fin} & β’ π = {π¦ β π· β£ π¦ βr β€ πΉ} & β’ (π β πΉ β π·) & β’ π΅ = (BaseβπΊ) & β’ (π β πΊ β CMnd) & β’ ((π β§ (π β π β§ π β {π₯ β π· β£ π₯ βr β€ (πΉ βf β π)})) β π β π΅) & β’ (π = (π βf β π) β π = π) β β’ (π β (πΊ Ξ£g (π β π β¦ (πΊ Ξ£g (π β {π₯ β π· β£ π₯ βr β€ π} β¦ π)))) = (πΊ Ξ£g (π β π β¦ (πΊ Ξ£g (π β {π₯ β π· β£ π₯ βr β€ (πΉ βf β π)} β¦ π))))) | ||
Theorem | psrbas 21806* | The base set of the multivariate power series structure. (Contributed by Mario Carneiro, 28-Dec-2014.) (Revised by Mario Carneiro, 2-Oct-2015.) (Proof shortened by AV, 8-Jul-2019.) |
β’ π = (πΌ mPwSer π ) & β’ πΎ = (Baseβπ ) & β’ π· = {π β (β0 βm πΌ) β£ (β‘π β β) β Fin} & β’ π΅ = (Baseβπ) & β’ (π β πΌ β π) β β’ (π β π΅ = (πΎ βm π·)) | ||
Theorem | psrelbas 21807* | An element of the set of power series is a function on the coefficients. (Contributed by Mario Carneiro, 28-Dec-2014.) |
β’ π = (πΌ mPwSer π ) & β’ πΎ = (Baseβπ ) & β’ π· = {π β (β0 βm πΌ) β£ (β‘π β β) β Fin} & β’ π΅ = (Baseβπ) & β’ (π β π β π΅) β β’ (π β π:π·βΆπΎ) | ||
Theorem | psrelbasfun 21808 | An element of the set of power series is a function. (Contributed by AV, 17-Jul-2019.) |
β’ π = (πΌ mPwSer π ) & β’ π΅ = (Baseβπ) β β’ (π β π΅ β Fun π) | ||
Theorem | psrplusg 21809 | The addition operation of the multivariate power series structure. (Contributed by Mario Carneiro, 28-Dec-2014.) (Revised by Mario Carneiro, 2-Oct-2015.) |
β’ π = (πΌ mPwSer π ) & β’ π΅ = (Baseβπ) & β’ + = (+gβπ ) & β’ β = (+gβπ) β β’ β = ( βf + βΎ (π΅ Γ π΅)) | ||
Theorem | psradd 21810 | The addition operation of the multivariate power series structure. (Contributed by Mario Carneiro, 28-Dec-2014.) |
β’ π = (πΌ mPwSer π ) & β’ π΅ = (Baseβπ) & β’ + = (+gβπ ) & β’ β = (+gβπ) & β’ (π β π β π΅) & β’ (π β π β π΅) β β’ (π β (π β π) = (π βf + π)) | ||
Theorem | psraddcl 21811 | Closure of the power series addition operation. (Contributed by Mario Carneiro, 28-Dec-2014.) Generalize to magmas. (Revised by SN, 12-Apr-2025.) |
β’ π = (πΌ mPwSer π ) & β’ π΅ = (Baseβπ) & β’ + = (+gβπ) & β’ (π β π β Mgm) & β’ (π β π β π΅) & β’ (π β π β π΅) β β’ (π β (π + π) β π΅) | ||
Theorem | psraddclOLD 21812 | Obsolete version of psraddcl 21811 as of 12-Apr-2025. (Contributed by Mario Carneiro, 28-Dec-2014.) (Proof modification is discouraged.) (New usage is discouraged.) |
β’ π = (πΌ mPwSer π ) & β’ π΅ = (Baseβπ) & β’ + = (+gβπ) & β’ (π β π β Grp) & β’ (π β π β π΅) & β’ (π β π β π΅) β β’ (π β (π + π) β π΅) | ||
Theorem | psrmulr 21813* | The multiplication operation of the multivariate power series structure. (Contributed by Mario Carneiro, 28-Dec-2014.) (Revised by Mario Carneiro, 2-Oct-2015.) (Proof shortened by AV, 2-Mar-2024.) |
β’ π = (πΌ mPwSer π ) & β’ π΅ = (Baseβπ) & β’ Β· = (.rβπ ) & β’ β = (.rβπ) & β’ π· = {β β (β0 βm πΌ) β£ (β‘β β β) β Fin} β β’ β = (π β π΅, π β π΅ β¦ (π β π· β¦ (π Ξ£g (π₯ β {π¦ β π· β£ π¦ βr β€ π} β¦ ((πβπ₯) Β· (πβ(π βf β π₯))))))) | ||
Theorem | psrmulfval 21814* | The multiplication operation of the multivariate power series structure. (Contributed by Mario Carneiro, 28-Dec-2014.) |
β’ π = (πΌ mPwSer π ) & β’ π΅ = (Baseβπ) & β’ Β· = (.rβπ ) & β’ β = (.rβπ) & β’ π· = {β β (β0 βm πΌ) β£ (β‘β β β) β Fin} & β’ (π β πΉ β π΅) & β’ (π β πΊ β π΅) β β’ (π β (πΉ β πΊ) = (π β π· β¦ (π Ξ£g (π₯ β {π¦ β π· β£ π¦ βr β€ π} β¦ ((πΉβπ₯) Β· (πΊβ(π βf β π₯))))))) | ||
Theorem | psrmulval 21815* | The multiplication operation of the multivariate power series structure. (Contributed by Mario Carneiro, 28-Dec-2014.) |
β’ π = (πΌ mPwSer π ) & β’ π΅ = (Baseβπ) & β’ Β· = (.rβπ ) & β’ β = (.rβπ) & β’ π· = {β β (β0 βm πΌ) β£ (β‘β β β) β Fin} & β’ (π β πΉ β π΅) & β’ (π β πΊ β π΅) & β’ (π β π β π·) β β’ (π β ((πΉ β πΊ)βπ) = (π Ξ£g (π β {π¦ β π· β£ π¦ βr β€ π} β¦ ((πΉβπ) Β· (πΊβ(π βf β π)))))) | ||
Theorem | psrmulcllem 21816* | Closure of the power series multiplication operation. (Contributed by Mario Carneiro, 29-Dec-2014.) |
β’ π = (πΌ mPwSer π ) & β’ π΅ = (Baseβπ) & β’ Β· = (.rβπ) & β’ (π β π β Ring) & β’ (π β π β π΅) & β’ (π β π β π΅) & β’ π· = {π β (β0 βm πΌ) β£ (β‘π β β) β Fin} β β’ (π β (π Β· π) β π΅) | ||
Theorem | psrmulcl 21817 | Closure of the power series multiplication operation. (Contributed by Mario Carneiro, 29-Dec-2014.) |
β’ π = (πΌ mPwSer π ) & β’ π΅ = (Baseβπ) & β’ Β· = (.rβπ) & β’ (π β π β Ring) & β’ (π β π β π΅) & β’ (π β π β π΅) β β’ (π β (π Β· π) β π΅) | ||
Theorem | psrsca 21818 | The scalar field of the multivariate power series structure. (Contributed by Mario Carneiro, 28-Dec-2014.) |
β’ π = (πΌ mPwSer π ) & β’ (π β πΌ β π) & β’ (π β π β π) β β’ (π β π = (Scalarβπ)) | ||
Theorem | psrvscafval 21819* | The scalar multiplication operation of the multivariate power series structure. (Contributed by Mario Carneiro, 28-Dec-2014.) (Revised by Mario Carneiro, 2-Oct-2015.) (Proof shortened by AV, 2-Nov-2024.) |
β’ π = (πΌ mPwSer π ) & β’ β = ( Β·π βπ) & β’ πΎ = (Baseβπ ) & β’ π΅ = (Baseβπ) & β’ Β· = (.rβπ ) & β’ π· = {β β (β0 βm πΌ) β£ (β‘β β β) β Fin} β β’ β = (π₯ β πΎ, π β π΅ β¦ ((π· Γ {π₯}) βf Β· π)) | ||
Theorem | psrvsca 21820* | The scalar multiplication operation of the multivariate power series structure. (Contributed by Mario Carneiro, 28-Dec-2014.) |
β’ π = (πΌ mPwSer π ) & β’ β = ( Β·π βπ) & β’ πΎ = (Baseβπ ) & β’ π΅ = (Baseβπ) & β’ Β· = (.rβπ ) & β’ π· = {β β (β0 βm πΌ) β£ (β‘β β β) β Fin} & β’ (π β π β πΎ) & β’ (π β πΉ β π΅) β β’ (π β (π β πΉ) = ((π· Γ {π}) βf Β· πΉ)) | ||
Theorem | psrvscaval 21821* | The scalar multiplication operation of the multivariate power series structure. (Contributed by Mario Carneiro, 28-Dec-2014.) |
β’ π = (πΌ mPwSer π ) & β’ β = ( Β·π βπ) & β’ πΎ = (Baseβπ ) & β’ π΅ = (Baseβπ) & β’ Β· = (.rβπ ) & β’ π· = {β β (β0 βm πΌ) β£ (β‘β β β) β Fin} & β’ (π β π β πΎ) & β’ (π β πΉ β π΅) & β’ (π β π β π·) β β’ (π β ((π β πΉ)βπ) = (π Β· (πΉβπ))) | ||
Theorem | psrvscacl 21822 | Closure of the power series scalar multiplication operation. (Contributed by Mario Carneiro, 29-Dec-2014.) |
β’ π = (πΌ mPwSer π ) & β’ Β· = ( Β·π βπ) & β’ πΎ = (Baseβπ ) & β’ π΅ = (Baseβπ) & β’ (π β π β Ring) & β’ (π β π β πΎ) & β’ (π β πΉ β π΅) β β’ (π β (π Β· πΉ) β π΅) | ||
Theorem | psr0cl 21823* | The zero element of the ring of power series. (Contributed by Mario Carneiro, 29-Dec-2014.) |
β’ π = (πΌ mPwSer π ) & β’ (π β πΌ β π) & β’ (π β π β Grp) & β’ π· = {π β (β0 βm πΌ) β£ (β‘π β β) β Fin} & β’ 0 = (0gβπ ) & β’ π΅ = (Baseβπ) β β’ (π β (π· Γ { 0 }) β π΅) | ||
Theorem | psr0lid 21824* | The zero element of the ring of power series is a left identity. (Contributed by Mario Carneiro, 29-Dec-2014.) |
β’ π = (πΌ mPwSer π ) & β’ (π β πΌ β π) & β’ (π β π β Grp) & β’ π· = {π β (β0 βm πΌ) β£ (β‘π β β) β Fin} & β’ 0 = (0gβπ ) & β’ π΅ = (Baseβπ) & β’ + = (+gβπ) & β’ (π β π β π΅) β β’ (π β ((π· Γ { 0 }) + π) = π) | ||
Theorem | psrnegcl 21825* | The negative function in the ring of power series. (Contributed by Mario Carneiro, 29-Dec-2014.) |
β’ π = (πΌ mPwSer π ) & β’ (π β πΌ β π) & β’ (π β π β Grp) & β’ π· = {π β (β0 βm πΌ) β£ (β‘π β β) β Fin} & β’ π = (invgβπ ) & β’ π΅ = (Baseβπ) & β’ (π β π β π΅) β β’ (π β (π β π) β π΅) | ||
Theorem | psrlinv 21826* | The negative function in the ring of power series. (Contributed by Mario Carneiro, 29-Dec-2014.) |
β’ π = (πΌ mPwSer π ) & β’ (π β πΌ β π) & β’ (π β π β Grp) & β’ π· = {π β (β0 βm πΌ) β£ (β‘π β β) β Fin} & β’ π = (invgβπ ) & β’ π΅ = (Baseβπ) & β’ (π β π β π΅) & β’ 0 = (0gβπ ) & β’ + = (+gβπ) β β’ (π β ((π β π) + π) = (π· Γ { 0 })) | ||
Theorem | psrgrp 21827 | The ring of power series is a group. (Contributed by Mario Carneiro, 29-Dec-2014.) (Proof shortened by SN, 7-Feb-2025.) |
β’ π = (πΌ mPwSer π ) & β’ (π β πΌ β π) & β’ (π β π β Grp) β β’ (π β π β Grp) | ||
Theorem | psrgrpOLD 21828 | Obsolete proof of psrgrp 21827 as of 7-Feb-2025. (Contributed by Mario Carneiro, 29-Dec-2014.) (Proof modification is discouraged.) (New usage is discouraged.) |
β’ π = (πΌ mPwSer π ) & β’ (π β πΌ β π) & β’ (π β π β Grp) β β’ (π β π β Grp) | ||
Theorem | psr0 21829* | The zero element of the ring of power series. (Contributed by Mario Carneiro, 29-Dec-2014.) |
β’ π = (πΌ mPwSer π ) & β’ (π β πΌ β π) & β’ (π β π β Grp) & β’ π· = {π β (β0 βm πΌ) β£ (β‘π β β) β Fin} & β’ π = (0gβπ ) & β’ 0 = (0gβπ) β β’ (π β 0 = (π· Γ {π})) | ||
Theorem | psrneg 21830* | The negative function of the ring of power series. (Contributed by Mario Carneiro, 29-Dec-2014.) |
β’ π = (πΌ mPwSer π ) & β’ (π β πΌ β π) & β’ (π β π β Grp) & β’ π· = {π β (β0 βm πΌ) β£ (β‘π β β) β Fin} & β’ π = (invgβπ ) & β’ π΅ = (Baseβπ) & β’ π = (invgβπ) & β’ (π β π β π΅) β β’ (π β (πβπ) = (π β π)) | ||
Theorem | psrlmod 21831 | The ring of power series is a left module. (Contributed by Mario Carneiro, 29-Dec-2014.) |
β’ π = (πΌ mPwSer π ) & β’ (π β πΌ β π) & β’ (π β π β Ring) β β’ (π β π β LMod) | ||
Theorem | psr1cl 21832* | The identity element of the ring of power series. (Contributed by Mario Carneiro, 29-Dec-2014.) |
β’ π = (πΌ mPwSer π ) & β’ (π β πΌ β π) & β’ (π β π β Ring) & β’ π· = {π β (β0 βm πΌ) β£ (β‘π β β) β Fin} & β’ 0 = (0gβπ ) & β’ 1 = (1rβπ ) & β’ π = (π₯ β π· β¦ if(π₯ = (πΌ Γ {0}), 1 , 0 )) & β’ π΅ = (Baseβπ) β β’ (π β π β π΅) | ||
Theorem | psrlidm 21833* | The identity element of the ring of power series is a left identity. (Contributed by Mario Carneiro, 29-Dec-2014.) (Proof shortened by AV, 8-Jul-2019.) |
β’ π = (πΌ mPwSer π ) & β’ (π β πΌ β π) & β’ (π β π β Ring) & β’ π· = {π β (β0 βm πΌ) β£ (β‘π β β) β Fin} & β’ 0 = (0gβπ ) & β’ 1 = (1rβπ ) & β’ π = (π₯ β π· β¦ if(π₯ = (πΌ Γ {0}), 1 , 0 )) & β’ π΅ = (Baseβπ) & β’ Β· = (.rβπ) & β’ (π β π β π΅) β β’ (π β (π Β· π) = π) | ||
Theorem | psrridm 21834* | The identity element of the ring of power series is a right identity. (Contributed by Mario Carneiro, 29-Dec-2014.) (Proof shortened by AV, 8-Jul-2019.) |
β’ π = (πΌ mPwSer π ) & β’ (π β πΌ β π) & β’ (π β π β Ring) & β’ π· = {π β (β0 βm πΌ) β£ (β‘π β β) β Fin} & β’ 0 = (0gβπ ) & β’ 1 = (1rβπ ) & β’ π = (π₯ β π· β¦ if(π₯ = (πΌ Γ {0}), 1 , 0 )) & β’ π΅ = (Baseβπ) & β’ Β· = (.rβπ) & β’ (π β π β π΅) β β’ (π β (π Β· π) = π) | ||
Theorem | psrass1 21835* | Associative identity for the ring of power series. (Contributed by Mario Carneiro, 5-Jan-2015.) |
β’ π = (πΌ mPwSer π ) & β’ (π β πΌ β π) & β’ (π β π β Ring) & β’ π· = {π β (β0 βm πΌ) β£ (β‘π β β) β Fin} & β’ Γ = (.rβπ) & β’ π΅ = (Baseβπ) & β’ (π β π β π΅) & β’ (π β π β π΅) & β’ (π β π β π΅) β β’ (π β ((π Γ π) Γ π) = (π Γ (π Γ π))) | ||
Theorem | psrdi 21836* | Distributive law for the ring of power series (left-distributivity). (Contributed by Mario Carneiro, 7-Jan-2015.) |
β’ π = (πΌ mPwSer π ) & β’ (π β πΌ β π) & β’ (π β π β Ring) & β’ π· = {π β (β0 βm πΌ) β£ (β‘π β β) β Fin} & β’ Γ = (.rβπ) & β’ π΅ = (Baseβπ) & β’ (π β π β π΅) & β’ (π β π β π΅) & β’ (π β π β π΅) & β’ + = (+gβπ) β β’ (π β (π Γ (π + π)) = ((π Γ π) + (π Γ π))) | ||
Theorem | psrdir 21837* | Distributive law for the ring of power series (right-distributivity). (Contributed by Mario Carneiro, 7-Jan-2015.) |
β’ π = (πΌ mPwSer π ) & β’ (π β πΌ β π) & β’ (π β π β Ring) & β’ π· = {π β (β0 βm πΌ) β£ (β‘π β β) β Fin} & β’ Γ = (.rβπ) & β’ π΅ = (Baseβπ) & β’ (π β π β π΅) & β’ (π β π β π΅) & β’ (π β π β π΅) & β’ + = (+gβπ) β β’ (π β ((π + π) Γ π) = ((π Γ π) + (π Γ π))) | ||
Theorem | psrass23l 21838* | Associative identity for the ring of power series. Part of psrass23 21840 which does not require the scalar ring to be commutative. (Contributed by Mario Carneiro, 7-Jan-2015.) (Revised by AV, 14-Aug-2019.) |
β’ π = (πΌ mPwSer π ) & β’ (π β πΌ β π) & β’ (π β π β Ring) & β’ π· = {π β (β0 βm πΌ) β£ (β‘π β β) β Fin} & β’ Γ = (.rβπ) & β’ π΅ = (Baseβπ) & β’ (π β π β π΅) & β’ (π β π β π΅) & β’ πΎ = (Baseβπ ) & β’ Β· = ( Β·π βπ) & β’ (π β π΄ β πΎ) β β’ (π β ((π΄ Β· π) Γ π) = (π΄ Β· (π Γ π))) | ||
Theorem | psrcom 21839* | Commutative law for the ring of power series. (Contributed by Mario Carneiro, 7-Jan-2015.) |
β’ π = (πΌ mPwSer π ) & β’ (π β πΌ β π) & β’ (π β π β Ring) & β’ π· = {π β (β0 βm πΌ) β£ (β‘π β β) β Fin} & β’ Γ = (.rβπ) & β’ π΅ = (Baseβπ) & β’ (π β π β π΅) & β’ (π β π β π΅) & β’ (π β π β CRing) β β’ (π β (π Γ π) = (π Γ π)) | ||
Theorem | psrass23 21840* | Associative identities for the ring of power series. (Contributed by Mario Carneiro, 7-Jan-2015.) (Proof shortened by AV, 25-Nov-2019.) |
β’ π = (πΌ mPwSer π ) & β’ (π β πΌ β π) & β’ (π β π β Ring) & β’ π· = {π β (β0 βm πΌ) β£ (β‘π β β) β Fin} & β’ Γ = (.rβπ) & β’ π΅ = (Baseβπ) & β’ (π β π β π΅) & β’ (π β π β π΅) & β’ (π β π β CRing) & β’ πΎ = (Baseβπ ) & β’ Β· = ( Β·π βπ) & β’ (π β π΄ β πΎ) β β’ (π β (((π΄ Β· π) Γ π) = (π΄ Β· (π Γ π)) β§ (π Γ (π΄ Β· π)) = (π΄ Β· (π Γ π)))) | ||
Theorem | psrring 21841 | The ring of power series is a ring. (Contributed by Mario Carneiro, 29-Dec-2014.) |
β’ π = (πΌ mPwSer π ) & β’ (π β πΌ β π) & β’ (π β π β Ring) β β’ (π β π β Ring) | ||
Theorem | psr1 21842* | The identity element of the ring of power series. (Contributed by Mario Carneiro, 8-Jan-2015.) |
β’ π = (πΌ mPwSer π ) & β’ (π β πΌ β π) & β’ (π β π β Ring) & β’ π· = {π β (β0 βm πΌ) β£ (β‘π β β) β Fin} & β’ 0 = (0gβπ ) & β’ 1 = (1rβπ ) & β’ π = (1rβπ) β β’ (π β π = (π₯ β π· β¦ if(π₯ = (πΌ Γ {0}), 1 , 0 ))) | ||
Theorem | psrcrng 21843 | The ring of power series is commutative ring. (Contributed by Mario Carneiro, 10-Jan-2015.) |
β’ π = (πΌ mPwSer π ) & β’ (π β πΌ β π) & β’ (π β π β CRing) β β’ (π β π β CRing) | ||
Theorem | psrassa 21844 | The ring of power series is an associative algebra. (Contributed by Mario Carneiro, 29-Dec-2014.) |
β’ π = (πΌ mPwSer π ) & β’ (π β πΌ β π) & β’ (π β π β CRing) β β’ (π β π β AssAlg) | ||
Theorem | resspsrbas 21845 | A restricted power series algebra has the same base set. (Contributed by Mario Carneiro, 3-Jul-2015.) |
β’ π = (πΌ mPwSer π ) & β’ π» = (π βΎs π) & β’ π = (πΌ mPwSer π») & β’ π΅ = (Baseβπ) & β’ π = (π βΎs π΅) & β’ (π β π β (SubRingβπ )) β β’ (π β π΅ = (Baseβπ)) | ||
Theorem | resspsradd 21846 | A restricted power series algebra has the same addition operation. (Contributed by Mario Carneiro, 3-Jul-2015.) |
β’ π = (πΌ mPwSer π ) & β’ π» = (π βΎs π) & β’ π = (πΌ mPwSer π») & β’ π΅ = (Baseβπ) & β’ π = (π βΎs π΅) & β’ (π β π β (SubRingβπ )) β β’ ((π β§ (π β π΅ β§ π β π΅)) β (π(+gβπ)π) = (π(+gβπ)π)) | ||
Theorem | resspsrmul 21847 | A restricted power series algebra has the same multiplication operation. (Contributed by Mario Carneiro, 3-Jul-2015.) |
β’ π = (πΌ mPwSer π ) & β’ π» = (π βΎs π) & β’ π = (πΌ mPwSer π») & β’ π΅ = (Baseβπ) & β’ π = (π βΎs π΅) & β’ (π β π β (SubRingβπ )) β β’ ((π β§ (π β π΅ β§ π β π΅)) β (π(.rβπ)π) = (π(.rβπ)π)) | ||
Theorem | resspsrvsca 21848 | A restricted power series algebra has the same scalar multiplication operation. (Contributed by Mario Carneiro, 3-Jul-2015.) |
β’ π = (πΌ mPwSer π ) & β’ π» = (π βΎs π) & β’ π = (πΌ mPwSer π») & β’ π΅ = (Baseβπ) & β’ π = (π βΎs π΅) & β’ (π β π β (SubRingβπ )) β β’ ((π β§ (π β π β§ π β π΅)) β (π( Β·π βπ)π) = (π( Β·π βπ)π)) | ||
Theorem | subrgpsr 21849 | A subring of the base ring induces a subring of power series. (Contributed by Mario Carneiro, 3-Jul-2015.) |
β’ π = (πΌ mPwSer π ) & β’ π» = (π βΎs π) & β’ π = (πΌ mPwSer π») & β’ π΅ = (Baseβπ) β β’ ((πΌ β π β§ π β (SubRingβπ )) β π΅ β (SubRingβπ)) | ||
Theorem | mvrfval 21850* | Value of the generating elements of the power series structure. (Contributed by Mario Carneiro, 7-Jan-2015.) |
β’ π = (πΌ mVar π ) & β’ π· = {β β (β0 βm πΌ) β£ (β‘β β β) β Fin} & β’ 0 = (0gβπ ) & β’ 1 = (1rβπ ) & β’ (π β πΌ β π) & β’ (π β π β π) β β’ (π β π = (π₯ β πΌ β¦ (π β π· β¦ if(π = (π¦ β πΌ β¦ if(π¦ = π₯, 1, 0)), 1 , 0 )))) | ||
Theorem | mvrval 21851* | Value of the generating elements of the power series structure. (Contributed by Mario Carneiro, 7-Jan-2015.) |
β’ π = (πΌ mVar π ) & β’ π· = {β β (β0 βm πΌ) β£ (β‘β β β) β Fin} & β’ 0 = (0gβπ ) & β’ 1 = (1rβπ ) & β’ (π β πΌ β π) & β’ (π β π β π) & β’ (π β π β πΌ) β β’ (π β (πβπ) = (π β π· β¦ if(π = (π¦ β πΌ β¦ if(π¦ = π, 1, 0)), 1 , 0 ))) | ||
Theorem | mvrval2 21852* | Value of the generating elements of the power series structure. (Contributed by Mario Carneiro, 7-Jan-2015.) |
β’ π = (πΌ mVar π ) & β’ π· = {β β (β0 βm πΌ) β£ (β‘β β β) β Fin} & β’ 0 = (0gβπ ) & β’ 1 = (1rβπ ) & β’ (π β πΌ β π) & β’ (π β π β π) & β’ (π β π β πΌ) & β’ (π β πΉ β π·) β β’ (π β ((πβπ)βπΉ) = if(πΉ = (π¦ β πΌ β¦ if(π¦ = π, 1, 0)), 1 , 0 )) | ||
Theorem | mvrid 21853* | The ππ-th coefficient of the term ππ is 1. (Contributed by Mario Carneiro, 7-Jan-2015.) |
β’ π = (πΌ mVar π ) & β’ π· = {β β (β0 βm πΌ) β£ (β‘β β β) β Fin} & β’ 0 = (0gβπ ) & β’ 1 = (1rβπ ) & β’ (π β πΌ β π) & β’ (π β π β π) & β’ (π β π β πΌ) β β’ (π β ((πβπ)β(π¦ β πΌ β¦ if(π¦ = π, 1, 0))) = 1 ) | ||
Theorem | mvrf 21854 | The power series variable function is a function from the index set to elements of the power series structure representing ππ for each π. (Contributed by Mario Carneiro, 29-Dec-2014.) |
β’ π = (πΌ mPwSer π ) & β’ π = (πΌ mVar π ) & β’ π΅ = (Baseβπ) & β’ (π β πΌ β π) & β’ (π β π β Ring) β β’ (π β π:πΌβΆπ΅) | ||
Theorem | mvrf1 21855 | The power series variable function is injective if the base ring is nonzero. (Contributed by Mario Carneiro, 29-Dec-2014.) |
β’ π = (πΌ mPwSer π ) & β’ π = (πΌ mVar π ) & β’ π΅ = (Baseβπ) & β’ (π β πΌ β π) & β’ (π β π β Ring) & β’ 0 = (0gβπ ) & β’ 1 = (1rβπ ) & β’ (π β 1 β 0 ) β β’ (π β π:πΌβ1-1βπ΅) | ||
Theorem | mvrcl2 21856 | A power series variable is an element of the base set. (Contributed by Mario Carneiro, 29-Dec-2014.) |
β’ π = (πΌ mPwSer π ) & β’ π = (πΌ mVar π ) & β’ π΅ = (Baseβπ) & β’ (π β πΌ β π) & β’ (π β π β Ring) & β’ (π β π β πΌ) β β’ (π β (πβπ) β π΅) | ||
Theorem | reldmmpl 21857 | The multivariate polynomial constructor is a proper binary operator. (Contributed by Mario Carneiro, 21-Mar-2015.) |
β’ Rel dom mPoly | ||
Theorem | mplval 21858* | Value of the set of multivariate polynomials. (Contributed by Mario Carneiro, 7-Jan-2015.) (Revised by Mario Carneiro, 2-Oct-2015.) (Revised by AV, 25-Jun-2019.) |
β’ π = (πΌ mPoly π ) & β’ π = (πΌ mPwSer π ) & β’ π΅ = (Baseβπ) & β’ 0 = (0gβπ ) & β’ π = {π β π΅ β£ π finSupp 0 } β β’ π = (π βΎs π) | ||
Theorem | mplbas 21859* | Base set of the set of multivariate polynomials. (Contributed by Mario Carneiro, 7-Jan-2015.) (Revised by Mario Carneiro, 2-Oct-2015.) (Revised by AV, 25-Jun-2019.) |
β’ π = (πΌ mPoly π ) & β’ π = (πΌ mPwSer π ) & β’ π΅ = (Baseβπ) & β’ 0 = (0gβπ ) & β’ π = (Baseβπ) β β’ π = {π β π΅ β£ π finSupp 0 } | ||
Theorem | mplelbas 21860 | Property of being a polynomial. (Contributed by Mario Carneiro, 7-Jan-2015.) (Revised by Mario Carneiro, 2-Oct-2015.) (Revised by AV, 25-Jun-2019.) |
β’ π = (πΌ mPoly π ) & β’ π = (πΌ mPwSer π ) & β’ π΅ = (Baseβπ) & β’ 0 = (0gβπ ) & β’ π = (Baseβπ) β β’ (π β π β (π β π΅ β§ π finSupp 0 )) | ||
Theorem | mvrcl 21861 | A power series variable is a polynomial. (Contributed by Mario Carneiro, 9-Jan-2015.) |
β’ π = (πΌ mPoly π ) & β’ π = (πΌ mVar π ) & β’ π΅ = (Baseβπ) & β’ (π β πΌ β π) & β’ (π β π β Ring) & β’ (π β π β πΌ) β β’ (π β (πβπ) β π΅) | ||
Theorem | mvrf2 21862 | The power series/polynomial variable function maps indices to polynomials. (Contributed by Stefan O'Rear, 8-Mar-2015.) |
β’ π = (πΌ mPoly π ) & β’ π = (πΌ mVar π ) & β’ π΅ = (Baseβπ) & β’ (π β πΌ β π) & β’ (π β π β Ring) β β’ (π β π:πΌβΆπ΅) | ||
Theorem | mplrcl 21863 | Reverse closure for the polynomial index set. (Contributed by Stefan O'Rear, 19-Mar-2015.) (Revised by Mario Carneiro, 30-Aug-2015.) |
β’ π = (πΌ mPoly π ) & β’ π΅ = (Baseβπ) β β’ (π β π΅ β πΌ β V) | ||
Theorem | mplelsfi 21864 | A polynomial treated as a coefficient function has finitely many nonzero terms. (Contributed by Stefan O'Rear, 22-Mar-2015.) (Revised by AV, 25-Jun-2019.) |
β’ π = (πΌ mPoly π ) & β’ π΅ = (Baseβπ) & β’ 0 = (0gβπ ) & β’ (π β πΉ β π΅) & β’ (π β π β π) β β’ (π β πΉ finSupp 0 ) | ||
Theorem | mplval2 21865 | Self-referential expression for the set of multivariate polynomials. (Contributed by Mario Carneiro, 7-Jan-2015.) (Revised by Mario Carneiro, 2-Oct-2015.) |
β’ π = (πΌ mPoly π ) & β’ π = (πΌ mPwSer π ) & β’ π = (Baseβπ) β β’ π = (π βΎs π) | ||
Theorem | mplbasss 21866 | The set of polynomials is a subset of the set of power series. (Contributed by Mario Carneiro, 7-Jan-2015.) (Revised by Mario Carneiro, 2-Oct-2015.) |
β’ π = (πΌ mPoly π ) & β’ π = (πΌ mPwSer π ) & β’ π = (Baseβπ) & β’ π΅ = (Baseβπ) β β’ π β π΅ | ||
Theorem | mplelf 21867* | A polynomial is defined as a function on the coefficients. (Contributed by Mario Carneiro, 7-Jan-2015.) (Revised by Mario Carneiro, 2-Oct-2015.) |
β’ π = (πΌ mPoly π ) & β’ πΎ = (Baseβπ ) & β’ π΅ = (Baseβπ) & β’ π· = {π β (β0 βm πΌ) β£ (β‘π β β) β Fin} & β’ (π β π β π΅) β β’ (π β π:π·βΆπΎ) | ||
Theorem | mplsubglem 21868* | If π΄ is an ideal of sets (a nonempty collection closed under subset and binary union) of the set π· of finite bags (the primary applications being π΄ = Fin and π΄ = π« π΅ for some π΅), then the set of all power series whose coefficient functions are supported on an element of π΄ is a subgroup of the set of all power series. (Contributed by Mario Carneiro, 12-Jan-2015.) (Revised by AV, 16-Jul-2019.) |
β’ π = (πΌ mPwSer π ) & β’ π΅ = (Baseβπ) & β’ 0 = (0gβπ ) & β’ π· = {π β (β0 βm πΌ) β£ (β‘π β β) β Fin} & β’ (π β πΌ β π) & β’ (π β β β π΄) & β’ ((π β§ (π₯ β π΄ β§ π¦ β π΄)) β (π₯ βͺ π¦) β π΄) & β’ ((π β§ (π₯ β π΄ β§ π¦ β π₯)) β π¦ β π΄) & β’ (π β π = {π β π΅ β£ (π supp 0 ) β π΄}) & β’ (π β π β Grp) β β’ (π β π β (SubGrpβπ)) | ||
Theorem | mpllsslem 21869* | If π΄ is an ideal of subsets (a nonempty collection closed under subset and binary union) of the set π· of finite bags (the primary applications being π΄ = Fin and π΄ = π« π΅ for some π΅), then the set of all power series whose coefficient functions are supported on an element of π΄ is a linear subspace of the set of all power series. (Contributed by Mario Carneiro, 12-Jan-2015.) (Revised by AV, 16-Jul-2019.) |
β’ π = (πΌ mPwSer π ) & β’ π΅ = (Baseβπ) & β’ 0 = (0gβπ ) & β’ π· = {π β (β0 βm πΌ) β£ (β‘π β β) β Fin} & β’ (π β πΌ β π) & β’ (π β β β π΄) & β’ ((π β§ (π₯ β π΄ β§ π¦ β π΄)) β (π₯ βͺ π¦) β π΄) & β’ ((π β§ (π₯ β π΄ β§ π¦ β π₯)) β π¦ β π΄) & β’ (π β π = {π β π΅ β£ (π supp 0 ) β π΄}) & β’ (π β π β Ring) β β’ (π β π β (LSubSpβπ)) | ||
Theorem | mplsubglem2 21870* | Lemma for mplsubg 21871 and mpllss 21872. (Contributed by AV, 16-Jul-2019.) |
β’ π = (πΌ mPwSer π ) & β’ π = (πΌ mPoly π ) & β’ π = (Baseβπ) & β’ (π β πΌ β π) β β’ (π β π = {π β (Baseβπ) β£ (π supp (0gβπ )) β Fin}) | ||
Theorem | mplsubg 21871 | The set of polynomials is closed under addition, i.e. it is a subgroup of the set of power series. (Contributed by Mario Carneiro, 8-Jan-2015.) (Proof shortened by AV, 16-Jul-2019.) |
β’ π = (πΌ mPwSer π ) & β’ π = (πΌ mPoly π ) & β’ π = (Baseβπ) & β’ (π β πΌ β π) & β’ (π β π β Grp) β β’ (π β π β (SubGrpβπ)) | ||
Theorem | mpllss 21872 | The set of polynomials is closed under scalar multiplication, i.e. it is a linear subspace of the set of power series. (Contributed by Mario Carneiro, 7-Jan-2015.) (Proof shortened by AV, 16-Jul-2019.) |
β’ π = (πΌ mPwSer π ) & β’ π = (πΌ mPoly π ) & β’ π = (Baseβπ) & β’ (π β πΌ β π) & β’ (π β π β Ring) β β’ (π β π β (LSubSpβπ)) | ||
Theorem | mplsubrglem 21873* | Lemma for mplsubrg 21874. (Contributed by Mario Carneiro, 9-Jan-2015.) (Revised by AV, 18-Jul-2019.) |
β’ π = (πΌ mPwSer π ) & β’ π = (πΌ mPoly π ) & β’ π = (Baseβπ) & β’ (π β πΌ β π) & β’ (π β π β Ring) & β’ π· = {π β (β0 βm πΌ) β£ (β‘π β β) β Fin} & β’ 0 = (0gβπ ) & β’ π΄ = ( βf + β ((π supp 0 ) Γ (π supp 0 ))) & β’ Β· = (.rβπ ) & β’ (π β π β π) & β’ (π β π β π) β β’ (π β (π(.rβπ)π) β π) | ||
Theorem | mplsubrg 21874 | The set of polynomials is closed under multiplication, i.e. it is a subring of the set of power series. (Contributed by Mario Carneiro, 9-Jan-2015.) |
β’ π = (πΌ mPwSer π ) & β’ π = (πΌ mPoly π ) & β’ π = (Baseβπ) & β’ (π β πΌ β π) & β’ (π β π β Ring) β β’ (π β π β (SubRingβπ)) | ||
Theorem | mpl0 21875* | The zero polynomial. (Contributed by Mario Carneiro, 9-Jan-2015.) |
β’ π = (πΌ mPoly π ) & β’ π· = {π β (β0 βm πΌ) β£ (β‘π β β) β Fin} & β’ π = (0gβπ ) & β’ 0 = (0gβπ) & β’ (π β πΌ β π) & β’ (π β π β Grp) β β’ (π β 0 = (π· Γ {π})) | ||
Theorem | mplplusg 21876 | Value of addition in a polynomial ring. (Contributed by Stefan O'Rear, 21-Mar-2015.) (Revised by Mario Carneiro, 2-Oct-2015.) |
β’ π = (πΌ mPoly π ) & β’ π = (πΌ mPwSer π ) & β’ + = (+gβπ) β β’ + = (+gβπ) | ||
Theorem | mplmulr 21877 | Value of multiplication in a polynomial ring. (Contributed by Stefan O'Rear, 21-Mar-2015.) (Revised by Mario Carneiro, 2-Oct-2015.) |
β’ π = (πΌ mPoly π ) & β’ π = (πΌ mPwSer π ) & β’ Β· = (.rβπ) β β’ Β· = (.rβπ) | ||
Theorem | mpladd 21878 | The addition operation on multivariate polynomials. (Contributed by Mario Carneiro, 9-Jan-2015.) (Revised by Mario Carneiro, 2-Oct-2015.) |
β’ π = (πΌ mPoly π ) & β’ π΅ = (Baseβπ) & β’ + = (+gβπ ) & β’ β = (+gβπ) & β’ (π β π β π΅) & β’ (π β π β π΅) β β’ (π β (π β π) = (π βf + π)) | ||
Theorem | mplneg 21879 | The negative function on multivariate polynomials. (Contributed by SN, 25-May-2024.) |
β’ π = (πΌ mPoly π ) & β’ π΅ = (Baseβπ) & β’ π = (invgβπ ) & β’ π = (invgβπ) & β’ (π β πΌ β π) & β’ (π β π β Grp) & β’ (π β π β π΅) β β’ (π β (πβπ) = (π β π)) | ||
Theorem | mplmul 21880* | The multiplication operation on multivariate polynomials. (Contributed by Mario Carneiro, 9-Jan-2015.) |
β’ π = (πΌ mPoly π ) & β’ π΅ = (Baseβπ) & β’ Β· = (.rβπ ) & β’ β = (.rβπ) & β’ π· = {β β (β0 βm πΌ) β£ (β‘β β β) β Fin} & β’ (π β πΉ β π΅) & β’ (π β πΊ β π΅) β β’ (π β (πΉ β πΊ) = (π β π· β¦ (π Ξ£g (π₯ β {π¦ β π· β£ π¦ βr β€ π} β¦ ((πΉβπ₯) Β· (πΊβ(π βf β π₯))))))) | ||
Theorem | mpl1 21881* | The identity element of the ring of polynomials. (Contributed by Mario Carneiro, 10-Jan-2015.) |
β’ π = (πΌ mPoly π ) & β’ π· = {π β (β0 βm πΌ) β£ (β‘π β β) β Fin} & β’ 0 = (0gβπ ) & β’ 1 = (1rβπ ) & β’ π = (1rβπ) & β’ (π β πΌ β π) & β’ (π β π β Ring) β β’ (π β π = (π₯ β π· β¦ if(π₯ = (πΌ Γ {0}), 1 , 0 ))) | ||
Theorem | mplsca 21882 | The scalar field of a multivariate polynomial structure. (Contributed by Mario Carneiro, 9-Jan-2015.) |
β’ π = (πΌ mPoly π ) & β’ (π β πΌ β π) & β’ (π β π β π) β β’ (π β π = (Scalarβπ)) | ||
Theorem | mplvsca2 21883 | The scalar multiplication operation on multivariate polynomials. (Contributed by Mario Carneiro, 9-Jan-2015.) |
β’ π = (πΌ mPoly π ) & β’ π = (πΌ mPwSer π ) & β’ Β· = ( Β·π βπ) β β’ Β· = ( Β·π βπ) | ||
Theorem | mplvsca 21884* | The scalar multiplication operation on multivariate polynomials. (Contributed by Mario Carneiro, 9-Jan-2015.) (Revised by Mario Carneiro, 2-Oct-2015.) |
β’ π = (πΌ mPoly π ) & β’ β = ( Β·π βπ) & β’ πΎ = (Baseβπ ) & β’ π΅ = (Baseβπ) & β’ Β· = (.rβπ ) & β’ π· = {β β (β0 βm πΌ) β£ (β‘β β β) β Fin} & β’ (π β π β πΎ) & β’ (π β πΉ β π΅) β β’ (π β (π β πΉ) = ((π· Γ {π}) βf Β· πΉ)) | ||
Theorem | mplvscaval 21885* | The scalar multiplication operation on multivariate polynomials. (Contributed by Mario Carneiro, 9-Jan-2015.) |
β’ π = (πΌ mPoly π ) & β’ β = ( Β·π βπ) & β’ πΎ = (Baseβπ ) & β’ π΅ = (Baseβπ) & β’ Β· = (.rβπ ) & β’ π· = {β β (β0 βm πΌ) β£ (β‘β β β) β Fin} & β’ (π β π β πΎ) & β’ (π β πΉ β π΅) & β’ (π β π β π·) β β’ (π β ((π β πΉ)βπ) = (π Β· (πΉβπ))) | ||
Theorem | mplgrp 21886 | The polynomial ring is a group. (Contributed by Mario Carneiro, 9-Jan-2015.) |
β’ π = (πΌ mPoly π ) β β’ ((πΌ β π β§ π β Grp) β π β Grp) | ||
Theorem | mpllmod 21887 | The polynomial ring is a left module. (Contributed by Mario Carneiro, 9-Jan-2015.) |
β’ π = (πΌ mPoly π ) β β’ ((πΌ β π β§ π β Ring) β π β LMod) | ||
Theorem | mplring 21888 | The polynomial ring is a ring. (Contributed by Mario Carneiro, 9-Jan-2015.) |
β’ π = (πΌ mPoly π ) β β’ ((πΌ β π β§ π β Ring) β π β Ring) | ||
Theorem | mpllvec 21889 | The polynomial ring is a vector space. (Contributed by SN, 29-Feb-2024.) |
β’ π = (πΌ mPoly π ) β β’ ((πΌ β π β§ π β DivRing) β π β LVec) | ||
Theorem | mplcrng 21890 | The polynomial ring is a commutative ring. (Contributed by Mario Carneiro, 9-Jan-2015.) |
β’ π = (πΌ mPoly π ) β β’ ((πΌ β π β§ π β CRing) β π β CRing) | ||
Theorem | mplassa 21891 | The polynomial ring is an associative algebra. (Contributed by Mario Carneiro, 9-Jan-2015.) |
β’ π = (πΌ mPoly π ) β β’ ((πΌ β π β§ π β CRing) β π β AssAlg) | ||
Theorem | ressmplbas2 21892 | The base set of a restricted polynomial algebra consists of power series in the subring which are also polynomials (in the parent ring). (Contributed by Mario Carneiro, 3-Jul-2015.) |
β’ π = (πΌ mPoly π ) & β’ π» = (π βΎs π) & β’ π = (πΌ mPoly π») & β’ π΅ = (Baseβπ) & β’ (π β πΌ β π) & β’ (π β π β (SubRingβπ )) & β’ π = (πΌ mPwSer π») & β’ πΆ = (Baseβπ) & β’ πΎ = (Baseβπ) β β’ (π β π΅ = (πΆ β© πΎ)) | ||
Theorem | ressmplbas 21893 | A restricted polynomial algebra has the same base set. (Contributed by Mario Carneiro, 3-Jul-2015.) |
β’ π = (πΌ mPoly π ) & β’ π» = (π βΎs π) & β’ π = (πΌ mPoly π») & β’ π΅ = (Baseβπ) & β’ (π β πΌ β π) & β’ (π β π β (SubRingβπ )) & β’ π = (π βΎs π΅) β β’ (π β π΅ = (Baseβπ)) | ||
Theorem | ressmpladd 21894 | A restricted polynomial algebra has the same addition operation. (Contributed by Mario Carneiro, 3-Jul-2015.) |
β’ π = (πΌ mPoly π ) & β’ π» = (π βΎs π) & β’ π = (πΌ mPoly π») & β’ π΅ = (Baseβπ) & β’ (π β πΌ β π) & β’ (π β π β (SubRingβπ )) & β’ π = (π βΎs π΅) β β’ ((π β§ (π β π΅ β§ π β π΅)) β (π(+gβπ)π) = (π(+gβπ)π)) | ||
Theorem | ressmplmul 21895 | A restricted polynomial algebra has the same multiplication operation. (Contributed by Mario Carneiro, 3-Jul-2015.) |
β’ π = (πΌ mPoly π ) & β’ π» = (π βΎs π) & β’ π = (πΌ mPoly π») & β’ π΅ = (Baseβπ) & β’ (π β πΌ β π) & β’ (π β π β (SubRingβπ )) & β’ π = (π βΎs π΅) β β’ ((π β§ (π β π΅ β§ π β π΅)) β (π(.rβπ)π) = (π(.rβπ)π)) | ||
Theorem | ressmplvsca 21896 | A restricted power series algebra has the same scalar multiplication operation. (Contributed by Mario Carneiro, 3-Jul-2015.) |
β’ π = (πΌ mPoly π ) & β’ π» = (π βΎs π) & β’ π = (πΌ mPoly π») & β’ π΅ = (Baseβπ) & β’ (π β πΌ β π) & β’ (π β π β (SubRingβπ )) & β’ π = (π βΎs π΅) β β’ ((π β§ (π β π β§ π β π΅)) β (π( Β·π βπ)π) = (π( Β·π βπ)π)) | ||
Theorem | subrgmpl 21897 | A subring of the base ring induces a subring of polynomials. (Contributed by Mario Carneiro, 3-Jul-2015.) |
β’ π = (πΌ mPoly π ) & β’ π» = (π βΎs π) & β’ π = (πΌ mPoly π») & β’ π΅ = (Baseβπ) β β’ ((πΌ β π β§ π β (SubRingβπ )) β π΅ β (SubRingβπ)) | ||
Theorem | subrgmvr 21898 | The variables in a subring polynomial algebra are the same as the original ring. (Contributed by Mario Carneiro, 4-Jul-2015.) |
β’ π = (πΌ mVar π ) & β’ (π β πΌ β π) & β’ (π β π β (SubRingβπ )) & β’ π» = (π βΎs π) β β’ (π β π = (πΌ mVar π»)) | ||
Theorem | subrgmvrf 21899 | The variables in a polynomial algebra are contained in every subring algebra. (Contributed by Mario Carneiro, 4-Jul-2015.) |
β’ π = (πΌ mVar π ) & β’ (π β πΌ β π) & β’ (π β π β (SubRingβπ )) & β’ π» = (π βΎs π) & β’ π = (πΌ mPoly π») & β’ π΅ = (Baseβπ) β β’ (π β π:πΌβΆπ΅) | ||
Theorem | mplmon 21900* | A monomial is a polynomial. (Contributed by Mario Carneiro, 9-Jan-2015.) |
β’ π = (πΌ mPoly π ) & β’ π΅ = (Baseβπ) & β’ 0 = (0gβπ ) & β’ 1 = (1rβπ ) & β’ π· = {π β (β0 βm πΌ) β£ (β‘π β β) β Fin} & β’ (π β πΌ β π) & β’ (π β π β Ring) & β’ (π β π β π·) β β’ (π β (π¦ β π· β¦ if(π¦ = π, 1 , 0 )) β π΅) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |