Detailed syntax breakdown of Definition df-fallfac
Step | Hyp | Ref
| Expression |
1 | | cfallfac 15723 |
. 2
class
FallFac |
2 | | vx |
. . 3
setvar 𝑥 |
3 | | vn |
. . 3
setvar 𝑛 |
4 | | cc 10878 |
. . 3
class
ℂ |
5 | | cn0 12242 |
. . 3
class
ℕ0 |
6 | | cc0 10880 |
. . . . 5
class
0 |
7 | 3 | cv 1538 |
. . . . . 6
class 𝑛 |
8 | | c1 10881 |
. . . . . 6
class
1 |
9 | | cmin 11214 |
. . . . . 6
class
− |
10 | 7, 8, 9 | co 7284 |
. . . . 5
class (𝑛 − 1) |
11 | | cfz 13248 |
. . . . 5
class
... |
12 | 6, 10, 11 | co 7284 |
. . . 4
class
(0...(𝑛 −
1)) |
13 | 2 | cv 1538 |
. . . . 5
class 𝑥 |
14 | | vk |
. . . . . 6
setvar 𝑘 |
15 | 14 | cv 1538 |
. . . . 5
class 𝑘 |
16 | 13, 15, 9 | co 7284 |
. . . 4
class (𝑥 − 𝑘) |
17 | 12, 16, 14 | cprod 15624 |
. . 3
class
∏𝑘 ∈
(0...(𝑛 − 1))(𝑥 − 𝑘) |
18 | 2, 3, 4, 5, 17 | cmpo 7286 |
. 2
class (𝑥 ∈ ℂ, 𝑛 ∈ ℕ0
↦ ∏𝑘 ∈
(0...(𝑛 − 1))(𝑥 − 𝑘)) |
19 | 1, 18 | wceq 1539 |
1
wff FallFac =
(𝑥 ∈ ℂ, 𝑛 ∈ ℕ0
↦ ∏𝑘 ∈
(0...(𝑛 − 1))(𝑥 − 𝑘)) |