Detailed syntax breakdown of Definition df-fallfac
| Step | Hyp | Ref
| Expression |
| 1 | | cfallfac 16040 |
. 2
class
FallFac |
| 2 | | vx |
. . 3
setvar 𝑥 |
| 3 | | vn |
. . 3
setvar 𝑛 |
| 4 | | cc 11153 |
. . 3
class
ℂ |
| 5 | | cn0 12526 |
. . 3
class
ℕ0 |
| 6 | | cc0 11155 |
. . . . 5
class
0 |
| 7 | 3 | cv 1539 |
. . . . . 6
class 𝑛 |
| 8 | | c1 11156 |
. . . . . 6
class
1 |
| 9 | | cmin 11492 |
. . . . . 6
class
− |
| 10 | 7, 8, 9 | co 7431 |
. . . . 5
class (𝑛 − 1) |
| 11 | | cfz 13547 |
. . . . 5
class
... |
| 12 | 6, 10, 11 | co 7431 |
. . . 4
class
(0...(𝑛 −
1)) |
| 13 | 2 | cv 1539 |
. . . . 5
class 𝑥 |
| 14 | | vk |
. . . . . 6
setvar 𝑘 |
| 15 | 14 | cv 1539 |
. . . . 5
class 𝑘 |
| 16 | 13, 15, 9 | co 7431 |
. . . 4
class (𝑥 − 𝑘) |
| 17 | 12, 16, 14 | cprod 15939 |
. . 3
class
∏𝑘 ∈
(0...(𝑛 − 1))(𝑥 − 𝑘) |
| 18 | 2, 3, 4, 5, 17 | cmpo 7433 |
. 2
class (𝑥 ∈ ℂ, 𝑛 ∈ ℕ0
↦ ∏𝑘 ∈
(0...(𝑛 − 1))(𝑥 − 𝑘)) |
| 19 | 1, 18 | wceq 1540 |
1
wff FallFac =
(𝑥 ∈ ℂ, 𝑛 ∈ ℕ0
↦ ∏𝑘 ∈
(0...(𝑛 − 1))(𝑥 − 𝑘)) |