MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fallfacval Structured version   Visualization version   GIF version

Theorem fallfacval 15981
Description: The value of the falling factorial function. (Contributed by Scott Fenton, 5-Jan-2018.)
Assertion
Ref Expression
fallfacval ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (𝐴 FallFac 𝑁) = ∏𝑘 ∈ (0...(𝑁 − 1))(𝐴𝑘))
Distinct variable groups:   𝐴,𝑘   𝑘,𝑁

Proof of Theorem fallfacval
Dummy variables 𝑛 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 7396 . . 3 (𝑥 = 𝐴 → (𝑥𝑘) = (𝐴𝑘))
21prodeq2sdv 15895 . 2 (𝑥 = 𝐴 → ∏𝑘 ∈ (0...(𝑛 − 1))(𝑥𝑘) = ∏𝑘 ∈ (0...(𝑛 − 1))(𝐴𝑘))
3 oveq1 7396 . . . 4 (𝑛 = 𝑁 → (𝑛 − 1) = (𝑁 − 1))
43oveq2d 7405 . . 3 (𝑛 = 𝑁 → (0...(𝑛 − 1)) = (0...(𝑁 − 1)))
54prodeq1d 15892 . 2 (𝑛 = 𝑁 → ∏𝑘 ∈ (0...(𝑛 − 1))(𝐴𝑘) = ∏𝑘 ∈ (0...(𝑁 − 1))(𝐴𝑘))
6 df-fallfac 15979 . 2 FallFac = (𝑥 ∈ ℂ, 𝑛 ∈ ℕ0 ↦ ∏𝑘 ∈ (0...(𝑛 − 1))(𝑥𝑘))
7 prodex 15877 . 2 𝑘 ∈ (0...(𝑁 − 1))(𝐴𝑘) ∈ V
82, 5, 6, 7ovmpo 7551 1 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (𝐴 FallFac 𝑁) = ∏𝑘 ∈ (0...(𝑁 − 1))(𝐴𝑘))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  (class class class)co 7389  cc 11072  0cc0 11074  1c1 11075  cmin 11411  0cn0 12448  ...cfz 13474  cprod 15875   FallFac cfallfac 15976
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5253  ax-nul 5263  ax-pr 5389
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-nul 4299  df-if 4491  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-br 5110  df-opab 5172  df-mpt 5191  df-id 5535  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-pred 6276  df-iota 6466  df-fun 6515  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-fv 6521  df-ov 7392  df-oprab 7393  df-mpo 7394  df-frecs 8262  df-wrecs 8293  df-recs 8342  df-rdg 8380  df-seq 13973  df-prod 15876  df-fallfac 15979
This theorem is referenced by:  fallfacval2  15983  fallfacval3  15984  fallfaccllem  15986  fallfacp1  16002  fallfacfwd  16008  0fallfac  16009  bcled  42161  bcle2d  42162  bcc0  44322
  Copyright terms: Public domain W3C validator