MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fallfacval Structured version   Visualization version   GIF version

Theorem fallfacval 15975
Description: The value of the falling factorial function. (Contributed by Scott Fenton, 5-Jan-2018.)
Assertion
Ref Expression
fallfacval ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (𝐴 FallFac 𝑁) = ∏𝑘 ∈ (0...(𝑁 − 1))(𝐴𝑘))
Distinct variable groups:   𝐴,𝑘   𝑘,𝑁

Proof of Theorem fallfacval
Dummy variables 𝑛 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 7394 . . 3 (𝑥 = 𝐴 → (𝑥𝑘) = (𝐴𝑘))
21prodeq2sdv 15889 . 2 (𝑥 = 𝐴 → ∏𝑘 ∈ (0...(𝑛 − 1))(𝑥𝑘) = ∏𝑘 ∈ (0...(𝑛 − 1))(𝐴𝑘))
3 oveq1 7394 . . . 4 (𝑛 = 𝑁 → (𝑛 − 1) = (𝑁 − 1))
43oveq2d 7403 . . 3 (𝑛 = 𝑁 → (0...(𝑛 − 1)) = (0...(𝑁 − 1)))
54prodeq1d 15886 . 2 (𝑛 = 𝑁 → ∏𝑘 ∈ (0...(𝑛 − 1))(𝐴𝑘) = ∏𝑘 ∈ (0...(𝑁 − 1))(𝐴𝑘))
6 df-fallfac 15973 . 2 FallFac = (𝑥 ∈ ℂ, 𝑛 ∈ ℕ0 ↦ ∏𝑘 ∈ (0...(𝑛 − 1))(𝑥𝑘))
7 prodex 15871 . 2 𝑘 ∈ (0...(𝑁 − 1))(𝐴𝑘) ∈ V
82, 5, 6, 7ovmpo 7549 1 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (𝐴 FallFac 𝑁) = ∏𝑘 ∈ (0...(𝑁 − 1))(𝐴𝑘))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  (class class class)co 7387  cc 11066  0cc0 11068  1c1 11069  cmin 11405  0cn0 12442  ...cfz 13468  cprod 15869   FallFac cfallfac 15970
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-iota 6464  df-fun 6513  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-seq 13967  df-prod 15870  df-fallfac 15973
This theorem is referenced by:  fallfacval2  15977  fallfacval3  15978  fallfaccllem  15980  fallfacp1  15996  fallfacfwd  16002  0fallfac  16003  bcled  42166  bcle2d  42167  bcc0  44329
  Copyright terms: Public domain W3C validator