| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fallfacval | Structured version Visualization version GIF version | ||
| Description: The value of the falling factorial function. (Contributed by Scott Fenton, 5-Jan-2018.) |
| Ref | Expression |
|---|---|
| fallfacval | ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (𝐴 FallFac 𝑁) = ∏𝑘 ∈ (0...(𝑁 − 1))(𝐴 − 𝑘)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq1 7396 | . . 3 ⊢ (𝑥 = 𝐴 → (𝑥 − 𝑘) = (𝐴 − 𝑘)) | |
| 2 | 1 | prodeq2sdv 15895 | . 2 ⊢ (𝑥 = 𝐴 → ∏𝑘 ∈ (0...(𝑛 − 1))(𝑥 − 𝑘) = ∏𝑘 ∈ (0...(𝑛 − 1))(𝐴 − 𝑘)) |
| 3 | oveq1 7396 | . . . 4 ⊢ (𝑛 = 𝑁 → (𝑛 − 1) = (𝑁 − 1)) | |
| 4 | 3 | oveq2d 7405 | . . 3 ⊢ (𝑛 = 𝑁 → (0...(𝑛 − 1)) = (0...(𝑁 − 1))) |
| 5 | 4 | prodeq1d 15892 | . 2 ⊢ (𝑛 = 𝑁 → ∏𝑘 ∈ (0...(𝑛 − 1))(𝐴 − 𝑘) = ∏𝑘 ∈ (0...(𝑁 − 1))(𝐴 − 𝑘)) |
| 6 | df-fallfac 15979 | . 2 ⊢ FallFac = (𝑥 ∈ ℂ, 𝑛 ∈ ℕ0 ↦ ∏𝑘 ∈ (0...(𝑛 − 1))(𝑥 − 𝑘)) | |
| 7 | prodex 15877 | . 2 ⊢ ∏𝑘 ∈ (0...(𝑁 − 1))(𝐴 − 𝑘) ∈ V | |
| 8 | 2, 5, 6, 7 | ovmpo 7551 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (𝐴 FallFac 𝑁) = ∏𝑘 ∈ (0...(𝑁 − 1))(𝐴 − 𝑘)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 (class class class)co 7389 ℂcc 11072 0cc0 11074 1c1 11075 − cmin 11411 ℕ0cn0 12448 ...cfz 13474 ∏cprod 15875 FallFac cfallfac 15976 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5253 ax-nul 5263 ax-pr 5389 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-nul 4299 df-if 4491 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-br 5110 df-opab 5172 df-mpt 5191 df-id 5535 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-pred 6276 df-iota 6466 df-fun 6515 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-ov 7392 df-oprab 7393 df-mpo 7394 df-frecs 8262 df-wrecs 8293 df-recs 8342 df-rdg 8380 df-seq 13973 df-prod 15876 df-fallfac 15979 |
| This theorem is referenced by: fallfacval2 15983 fallfacval3 15984 fallfaccllem 15986 fallfacp1 16002 fallfacfwd 16008 0fallfac 16009 bcled 42161 bcle2d 42162 bcc0 44322 |
| Copyright terms: Public domain | W3C validator |