MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fallfacval Structured version   Visualization version   GIF version

Theorem fallfacval 16025
Description: The value of the falling factorial function. (Contributed by Scott Fenton, 5-Jan-2018.)
Assertion
Ref Expression
fallfacval ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (𝐴 FallFac 𝑁) = ∏𝑘 ∈ (0...(𝑁 − 1))(𝐴𝑘))
Distinct variable groups:   𝐴,𝑘   𝑘,𝑁

Proof of Theorem fallfacval
Dummy variables 𝑛 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 7412 . . 3 (𝑥 = 𝐴 → (𝑥𝑘) = (𝐴𝑘))
21prodeq2sdv 15939 . 2 (𝑥 = 𝐴 → ∏𝑘 ∈ (0...(𝑛 − 1))(𝑥𝑘) = ∏𝑘 ∈ (0...(𝑛 − 1))(𝐴𝑘))
3 oveq1 7412 . . . 4 (𝑛 = 𝑁 → (𝑛 − 1) = (𝑁 − 1))
43oveq2d 7421 . . 3 (𝑛 = 𝑁 → (0...(𝑛 − 1)) = (0...(𝑁 − 1)))
54prodeq1d 15936 . 2 (𝑛 = 𝑁 → ∏𝑘 ∈ (0...(𝑛 − 1))(𝐴𝑘) = ∏𝑘 ∈ (0...(𝑁 − 1))(𝐴𝑘))
6 df-fallfac 16023 . 2 FallFac = (𝑥 ∈ ℂ, 𝑛 ∈ ℕ0 ↦ ∏𝑘 ∈ (0...(𝑛 − 1))(𝑥𝑘))
7 prodex 15921 . 2 𝑘 ∈ (0...(𝑁 − 1))(𝐴𝑘) ∈ V
82, 5, 6, 7ovmpo 7567 1 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (𝐴 FallFac 𝑁) = ∏𝑘 ∈ (0...(𝑁 − 1))(𝐴𝑘))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  (class class class)co 7405  cc 11127  0cc0 11129  1c1 11130  cmin 11466  0cn0 12501  ...cfz 13524  cprod 15919   FallFac cfallfac 16020
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-iota 6484  df-fun 6533  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-ov 7408  df-oprab 7409  df-mpo 7410  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-seq 14020  df-prod 15920  df-fallfac 16023
This theorem is referenced by:  fallfacval2  16027  fallfacval3  16028  fallfaccllem  16030  fallfacp1  16046  fallfacfwd  16052  0fallfac  16053  bcled  42191  bcle2d  42192  bcc0  44364
  Copyright terms: Public domain W3C validator