| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fallfacval | Structured version Visualization version GIF version | ||
| Description: The value of the falling factorial function. (Contributed by Scott Fenton, 5-Jan-2018.) |
| Ref | Expression |
|---|---|
| fallfacval | ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (𝐴 FallFac 𝑁) = ∏𝑘 ∈ (0...(𝑁 − 1))(𝐴 − 𝑘)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq1 7359 | . . 3 ⊢ (𝑥 = 𝐴 → (𝑥 − 𝑘) = (𝐴 − 𝑘)) | |
| 2 | 1 | prodeq2sdv 15836 | . 2 ⊢ (𝑥 = 𝐴 → ∏𝑘 ∈ (0...(𝑛 − 1))(𝑥 − 𝑘) = ∏𝑘 ∈ (0...(𝑛 − 1))(𝐴 − 𝑘)) |
| 3 | oveq1 7359 | . . . 4 ⊢ (𝑛 = 𝑁 → (𝑛 − 1) = (𝑁 − 1)) | |
| 4 | 3 | oveq2d 7368 | . . 3 ⊢ (𝑛 = 𝑁 → (0...(𝑛 − 1)) = (0...(𝑁 − 1))) |
| 5 | 4 | prodeq1d 15833 | . 2 ⊢ (𝑛 = 𝑁 → ∏𝑘 ∈ (0...(𝑛 − 1))(𝐴 − 𝑘) = ∏𝑘 ∈ (0...(𝑁 − 1))(𝐴 − 𝑘)) |
| 6 | df-fallfac 15920 | . 2 ⊢ FallFac = (𝑥 ∈ ℂ, 𝑛 ∈ ℕ0 ↦ ∏𝑘 ∈ (0...(𝑛 − 1))(𝑥 − 𝑘)) | |
| 7 | prodex 15818 | . 2 ⊢ ∏𝑘 ∈ (0...(𝑁 − 1))(𝐴 − 𝑘) ∈ V | |
| 8 | 2, 5, 6, 7 | ovmpo 7512 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (𝐴 FallFac 𝑁) = ∏𝑘 ∈ (0...(𝑁 − 1))(𝐴 − 𝑘)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 (class class class)co 7352 ℂcc 11010 0cc0 11012 1c1 11013 − cmin 11350 ℕ0cn0 12387 ...cfz 13413 ∏cprod 15816 FallFac cfallfac 15917 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5236 ax-nul 5246 ax-pr 5372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6254 df-iota 6443 df-fun 6489 df-f 6491 df-f1 6492 df-fo 6493 df-f1o 6494 df-fv 6495 df-ov 7355 df-oprab 7356 df-mpo 7357 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-seq 13915 df-prod 15817 df-fallfac 15920 |
| This theorem is referenced by: fallfacval2 15924 fallfacval3 15925 fallfaccllem 15927 fallfacp1 15943 fallfacfwd 15949 0fallfac 15950 bcled 42277 bcle2d 42278 bcc0 44438 |
| Copyright terms: Public domain | W3C validator |