| Metamath
Proof Explorer Theorem List (p. 160 of 500) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30900) |
(30901-32423) |
(32424-49930) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | fprodclf 15901* | Closure of a finite product of complex numbers. A version of fprodcl 15861 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
| ⊢ Ⅎ𝑘𝜑 & ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → ∏𝑘 ∈ 𝐴 𝐵 ∈ ℂ) | ||
| Theorem | fprodge0 15902* | If all the terms of a finite product are nonnegative, so is the product. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
| ⊢ Ⅎ𝑘𝜑 & ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 0 ≤ 𝐵) ⇒ ⊢ (𝜑 → 0 ≤ ∏𝑘 ∈ 𝐴 𝐵) | ||
| Theorem | fprodeq0g 15903* | Any finite product containing a zero term is itself zero. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
| ⊢ Ⅎ𝑘𝜑 & ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ 𝐴) & ⊢ ((𝜑 ∧ 𝑘 = 𝐶) → 𝐵 = 0) ⇒ ⊢ (𝜑 → ∏𝑘 ∈ 𝐴 𝐵 = 0) | ||
| Theorem | fprodge1 15904* | If all of the terms of a finite product are greater than or equal to 1, so is the product. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
| ⊢ Ⅎ𝑘𝜑 & ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 1 ≤ 𝐵) ⇒ ⊢ (𝜑 → 1 ≤ ∏𝑘 ∈ 𝐴 𝐵) | ||
| Theorem | fprodle 15905* | If all the terms of two finite products are nonnegative and compare, so do the two products. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
| ⊢ Ⅎ𝑘𝜑 & ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 0 ≤ 𝐵) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ≤ 𝐶) ⇒ ⊢ (𝜑 → ∏𝑘 ∈ 𝐴 𝐵 ≤ ∏𝑘 ∈ 𝐴 𝐶) | ||
| Theorem | fprodmodd 15906* | If all factors of two finite products are equal modulo 𝑀, the products are equal modulo 𝑀. (Contributed by AV, 7-Jul-2021.) |
| ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 ∈ ℤ) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝐵 mod 𝑀) = (𝐶 mod 𝑀)) ⇒ ⊢ (𝜑 → (∏𝑘 ∈ 𝐴 𝐵 mod 𝑀) = (∏𝑘 ∈ 𝐴 𝐶 mod 𝑀)) | ||
| Theorem | iprodclim 15907* | An infinite product equals the value its sequence converges to. (Contributed by Scott Fenton, 18-Dec-2017.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → ∃𝑛 ∈ 𝑍 ∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦)) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐴) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐴 ∈ ℂ) & ⊢ (𝜑 → seq𝑀( · , 𝐹) ⇝ 𝐵) ⇒ ⊢ (𝜑 → ∏𝑘 ∈ 𝑍 𝐴 = 𝐵) | ||
| Theorem | iprodclim2 15908* | A converging product converges to its infinite product. (Contributed by Scott Fenton, 18-Dec-2017.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → ∃𝑛 ∈ 𝑍 ∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦)) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐴) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐴 ∈ ℂ) ⇒ ⊢ (𝜑 → seq𝑀( · , 𝐹) ⇝ ∏𝑘 ∈ 𝑍 𝐴) | ||
| Theorem | iprodclim3 15909* | The sequence of partial finite product of a converging infinite product converge to the infinite product of the series. Note that 𝑗 must not occur in 𝐴. (Contributed by Scott Fenton, 18-Dec-2017.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → ∃𝑛 ∈ 𝑍 ∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ 𝑍 ↦ 𝐴)) ⇝ 𝑦)) & ⊢ (𝜑 → 𝐹 ∈ dom ⇝ ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐴 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (𝐹‘𝑗) = ∏𝑘 ∈ (𝑀...𝑗)𝐴) ⇒ ⊢ (𝜑 → 𝐹 ⇝ ∏𝑘 ∈ 𝑍 𝐴) | ||
| Theorem | iprodcl 15910* | The product of a non-trivially converging infinite sequence is a complex number. (Contributed by Scott Fenton, 18-Dec-2017.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → ∃𝑛 ∈ 𝑍 ∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦)) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐴) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐴 ∈ ℂ) ⇒ ⊢ (𝜑 → ∏𝑘 ∈ 𝑍 𝐴 ∈ ℂ) | ||
| Theorem | iprodrecl 15911* | The product of a non-trivially converging infinite real sequence is a real number. (Contributed by Scott Fenton, 18-Dec-2017.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → ∃𝑛 ∈ 𝑍 ∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦)) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐴) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐴 ∈ ℝ) ⇒ ⊢ (𝜑 → ∏𝑘 ∈ 𝑍 𝐴 ∈ ℝ) | ||
| Theorem | iprodmul 15912* | Multiplication of infinite sums. (Contributed by Scott Fenton, 18-Dec-2017.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → ∃𝑛 ∈ 𝑍 ∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦)) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐴) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐴 ∈ ℂ) & ⊢ (𝜑 → ∃𝑚 ∈ 𝑍 ∃𝑧(𝑧 ≠ 0 ∧ seq𝑚( · , 𝐺) ⇝ 𝑧)) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) = 𝐵) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → ∏𝑘 ∈ 𝑍 (𝐴 · 𝐵) = (∏𝑘 ∈ 𝑍 𝐴 · ∏𝑘 ∈ 𝑍 𝐵)) | ||
| Syntax | cfallfac 15913 | Declare the syntax for the falling factorial. |
| class FallFac | ||
| Syntax | crisefac 15914 | Declare the syntax for the rising factorial. |
| class RiseFac | ||
| Definition | df-risefac 15915* | Define the rising factorial function. This is the function (𝐴 · (𝐴 + 1) · ...(𝐴 + 𝑁)) for complex 𝐴 and nonnegative integers 𝑁. (Contributed by Scott Fenton, 5-Jan-2018.) |
| ⊢ RiseFac = (𝑥 ∈ ℂ, 𝑛 ∈ ℕ0 ↦ ∏𝑘 ∈ (0...(𝑛 − 1))(𝑥 + 𝑘)) | ||
| Definition | df-fallfac 15916* | Define the falling factorial function. This is the function (𝐴 · (𝐴 − 1) · ...(𝐴 − 𝑁)) for complex 𝐴 and nonnegative integers 𝑁. (Contributed by Scott Fenton, 5-Jan-2018.) |
| ⊢ FallFac = (𝑥 ∈ ℂ, 𝑛 ∈ ℕ0 ↦ ∏𝑘 ∈ (0...(𝑛 − 1))(𝑥 − 𝑘)) | ||
| Theorem | risefacval 15917* | The value of the rising factorial function. (Contributed by Scott Fenton, 5-Jan-2018.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (𝐴 RiseFac 𝑁) = ∏𝑘 ∈ (0...(𝑁 − 1))(𝐴 + 𝑘)) | ||
| Theorem | fallfacval 15918* | The value of the falling factorial function. (Contributed by Scott Fenton, 5-Jan-2018.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (𝐴 FallFac 𝑁) = ∏𝑘 ∈ (0...(𝑁 − 1))(𝐴 − 𝑘)) | ||
| Theorem | risefacval2 15919* | One-based value of rising factorial. (Contributed by Scott Fenton, 15-Jan-2018.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (𝐴 RiseFac 𝑁) = ∏𝑘 ∈ (1...𝑁)(𝐴 + (𝑘 − 1))) | ||
| Theorem | fallfacval2 15920* | One-based value of falling factorial. (Contributed by Scott Fenton, 15-Jan-2018.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (𝐴 FallFac 𝑁) = ∏𝑘 ∈ (1...𝑁)(𝐴 − (𝑘 − 1))) | ||
| Theorem | fallfacval3 15921* | A product representation of falling factorial when 𝐴 is a nonnegative integer. (Contributed by Scott Fenton, 20-Mar-2018.) |
| ⊢ (𝑁 ∈ (0...𝐴) → (𝐴 FallFac 𝑁) = ∏𝑘 ∈ ((𝐴 − (𝑁 − 1))...𝐴)𝑘) | ||
| Theorem | risefaccllem 15922* | Lemma for rising factorial closure laws. (Contributed by Scott Fenton, 5-Jan-2018.) |
| ⊢ 𝑆 ⊆ ℂ & ⊢ 1 ∈ 𝑆 & ⊢ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) → (𝑥 · 𝑦) ∈ 𝑆) & ⊢ ((𝐴 ∈ 𝑆 ∧ 𝑘 ∈ ℕ0) → (𝐴 + 𝑘) ∈ 𝑆) ⇒ ⊢ ((𝐴 ∈ 𝑆 ∧ 𝑁 ∈ ℕ0) → (𝐴 RiseFac 𝑁) ∈ 𝑆) | ||
| Theorem | fallfaccllem 15923* | Lemma for falling factorial closure laws. (Contributed by Scott Fenton, 5-Jan-2018.) |
| ⊢ 𝑆 ⊆ ℂ & ⊢ 1 ∈ 𝑆 & ⊢ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) → (𝑥 · 𝑦) ∈ 𝑆) & ⊢ ((𝐴 ∈ 𝑆 ∧ 𝑘 ∈ ℕ0) → (𝐴 − 𝑘) ∈ 𝑆) ⇒ ⊢ ((𝐴 ∈ 𝑆 ∧ 𝑁 ∈ ℕ0) → (𝐴 FallFac 𝑁) ∈ 𝑆) | ||
| Theorem | risefaccl 15924 | Closure law for rising factorial. (Contributed by Scott Fenton, 5-Jan-2018.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (𝐴 RiseFac 𝑁) ∈ ℂ) | ||
| Theorem | fallfaccl 15925 | Closure law for falling factorial. (Contributed by Scott Fenton, 5-Jan-2018.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (𝐴 FallFac 𝑁) ∈ ℂ) | ||
| Theorem | rerisefaccl 15926 | Closure law for rising factorial. (Contributed by Scott Fenton, 5-Jan-2018.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0) → (𝐴 RiseFac 𝑁) ∈ ℝ) | ||
| Theorem | refallfaccl 15927 | Closure law for falling factorial. (Contributed by Scott Fenton, 5-Jan-2018.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0) → (𝐴 FallFac 𝑁) ∈ ℝ) | ||
| Theorem | nnrisefaccl 15928 | Closure law for rising factorial. (Contributed by Scott Fenton, 5-Jan-2018.) |
| ⊢ ((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (𝐴 RiseFac 𝑁) ∈ ℕ) | ||
| Theorem | zrisefaccl 15929 | Closure law for rising factorial. (Contributed by Scott Fenton, 5-Jan-2018.) |
| ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (𝐴 RiseFac 𝑁) ∈ ℤ) | ||
| Theorem | zfallfaccl 15930 | Closure law for falling factorial. (Contributed by Scott Fenton, 5-Jan-2018.) |
| ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (𝐴 FallFac 𝑁) ∈ ℤ) | ||
| Theorem | nn0risefaccl 15931 | Closure law for rising factorial. (Contributed by Scott Fenton, 5-Jan-2018.) |
| ⊢ ((𝐴 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → (𝐴 RiseFac 𝑁) ∈ ℕ0) | ||
| Theorem | rprisefaccl 15932 | Closure law for rising factorial. (Contributed by Scott Fenton, 9-Jan-2018.) |
| ⊢ ((𝐴 ∈ ℝ+ ∧ 𝑁 ∈ ℕ0) → (𝐴 RiseFac 𝑁) ∈ ℝ+) | ||
| Theorem | risefallfac 15933 | A relationship between rising and falling factorials. (Contributed by Scott Fenton, 15-Jan-2018.) |
| ⊢ ((𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (𝑋 RiseFac 𝑁) = ((-1↑𝑁) · (-𝑋 FallFac 𝑁))) | ||
| Theorem | fallrisefac 15934 | A relationship between falling and rising factorials. (Contributed by Scott Fenton, 17-Jan-2018.) |
| ⊢ ((𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (𝑋 FallFac 𝑁) = ((-1↑𝑁) · (-𝑋 RiseFac 𝑁))) | ||
| Theorem | risefall0lem 15935 | Lemma for risefac0 15936 and fallfac0 15937. Show a particular set of finite integers is empty. (Contributed by Scott Fenton, 5-Jan-2018.) |
| ⊢ (0...(0 − 1)) = ∅ | ||
| Theorem | risefac0 15936 | The value of the rising factorial when 𝑁 = 0. (Contributed by Scott Fenton, 5-Jan-2018.) |
| ⊢ (𝐴 ∈ ℂ → (𝐴 RiseFac 0) = 1) | ||
| Theorem | fallfac0 15937 | The value of the falling factorial when 𝑁 = 0. (Contributed by Scott Fenton, 5-Jan-2018.) |
| ⊢ (𝐴 ∈ ℂ → (𝐴 FallFac 0) = 1) | ||
| Theorem | risefacp1 15938 | The value of the rising factorial at a successor. (Contributed by Scott Fenton, 5-Jan-2018.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (𝐴 RiseFac (𝑁 + 1)) = ((𝐴 RiseFac 𝑁) · (𝐴 + 𝑁))) | ||
| Theorem | fallfacp1 15939 | The value of the falling factorial at a successor. (Contributed by Scott Fenton, 5-Jan-2018.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (𝐴 FallFac (𝑁 + 1)) = ((𝐴 FallFac 𝑁) · (𝐴 − 𝑁))) | ||
| Theorem | risefacp1d 15940 | The value of the rising factorial at a successor. (Contributed by Scott Fenton, 19-Mar-2018.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) ⇒ ⊢ (𝜑 → (𝐴 RiseFac (𝑁 + 1)) = ((𝐴 RiseFac 𝑁) · (𝐴 + 𝑁))) | ||
| Theorem | fallfacp1d 15941 | The value of the falling factorial at a successor. (Contributed by Scott Fenton, 19-Mar-2018.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) ⇒ ⊢ (𝜑 → (𝐴 FallFac (𝑁 + 1)) = ((𝐴 FallFac 𝑁) · (𝐴 − 𝑁))) | ||
| Theorem | risefac1 15942 | The value of rising factorial at one. (Contributed by Scott Fenton, 5-Jan-2018.) |
| ⊢ (𝐴 ∈ ℂ → (𝐴 RiseFac 1) = 𝐴) | ||
| Theorem | fallfac1 15943 | The value of falling factorial at one. (Contributed by Scott Fenton, 5-Jan-2018.) |
| ⊢ (𝐴 ∈ ℂ → (𝐴 FallFac 1) = 𝐴) | ||
| Theorem | risefacfac 15944 | Relate rising factorial to factorial. (Contributed by Scott Fenton, 5-Jan-2018.) |
| ⊢ (𝑁 ∈ ℕ0 → (1 RiseFac 𝑁) = (!‘𝑁)) | ||
| Theorem | fallfacfwd 15945 | The forward difference of a falling factorial. (Contributed by Scott Fenton, 21-Jan-2018.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → (((𝐴 + 1) FallFac 𝑁) − (𝐴 FallFac 𝑁)) = (𝑁 · (𝐴 FallFac (𝑁 − 1)))) | ||
| Theorem | 0fallfac 15946 | The value of the zero falling factorial at natural 𝑁. (Contributed by Scott Fenton, 17-Feb-2018.) |
| ⊢ (𝑁 ∈ ℕ → (0 FallFac 𝑁) = 0) | ||
| Theorem | 0risefac 15947 | The value of the zero rising factorial at natural 𝑁. (Contributed by Scott Fenton, 17-Feb-2018.) |
| ⊢ (𝑁 ∈ ℕ → (0 RiseFac 𝑁) = 0) | ||
| Theorem | binomfallfaclem1 15948 | Lemma for binomfallfac 15950. Closure law. (Contributed by Scott Fenton, 13-Mar-2018.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) ⇒ ⊢ ((𝜑 ∧ 𝐾 ∈ (0...𝑁)) → ((𝑁C𝐾) · ((𝐴 FallFac (𝑁 − 𝐾)) · (𝐵 FallFac (𝐾 + 1)))) ∈ ℂ) | ||
| Theorem | binomfallfaclem2 15949* | Lemma for binomfallfac 15950. Inductive step. (Contributed by Scott Fenton, 13-Mar-2018.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜓 → ((𝐴 + 𝐵) FallFac 𝑁) = Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((𝐴 FallFac (𝑁 − 𝑘)) · (𝐵 FallFac 𝑘)))) ⇒ ⊢ ((𝜑 ∧ 𝜓) → ((𝐴 + 𝐵) FallFac (𝑁 + 1)) = Σ𝑘 ∈ (0...(𝑁 + 1))(((𝑁 + 1)C𝑘) · ((𝐴 FallFac ((𝑁 + 1) − 𝑘)) · (𝐵 FallFac 𝑘)))) | ||
| Theorem | binomfallfac 15950* | A version of the binomial theorem using falling factorials instead of exponentials. (Contributed by Scott Fenton, 13-Mar-2018.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → ((𝐴 + 𝐵) FallFac 𝑁) = Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((𝐴 FallFac (𝑁 − 𝑘)) · (𝐵 FallFac 𝑘)))) | ||
| Theorem | binomrisefac 15951* | A version of the binomial theorem using rising factorials instead of exponentials. (Contributed by Scott Fenton, 16-Mar-2018.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → ((𝐴 + 𝐵) RiseFac 𝑁) = Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((𝐴 RiseFac (𝑁 − 𝑘)) · (𝐵 RiseFac 𝑘)))) | ||
| Theorem | fallfacval4 15952 | Represent the falling factorial via factorials when the first argument is a natural. (Contributed by Scott Fenton, 20-Mar-2018.) |
| ⊢ (𝑁 ∈ (0...𝐴) → (𝐴 FallFac 𝑁) = ((!‘𝐴) / (!‘(𝐴 − 𝑁)))) | ||
| Theorem | bcfallfac 15953 | Binomial coefficient in terms of falling factorials. (Contributed by Scott Fenton, 20-Mar-2018.) |
| ⊢ (𝐾 ∈ (0...𝑁) → (𝑁C𝐾) = ((𝑁 FallFac 𝐾) / (!‘𝐾))) | ||
| Theorem | fallfacfac 15954 | Relate falling factorial to factorial. (Contributed by Scott Fenton, 5-Jan-2018.) |
| ⊢ (𝑁 ∈ ℕ0 → (𝑁 FallFac 𝑁) = (!‘𝑁)) | ||
| Syntax | cbp 15955 | Declare the constant for the Bernoulli polynomial operator. |
| class BernPoly | ||
| Definition | df-bpoly 15956* | Define the Bernoulli polynomials. Here we use well-founded recursion to define the Bernoulli polynomials. This agrees with most textbook definitions, although explicit formulas do exist. (Contributed by Scott Fenton, 22-May-2014.) |
| ⊢ BernPoly = (𝑚 ∈ ℕ0, 𝑥 ∈ ℂ ↦ (wrecs( < , ℕ0, (𝑔 ∈ V ↦ ⦋(♯‘dom 𝑔) / 𝑛⦌((𝑥↑𝑛) − Σ𝑘 ∈ dom 𝑔((𝑛C𝑘) · ((𝑔‘𝑘) / ((𝑛 − 𝑘) + 1))))))‘𝑚)) | ||
| Theorem | bpolylem 15957* | Lemma for bpolyval 15958. (Contributed by Scott Fenton, 22-May-2014.) (Revised by Mario Carneiro, 23-Aug-2014.) |
| ⊢ 𝐺 = (𝑔 ∈ V ↦ ⦋(♯‘dom 𝑔) / 𝑛⦌((𝑋↑𝑛) − Σ𝑘 ∈ dom 𝑔((𝑛C𝑘) · ((𝑔‘𝑘) / ((𝑛 − 𝑘) + 1))))) & ⊢ 𝐹 = wrecs( < , ℕ0, 𝐺) ⇒ ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑋 ∈ ℂ) → (𝑁 BernPoly 𝑋) = ((𝑋↑𝑁) − Σ𝑘 ∈ (0...(𝑁 − 1))((𝑁C𝑘) · ((𝑘 BernPoly 𝑋) / ((𝑁 − 𝑘) + 1))))) | ||
| Theorem | bpolyval 15958* | The value of the Bernoulli polynomials. (Contributed by Scott Fenton, 16-May-2014.) |
| ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑋 ∈ ℂ) → (𝑁 BernPoly 𝑋) = ((𝑋↑𝑁) − Σ𝑘 ∈ (0...(𝑁 − 1))((𝑁C𝑘) · ((𝑘 BernPoly 𝑋) / ((𝑁 − 𝑘) + 1))))) | ||
| Theorem | bpoly0 15959 | The value of the Bernoulli polynomials at zero. (Contributed by Scott Fenton, 16-May-2014.) |
| ⊢ (𝑋 ∈ ℂ → (0 BernPoly 𝑋) = 1) | ||
| Theorem | bpoly1 15960 | The value of the Bernoulli polynomials at one. (Contributed by Scott Fenton, 16-May-2014.) |
| ⊢ (𝑋 ∈ ℂ → (1 BernPoly 𝑋) = (𝑋 − (1 / 2))) | ||
| Theorem | bpolycl 15961 | Closure law for Bernoulli polynomials. (Contributed by Scott Fenton, 16-May-2014.) (Proof shortened by Mario Carneiro, 22-May-2014.) |
| ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑋 ∈ ℂ) → (𝑁 BernPoly 𝑋) ∈ ℂ) | ||
| Theorem | bpolysum 15962* | A sum for Bernoulli polynomials. (Contributed by Scott Fenton, 16-May-2014.) (Proof shortened by Mario Carneiro, 22-May-2014.) |
| ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑋 ∈ ℂ) → Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((𝑘 BernPoly 𝑋) / ((𝑁 − 𝑘) + 1))) = (𝑋↑𝑁)) | ||
| Theorem | bpolydiflem 15963* | Lemma for bpolydif 15964. (Contributed by Scott Fenton, 12-Jun-2014.) |
| ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝑋 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ (1...(𝑁 − 1))) → ((𝑘 BernPoly (𝑋 + 1)) − (𝑘 BernPoly 𝑋)) = (𝑘 · (𝑋↑(𝑘 − 1)))) ⇒ ⊢ (𝜑 → ((𝑁 BernPoly (𝑋 + 1)) − (𝑁 BernPoly 𝑋)) = (𝑁 · (𝑋↑(𝑁 − 1)))) | ||
| Theorem | bpolydif 15964 | Calculate the difference between successive values of the Bernoulli polynomials. (Contributed by Scott Fenton, 16-May-2014.) (Proof shortened by Mario Carneiro, 26-May-2014.) |
| ⊢ ((𝑁 ∈ ℕ ∧ 𝑋 ∈ ℂ) → ((𝑁 BernPoly (𝑋 + 1)) − (𝑁 BernPoly 𝑋)) = (𝑁 · (𝑋↑(𝑁 − 1)))) | ||
| Theorem | fsumkthpow 15965* | A closed-form expression for the sum of 𝐾-th powers. (Contributed by Scott Fenton, 16-May-2014.) This is Metamath 100 proof #77. (Revised by Mario Carneiro, 16-Jun-2014.) |
| ⊢ ((𝐾 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0) → Σ𝑛 ∈ (0...𝑀)(𝑛↑𝐾) = ((((𝐾 + 1) BernPoly (𝑀 + 1)) − ((𝐾 + 1) BernPoly 0)) / (𝐾 + 1))) | ||
| Theorem | bpoly2 15966 | The Bernoulli polynomials at two. (Contributed by Scott Fenton, 8-Jul-2015.) |
| ⊢ (𝑋 ∈ ℂ → (2 BernPoly 𝑋) = (((𝑋↑2) − 𝑋) + (1 / 6))) | ||
| Theorem | bpoly3 15967 | The Bernoulli polynomials at three. (Contributed by Scott Fenton, 8-Jul-2015.) |
| ⊢ (𝑋 ∈ ℂ → (3 BernPoly 𝑋) = (((𝑋↑3) − ((3 / 2) · (𝑋↑2))) + ((1 / 2) · 𝑋))) | ||
| Theorem | bpoly4 15968 | The Bernoulli polynomials at four. (Contributed by Scott Fenton, 8-Jul-2015.) |
| ⊢ (𝑋 ∈ ℂ → (4 BernPoly 𝑋) = ((((𝑋↑4) − (2 · (𝑋↑3))) + (𝑋↑2)) − (1 / ;30))) | ||
| Theorem | fsumcube 15969* | Express the sum of cubes in closed terms. (Contributed by Scott Fenton, 16-Jun-2015.) |
| ⊢ (𝑇 ∈ ℕ0 → Σ𝑘 ∈ (0...𝑇)(𝑘↑3) = (((𝑇↑2) · ((𝑇 + 1)↑2)) / 4)) | ||
| Syntax | ce 15970 | Extend class notation to include the exponential function. |
| class exp | ||
| Syntax | ceu 15971 | Extend class notation to include Euler's constant e = 2.71828.... |
| class e | ||
| Syntax | csin 15972 | Extend class notation to include the sine function. |
| class sin | ||
| Syntax | ccos 15973 | Extend class notation to include the cosine function. |
| class cos | ||
| Syntax | ctan 15974 | Extend class notation to include the tangent function. |
| class tan | ||
| Syntax | cpi 15975 | Extend class notation to include the constant pi, π = 3.14159.... |
| class π | ||
| Definition | df-ef 15976* | Define the exponential function. Its value at the complex number 𝐴 is (exp‘𝐴) and is called the "exponential of 𝐴"; see efval 15988. (Contributed by NM, 14-Mar-2005.) |
| ⊢ exp = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ ℕ0 ((𝑥↑𝑘) / (!‘𝑘))) | ||
| Definition | df-e 15977 | Define Euler's constant e = 2.71828.... (Contributed by NM, 14-Mar-2005.) |
| ⊢ e = (exp‘1) | ||
| Definition | df-sin 15978 | Define the sine function. (Contributed by NM, 14-Mar-2005.) |
| ⊢ sin = (𝑥 ∈ ℂ ↦ (((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))) / (2 · i))) | ||
| Definition | df-cos 15979 | Define the cosine function. (Contributed by NM, 14-Mar-2005.) |
| ⊢ cos = (𝑥 ∈ ℂ ↦ (((exp‘(i · 𝑥)) + (exp‘(-i · 𝑥))) / 2)) | ||
| Definition | df-tan 15980 | Define the tangent function. We define it this way for cmpt 5174, which requires the form (𝑥 ∈ 𝐴 ↦ 𝐵). (Contributed by Mario Carneiro, 14-Mar-2014.) |
| ⊢ tan = (𝑥 ∈ (◡cos “ (ℂ ∖ {0})) ↦ ((sin‘𝑥) / (cos‘𝑥))) | ||
| Definition | df-pi 15981 | Define the constant pi, π = 3.14159..., which is the smallest positive number whose sine is zero. Definition of π in [Gleason] p. 311. (Contributed by Paul Chapman, 23-Jan-2008.) (Revised by AV, 14-Sep-2020.) |
| ⊢ π = inf((ℝ+ ∩ (◡sin “ {0})), ℝ, < ) | ||
| Theorem | eftcl 15982 | Closure of a term in the series expansion of the exponential function. (Contributed by Paul Chapman, 11-Sep-2007.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℕ0) → ((𝐴↑𝐾) / (!‘𝐾)) ∈ ℂ) | ||
| Theorem | reeftcl 15983 | The terms of the series expansion of the exponential function at a real number are real. (Contributed by Paul Chapman, 15-Jan-2008.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐾 ∈ ℕ0) → ((𝐴↑𝐾) / (!‘𝐾)) ∈ ℝ) | ||
| Theorem | eftabs 15984 | The absolute value of a term in the series expansion of the exponential function. (Contributed by Paul Chapman, 23-Nov-2007.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℕ0) → (abs‘((𝐴↑𝐾) / (!‘𝐾))) = (((abs‘𝐴)↑𝐾) / (!‘𝐾))) | ||
| Theorem | eftval 15985* | The value of a term in the series expansion of the exponential function. (Contributed by Paul Chapman, 21-Aug-2007.) (Revised by Mario Carneiro, 28-Apr-2014.) |
| ⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))) ⇒ ⊢ (𝑁 ∈ ℕ0 → (𝐹‘𝑁) = ((𝐴↑𝑁) / (!‘𝑁))) | ||
| Theorem | efcllem 15986* | Lemma for efcl 15991. The series that defines the exponential function converges, in the case where its argument is nonzero. The ratio test cvgrat 15792 is used to show convergence. (Contributed by NM, 26-Apr-2005.) (Proof shortened by Mario Carneiro, 28-Apr-2014.) (Proof shortened by AV, 9-Jul-2022.) |
| ⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))) ⇒ ⊢ (𝐴 ∈ ℂ → seq0( + , 𝐹) ∈ dom ⇝ ) | ||
| Theorem | ef0lem 15987* | The series defining the exponential function converges in the (trivial) case of a zero argument. (Contributed by Steve Rodriguez, 7-Jun-2006.) (Revised by Mario Carneiro, 28-Apr-2014.) |
| ⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))) ⇒ ⊢ (𝐴 = 0 → seq0( + , 𝐹) ⇝ 1) | ||
| Theorem | efval 15988* | Value of the exponential function. (Contributed by NM, 8-Jan-2006.) (Revised by Mario Carneiro, 10-Nov-2013.) |
| ⊢ (𝐴 ∈ ℂ → (exp‘𝐴) = Σ𝑘 ∈ ℕ0 ((𝐴↑𝑘) / (!‘𝑘))) | ||
| Theorem | esum 15989 | Value of Euler's constant e = 2.71828.... (Contributed by Steve Rodriguez, 5-Mar-2006.) |
| ⊢ e = Σ𝑘 ∈ ℕ0 (1 / (!‘𝑘)) | ||
| Theorem | eff 15990 | Domain and codomain of the exponential function. (Contributed by Paul Chapman, 22-Oct-2007.) (Proof shortened by Mario Carneiro, 28-Apr-2014.) |
| ⊢ exp:ℂ⟶ℂ | ||
| Theorem | efcl 15991 | Closure law for the exponential function. (Contributed by NM, 8-Jan-2006.) (Revised by Mario Carneiro, 10-Nov-2013.) |
| ⊢ (𝐴 ∈ ℂ → (exp‘𝐴) ∈ ℂ) | ||
| Theorem | efcld 15992 | Closure law for the exponential function, deduction version. (Contributed by Thierry Arnoux, 1-Dec-2021.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) ⇒ ⊢ (𝜑 → (exp‘𝐴) ∈ ℂ) | ||
| Theorem | efval2 15993* | Value of the exponential function. (Contributed by Mario Carneiro, 29-Apr-2014.) |
| ⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))) ⇒ ⊢ (𝐴 ∈ ℂ → (exp‘𝐴) = Σ𝑘 ∈ ℕ0 (𝐹‘𝑘)) | ||
| Theorem | efcvg 15994* | The series that defines the exponential function converges to it. (Contributed by NM, 9-Jan-2006.) (Revised by Mario Carneiro, 28-Apr-2014.) |
| ⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))) ⇒ ⊢ (𝐴 ∈ ℂ → seq0( + , 𝐹) ⇝ (exp‘𝐴)) | ||
| Theorem | efcvgfsum 15995* | Exponential function convergence in terms of a sequence of partial finite sums. (Contributed by NM, 10-Jan-2006.) (Revised by Mario Carneiro, 28-Apr-2014.) |
| ⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ Σ𝑘 ∈ (0...𝑛)((𝐴↑𝑘) / (!‘𝑘))) ⇒ ⊢ (𝐴 ∈ ℂ → 𝐹 ⇝ (exp‘𝐴)) | ||
| Theorem | reefcl 15996 | The exponential function is real if its argument is real. (Contributed by NM, 27-Apr-2005.) (Revised by Mario Carneiro, 28-Apr-2014.) |
| ⊢ (𝐴 ∈ ℝ → (exp‘𝐴) ∈ ℝ) | ||
| Theorem | reefcld 15997 | The exponential function is real if its argument is real. (Contributed by Mario Carneiro, 29-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) ⇒ ⊢ (𝜑 → (exp‘𝐴) ∈ ℝ) | ||
| Theorem | ere 15998 | Euler's constant e = 2.71828... is a real number. (Contributed by NM, 19-Mar-2005.) (Revised by Steve Rodriguez, 8-Mar-2006.) |
| ⊢ e ∈ ℝ | ||
| Theorem | ege2le3 15999 | Lemma for egt2lt3 16117. (Contributed by NM, 20-Mar-2005.) (Proof shortened by Mario Carneiro, 28-Apr-2014.) |
| ⊢ 𝐹 = (𝑛 ∈ ℕ ↦ (2 · ((1 / 2)↑𝑛))) & ⊢ 𝐺 = (𝑛 ∈ ℕ0 ↦ (1 / (!‘𝑛))) ⇒ ⊢ (2 ≤ e ∧ e ≤ 3) | ||
| Theorem | ef0 16000 | Value of the exponential function at 0. Equation 2 of [Gleason] p. 308. (Contributed by Steve Rodriguez, 27-Jun-2006.) (Revised by Mario Carneiro, 28-Apr-2014.) |
| ⊢ (exp‘0) = 1 | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |