MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  risefacval Structured version   Visualization version   GIF version

Theorem risefacval 15950
Description: The value of the rising factorial function. (Contributed by Scott Fenton, 5-Jan-2018.)
Assertion
Ref Expression
risefacval ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (𝐴 RiseFac 𝑁) = ∏𝑘 ∈ (0...(𝑁 − 1))(𝐴 + 𝑘))
Distinct variable groups:   𝐴,𝑘   𝑘,𝑁

Proof of Theorem risefacval
Dummy variables 𝑛 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 7376 . . 3 (𝑥 = 𝐴 → (𝑥 + 𝑘) = (𝐴 + 𝑘))
21prodeq2sdv 15865 . 2 (𝑥 = 𝐴 → ∏𝑘 ∈ (0...(𝑛 − 1))(𝑥 + 𝑘) = ∏𝑘 ∈ (0...(𝑛 − 1))(𝐴 + 𝑘))
3 oveq1 7376 . . . 4 (𝑛 = 𝑁 → (𝑛 − 1) = (𝑁 − 1))
43oveq2d 7385 . . 3 (𝑛 = 𝑁 → (0...(𝑛 − 1)) = (0...(𝑁 − 1)))
54prodeq1d 15862 . 2 (𝑛 = 𝑁 → ∏𝑘 ∈ (0...(𝑛 − 1))(𝐴 + 𝑘) = ∏𝑘 ∈ (0...(𝑁 − 1))(𝐴 + 𝑘))
6 df-risefac 15948 . 2 RiseFac = (𝑥 ∈ ℂ, 𝑛 ∈ ℕ0 ↦ ∏𝑘 ∈ (0...(𝑛 − 1))(𝑥 + 𝑘))
7 prodex 15847 . 2 𝑘 ∈ (0...(𝑁 − 1))(𝐴 + 𝑘) ∈ V
82, 5, 6, 7ovmpo 7529 1 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (𝐴 RiseFac 𝑁) = ∏𝑘 ∈ (0...(𝑁 − 1))(𝐴 + 𝑘))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  (class class class)co 7369  cc 11042  0cc0 11044  1c1 11045   + caddc 11047  cmin 11381  0cn0 12418  ...cfz 13444  cprod 15845   RiseFac crisefac 15947
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-iota 6452  df-fun 6501  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-ov 7372  df-oprab 7373  df-mpo 7374  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-seq 13943  df-prod 15846  df-risefac 15948
This theorem is referenced by:  risefacval2  15952  risefaccllem  15955  risefac0  15969  risefacp1  15971
  Copyright terms: Public domain W3C validator