MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  risefacval Structured version   Visualization version   GIF version

Theorem risefacval 15974
Description: The value of the rising factorial function. (Contributed by Scott Fenton, 5-Jan-2018.)
Assertion
Ref Expression
risefacval ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (𝐴 RiseFac 𝑁) = ∏𝑘 ∈ (0...(𝑁 − 1))(𝐴 + 𝑘))
Distinct variable groups:   𝐴,𝑘   𝑘,𝑁

Proof of Theorem risefacval
Dummy variables 𝑛 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 7394 . . 3 (𝑥 = 𝐴 → (𝑥 + 𝑘) = (𝐴 + 𝑘))
21prodeq2sdv 15889 . 2 (𝑥 = 𝐴 → ∏𝑘 ∈ (0...(𝑛 − 1))(𝑥 + 𝑘) = ∏𝑘 ∈ (0...(𝑛 − 1))(𝐴 + 𝑘))
3 oveq1 7394 . . . 4 (𝑛 = 𝑁 → (𝑛 − 1) = (𝑁 − 1))
43oveq2d 7403 . . 3 (𝑛 = 𝑁 → (0...(𝑛 − 1)) = (0...(𝑁 − 1)))
54prodeq1d 15886 . 2 (𝑛 = 𝑁 → ∏𝑘 ∈ (0...(𝑛 − 1))(𝐴 + 𝑘) = ∏𝑘 ∈ (0...(𝑁 − 1))(𝐴 + 𝑘))
6 df-risefac 15972 . 2 RiseFac = (𝑥 ∈ ℂ, 𝑛 ∈ ℕ0 ↦ ∏𝑘 ∈ (0...(𝑛 − 1))(𝑥 + 𝑘))
7 prodex 15871 . 2 𝑘 ∈ (0...(𝑁 − 1))(𝐴 + 𝑘) ∈ V
82, 5, 6, 7ovmpo 7549 1 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (𝐴 RiseFac 𝑁) = ∏𝑘 ∈ (0...(𝑁 − 1))(𝐴 + 𝑘))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  (class class class)co 7387  cc 11066  0cc0 11068  1c1 11069   + caddc 11071  cmin 11405  0cn0 12442  ...cfz 13468  cprod 15869   RiseFac crisefac 15971
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-iota 6464  df-fun 6513  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-seq 13967  df-prod 15870  df-risefac 15972
This theorem is referenced by:  risefacval2  15976  risefaccllem  15979  risefac0  15993  risefacp1  15995
  Copyright terms: Public domain W3C validator