| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > risefacval | Structured version Visualization version GIF version | ||
| Description: The value of the rising factorial function. (Contributed by Scott Fenton, 5-Jan-2018.) |
| Ref | Expression |
|---|---|
| risefacval | ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (𝐴 RiseFac 𝑁) = ∏𝑘 ∈ (0...(𝑁 − 1))(𝐴 + 𝑘)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq1 7348 | . . 3 ⊢ (𝑥 = 𝐴 → (𝑥 + 𝑘) = (𝐴 + 𝑘)) | |
| 2 | 1 | prodeq2sdv 15825 | . 2 ⊢ (𝑥 = 𝐴 → ∏𝑘 ∈ (0...(𝑛 − 1))(𝑥 + 𝑘) = ∏𝑘 ∈ (0...(𝑛 − 1))(𝐴 + 𝑘)) |
| 3 | oveq1 7348 | . . . 4 ⊢ (𝑛 = 𝑁 → (𝑛 − 1) = (𝑁 − 1)) | |
| 4 | 3 | oveq2d 7357 | . . 3 ⊢ (𝑛 = 𝑁 → (0...(𝑛 − 1)) = (0...(𝑁 − 1))) |
| 5 | 4 | prodeq1d 15822 | . 2 ⊢ (𝑛 = 𝑁 → ∏𝑘 ∈ (0...(𝑛 − 1))(𝐴 + 𝑘) = ∏𝑘 ∈ (0...(𝑁 − 1))(𝐴 + 𝑘)) |
| 6 | df-risefac 15908 | . 2 ⊢ RiseFac = (𝑥 ∈ ℂ, 𝑛 ∈ ℕ0 ↦ ∏𝑘 ∈ (0...(𝑛 − 1))(𝑥 + 𝑘)) | |
| 7 | prodex 15807 | . 2 ⊢ ∏𝑘 ∈ (0...(𝑁 − 1))(𝐴 + 𝑘) ∈ V | |
| 8 | 2, 5, 6, 7 | ovmpo 7501 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (𝐴 RiseFac 𝑁) = ∏𝑘 ∈ (0...(𝑁 − 1))(𝐴 + 𝑘)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 (class class class)co 7341 ℂcc 10999 0cc0 11001 1c1 11002 + caddc 11004 − cmin 11339 ℕ0cn0 12376 ...cfz 13402 ∏cprod 15805 RiseFac crisefac 15907 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pr 5365 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-br 5087 df-opab 5149 df-mpt 5168 df-id 5506 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-iota 6432 df-fun 6478 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-ov 7344 df-oprab 7345 df-mpo 7346 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-seq 13904 df-prod 15806 df-risefac 15908 |
| This theorem is referenced by: risefacval2 15912 risefaccllem 15915 risefac0 15929 risefacp1 15931 |
| Copyright terms: Public domain | W3C validator |