![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > risefacval | Structured version Visualization version GIF version |
Description: The value of the rising factorial function. (Contributed by Scott Fenton, 5-Jan-2018.) |
Ref | Expression |
---|---|
risefacval | ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (𝐴 RiseFac 𝑁) = ∏𝑘 ∈ (0...(𝑁 − 1))(𝐴 + 𝑘)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq1 7437 | . . 3 ⊢ (𝑥 = 𝐴 → (𝑥 + 𝑘) = (𝐴 + 𝑘)) | |
2 | 1 | prodeq2sdv 15955 | . 2 ⊢ (𝑥 = 𝐴 → ∏𝑘 ∈ (0...(𝑛 − 1))(𝑥 + 𝑘) = ∏𝑘 ∈ (0...(𝑛 − 1))(𝐴 + 𝑘)) |
3 | oveq1 7437 | . . . 4 ⊢ (𝑛 = 𝑁 → (𝑛 − 1) = (𝑁 − 1)) | |
4 | 3 | oveq2d 7446 | . . 3 ⊢ (𝑛 = 𝑁 → (0...(𝑛 − 1)) = (0...(𝑁 − 1))) |
5 | 4 | prodeq1d 15952 | . 2 ⊢ (𝑛 = 𝑁 → ∏𝑘 ∈ (0...(𝑛 − 1))(𝐴 + 𝑘) = ∏𝑘 ∈ (0...(𝑁 − 1))(𝐴 + 𝑘)) |
6 | df-risefac 16038 | . 2 ⊢ RiseFac = (𝑥 ∈ ℂ, 𝑛 ∈ ℕ0 ↦ ∏𝑘 ∈ (0...(𝑛 − 1))(𝑥 + 𝑘)) | |
7 | prodex 15937 | . 2 ⊢ ∏𝑘 ∈ (0...(𝑁 − 1))(𝐴 + 𝑘) ∈ V | |
8 | 2, 5, 6, 7 | ovmpo 7592 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (𝐴 RiseFac 𝑁) = ∏𝑘 ∈ (0...(𝑁 − 1))(𝐴 + 𝑘)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1536 ∈ wcel 2105 (class class class)co 7430 ℂcc 11150 0cc0 11152 1c1 11153 + caddc 11155 − cmin 11489 ℕ0cn0 12523 ...cfz 13543 ∏cprod 15935 RiseFac crisefac 16037 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pr 5437 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-ral 3059 df-rex 3068 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-nul 4339 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5582 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-pred 6322 df-iota 6515 df-fun 6564 df-f 6566 df-f1 6567 df-fo 6568 df-f1o 6569 df-fv 6570 df-ov 7433 df-oprab 7434 df-mpo 7435 df-frecs 8304 df-wrecs 8335 df-recs 8409 df-rdg 8448 df-seq 14039 df-prod 15936 df-risefac 16038 |
This theorem is referenced by: risefacval2 16042 risefaccllem 16045 risefac0 16059 risefacp1 16061 |
Copyright terms: Public domain | W3C validator |