Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > risefacval | Structured version Visualization version GIF version |
Description: The value of the rising factorial function. (Contributed by Scott Fenton, 5-Jan-2018.) |
Ref | Expression |
---|---|
risefacval | ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (𝐴 RiseFac 𝑁) = ∏𝑘 ∈ (0...(𝑁 − 1))(𝐴 + 𝑘)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq1 7320 | . . 3 ⊢ (𝑥 = 𝐴 → (𝑥 + 𝑘) = (𝐴 + 𝑘)) | |
2 | 1 | prodeq2sdv 15703 | . 2 ⊢ (𝑥 = 𝐴 → ∏𝑘 ∈ (0...(𝑛 − 1))(𝑥 + 𝑘) = ∏𝑘 ∈ (0...(𝑛 − 1))(𝐴 + 𝑘)) |
3 | oveq1 7320 | . . . 4 ⊢ (𝑛 = 𝑁 → (𝑛 − 1) = (𝑁 − 1)) | |
4 | 3 | oveq2d 7329 | . . 3 ⊢ (𝑛 = 𝑁 → (0...(𝑛 − 1)) = (0...(𝑁 − 1))) |
5 | 4 | prodeq1d 15700 | . 2 ⊢ (𝑛 = 𝑁 → ∏𝑘 ∈ (0...(𝑛 − 1))(𝐴 + 𝑘) = ∏𝑘 ∈ (0...(𝑁 − 1))(𝐴 + 𝑘)) |
6 | df-risefac 15785 | . 2 ⊢ RiseFac = (𝑥 ∈ ℂ, 𝑛 ∈ ℕ0 ↦ ∏𝑘 ∈ (0...(𝑛 − 1))(𝑥 + 𝑘)) | |
7 | prodex 15686 | . 2 ⊢ ∏𝑘 ∈ (0...(𝑁 − 1))(𝐴 + 𝑘) ∈ V | |
8 | 2, 5, 6, 7 | ovmpo 7471 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (𝐴 RiseFac 𝑁) = ∏𝑘 ∈ (0...(𝑁 − 1))(𝐴 + 𝑘)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1540 ∈ wcel 2105 (class class class)co 7313 ℂcc 10939 0cc0 10941 1c1 10942 + caddc 10944 − cmin 11275 ℕ0cn0 12303 ...cfz 13309 ∏cprod 15684 RiseFac crisefac 15784 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 ax-sep 5236 ax-nul 5243 ax-pow 5301 ax-pr 5365 ax-un 7626 ax-cnex 10997 ax-resscn 10998 ax-1cn 10999 ax-icn 11000 ax-addcl 11001 ax-addrcl 11002 ax-mulcl 11003 ax-mulrcl 11004 ax-mulcom 11005 ax-addass 11006 ax-mulass 11007 ax-distr 11008 ax-i2m1 11009 ax-1ne0 11010 ax-1rid 11011 ax-rnegex 11012 ax-rrecex 11013 ax-cnre 11014 ax-pre-lttri 11015 ax-pre-lttrn 11016 ax-pre-ltadd 11017 ax-pre-mulgt0 11018 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3351 df-rab 3405 df-v 3443 df-sbc 3726 df-csb 3842 df-dif 3899 df-un 3901 df-in 3903 df-ss 3913 df-pss 3915 df-nul 4267 df-if 4470 df-pw 4545 df-sn 4570 df-pr 4572 df-op 4576 df-uni 4849 df-iun 4937 df-br 5086 df-opab 5148 df-mpt 5169 df-tr 5203 df-id 5505 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5560 df-we 5562 df-xp 5611 df-rel 5612 df-cnv 5613 df-co 5614 df-dm 5615 df-rn 5616 df-res 5617 df-ima 5618 df-pred 6222 df-ord 6289 df-on 6290 df-lim 6291 df-suc 6292 df-iota 6415 df-fun 6465 df-fn 6466 df-f 6467 df-f1 6468 df-fo 6469 df-f1o 6470 df-fv 6471 df-riota 7270 df-ov 7316 df-oprab 7317 df-mpo 7318 df-om 7756 df-1st 7874 df-2nd 7875 df-frecs 8142 df-wrecs 8173 df-recs 8247 df-rdg 8286 df-er 8544 df-en 8780 df-dom 8781 df-sdom 8782 df-pnf 11081 df-mnf 11082 df-xr 11083 df-ltxr 11084 df-le 11085 df-sub 11277 df-neg 11278 df-nn 12044 df-n0 12304 df-z 12390 df-uz 12653 df-fz 13310 df-seq 13792 df-prod 15685 df-risefac 15785 |
This theorem is referenced by: risefacval2 15789 risefaccllem 15792 risefac0 15806 risefacp1 15808 |
Copyright terms: Public domain | W3C validator |