MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-fi Structured version   Visualization version   GIF version

Definition df-fi 9168
Description: Function whose value is the class of finite intersections of the elements of the argument. Note that the empty intersection being the universal class, hence a proper class, it cannot be an element of that class. Therefore, the function value is the class of nonempty finite intersections of elements of the argument (see elfi2 9171). (Contributed by FL, 27-Apr-2008.)
Assertion
Ref Expression
df-fi fi = (𝑥 ∈ V ↦ {𝑧 ∣ ∃𝑦 ∈ (𝒫 𝑥 ∩ Fin)𝑧 = 𝑦})
Distinct variable group:   𝑥,𝑦,𝑧

Detailed syntax breakdown of Definition df-fi
StepHypRef Expression
1 cfi 9167 . 2 class fi
2 vx . . 3 setvar 𝑥
3 cvv 3431 . . 3 class V
4 vz . . . . . . 7 setvar 𝑧
54cv 1538 . . . . . 6 class 𝑧
6 vy . . . . . . . 8 setvar 𝑦
76cv 1538 . . . . . . 7 class 𝑦
87cint 4881 . . . . . 6 class 𝑦
95, 8wceq 1539 . . . . 5 wff 𝑧 = 𝑦
102cv 1538 . . . . . . 7 class 𝑥
1110cpw 4535 . . . . . 6 class 𝒫 𝑥
12 cfn 8731 . . . . . 6 class Fin
1311, 12cin 3887 . . . . 5 class (𝒫 𝑥 ∩ Fin)
149, 6, 13wrex 3065 . . . 4 wff 𝑦 ∈ (𝒫 𝑥 ∩ Fin)𝑧 = 𝑦
1514, 4cab 2715 . . 3 class {𝑧 ∣ ∃𝑦 ∈ (𝒫 𝑥 ∩ Fin)𝑧 = 𝑦}
162, 3, 15cmpt 5159 . 2 class (𝑥 ∈ V ↦ {𝑧 ∣ ∃𝑦 ∈ (𝒫 𝑥 ∩ Fin)𝑧 = 𝑦})
171, 16wceq 1539 1 wff fi = (𝑥 ∈ V ↦ {𝑧 ∣ ∃𝑦 ∈ (𝒫 𝑥 ∩ Fin)𝑧 = 𝑦})
Colors of variables: wff setvar class
This definition is referenced by:  fival  9169
  Copyright terms: Public domain W3C validator