MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-fi Structured version   Visualization version   GIF version

Definition df-fi 9421
Description: Function whose value is the class of finite intersections of the elements of the argument. Note that the empty intersection being the universal class, hence a proper class, it cannot be an element of that class. Therefore, the function value is the class of nonempty finite intersections of elements of the argument (see elfi2 9424). (Contributed by FL, 27-Apr-2008.)
Assertion
Ref Expression
df-fi fi = (𝑥 ∈ V ↦ {𝑧 ∣ ∃𝑦 ∈ (𝒫 𝑥 ∩ Fin)𝑧 = 𝑦})
Distinct variable group:   𝑥,𝑦,𝑧

Detailed syntax breakdown of Definition df-fi
StepHypRef Expression
1 cfi 9420 . 2 class fi
2 vx . . 3 setvar 𝑥
3 cvv 3459 . . 3 class V
4 vz . . . . . . 7 setvar 𝑧
54cv 1539 . . . . . 6 class 𝑧
6 vy . . . . . . . 8 setvar 𝑦
76cv 1539 . . . . . . 7 class 𝑦
87cint 4922 . . . . . 6 class 𝑦
95, 8wceq 1540 . . . . 5 wff 𝑧 = 𝑦
102cv 1539 . . . . . . 7 class 𝑥
1110cpw 4575 . . . . . 6 class 𝒫 𝑥
12 cfn 8957 . . . . . 6 class Fin
1311, 12cin 3925 . . . . 5 class (𝒫 𝑥 ∩ Fin)
149, 6, 13wrex 3060 . . . 4 wff 𝑦 ∈ (𝒫 𝑥 ∩ Fin)𝑧 = 𝑦
1514, 4cab 2713 . . 3 class {𝑧 ∣ ∃𝑦 ∈ (𝒫 𝑥 ∩ Fin)𝑧 = 𝑦}
162, 3, 15cmpt 5201 . 2 class (𝑥 ∈ V ↦ {𝑧 ∣ ∃𝑦 ∈ (𝒫 𝑥 ∩ Fin)𝑧 = 𝑦})
171, 16wceq 1540 1 wff fi = (𝑥 ∈ V ↦ {𝑧 ∣ ∃𝑦 ∈ (𝒫 𝑥 ∩ Fin)𝑧 = 𝑦})
Colors of variables: wff setvar class
This definition is referenced by:  fival  9422
  Copyright terms: Public domain W3C validator