| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-fi | Structured version Visualization version GIF version | ||
| Description: Function whose value is the class of finite intersections of the elements of the argument. Note that the empty intersection being the universal class, hence a proper class, it cannot be an element of that class. Therefore, the function value is the class of nonempty finite intersections of elements of the argument (see elfi2 9372). (Contributed by FL, 27-Apr-2008.) |
| Ref | Expression |
|---|---|
| df-fi | ⊢ fi = (𝑥 ∈ V ↦ {𝑧 ∣ ∃𝑦 ∈ (𝒫 𝑥 ∩ Fin)𝑧 = ∩ 𝑦}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cfi 9368 | . 2 class fi | |
| 2 | vx | . . 3 setvar 𝑥 | |
| 3 | cvv 3450 | . . 3 class V | |
| 4 | vz | . . . . . . 7 setvar 𝑧 | |
| 5 | 4 | cv 1539 | . . . . . 6 class 𝑧 |
| 6 | vy | . . . . . . . 8 setvar 𝑦 | |
| 7 | 6 | cv 1539 | . . . . . . 7 class 𝑦 |
| 8 | 7 | cint 4913 | . . . . . 6 class ∩ 𝑦 |
| 9 | 5, 8 | wceq 1540 | . . . . 5 wff 𝑧 = ∩ 𝑦 |
| 10 | 2 | cv 1539 | . . . . . . 7 class 𝑥 |
| 11 | 10 | cpw 4566 | . . . . . 6 class 𝒫 𝑥 |
| 12 | cfn 8921 | . . . . . 6 class Fin | |
| 13 | 11, 12 | cin 3916 | . . . . 5 class (𝒫 𝑥 ∩ Fin) |
| 14 | 9, 6, 13 | wrex 3054 | . . . 4 wff ∃𝑦 ∈ (𝒫 𝑥 ∩ Fin)𝑧 = ∩ 𝑦 |
| 15 | 14, 4 | cab 2708 | . . 3 class {𝑧 ∣ ∃𝑦 ∈ (𝒫 𝑥 ∩ Fin)𝑧 = ∩ 𝑦} |
| 16 | 2, 3, 15 | cmpt 5191 | . 2 class (𝑥 ∈ V ↦ {𝑧 ∣ ∃𝑦 ∈ (𝒫 𝑥 ∩ Fin)𝑧 = ∩ 𝑦}) |
| 17 | 1, 16 | wceq 1540 | 1 wff fi = (𝑥 ∈ V ↦ {𝑧 ∣ ∃𝑦 ∈ (𝒫 𝑥 ∩ Fin)𝑧 = ∩ 𝑦}) |
| Colors of variables: wff setvar class |
| This definition is referenced by: fival 9370 |
| Copyright terms: Public domain | W3C validator |