MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-fi Structured version   Visualization version   GIF version

Definition df-fi 9435
Description: Function whose value is the class of finite intersections of the elements of the argument. Note that the empty intersection being the universal class, hence a proper class, it cannot be an element of that class. Therefore, the function value is the class of nonempty finite intersections of elements of the argument (see elfi2 9438). (Contributed by FL, 27-Apr-2008.)
Assertion
Ref Expression
df-fi fi = (𝑥 ∈ V ↦ {𝑧 ∣ ∃𝑦 ∈ (𝒫 𝑥 ∩ Fin)𝑧 = 𝑦})
Distinct variable group:   𝑥,𝑦,𝑧

Detailed syntax breakdown of Definition df-fi
StepHypRef Expression
1 cfi 9434 . 2 class fi
2 vx . . 3 setvar 𝑥
3 cvv 3471 . . 3 class V
4 vz . . . . . . 7 setvar 𝑧
54cv 1533 . . . . . 6 class 𝑧
6 vy . . . . . . . 8 setvar 𝑦
76cv 1533 . . . . . . 7 class 𝑦
87cint 4949 . . . . . 6 class 𝑦
95, 8wceq 1534 . . . . 5 wff 𝑧 = 𝑦
102cv 1533 . . . . . . 7 class 𝑥
1110cpw 4603 . . . . . 6 class 𝒫 𝑥
12 cfn 8964 . . . . . 6 class Fin
1311, 12cin 3946 . . . . 5 class (𝒫 𝑥 ∩ Fin)
149, 6, 13wrex 3067 . . . 4 wff 𝑦 ∈ (𝒫 𝑥 ∩ Fin)𝑧 = 𝑦
1514, 4cab 2705 . . 3 class {𝑧 ∣ ∃𝑦 ∈ (𝒫 𝑥 ∩ Fin)𝑧 = 𝑦}
162, 3, 15cmpt 5231 . 2 class (𝑥 ∈ V ↦ {𝑧 ∣ ∃𝑦 ∈ (𝒫 𝑥 ∩ Fin)𝑧 = 𝑦})
171, 16wceq 1534 1 wff fi = (𝑥 ∈ V ↦ {𝑧 ∣ ∃𝑦 ∈ (𝒫 𝑥 ∩ Fin)𝑧 = 𝑦})
Colors of variables: wff setvar class
This definition is referenced by:  fival  9436
  Copyright terms: Public domain W3C validator