MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-fi Structured version   Visualization version   GIF version

Definition df-fi 9295
Description: Function whose value is the class of finite intersections of the elements of the argument. Note that the empty intersection being the universal class, hence a proper class, it cannot be an element of that class. Therefore, the function value is the class of nonempty finite intersections of elements of the argument (see elfi2 9298). (Contributed by FL, 27-Apr-2008.)
Assertion
Ref Expression
df-fi fi = (𝑥 ∈ V ↦ {𝑧 ∣ ∃𝑦 ∈ (𝒫 𝑥 ∩ Fin)𝑧 = 𝑦})
Distinct variable group:   𝑥,𝑦,𝑧

Detailed syntax breakdown of Definition df-fi
StepHypRef Expression
1 cfi 9294 . 2 class fi
2 vx . . 3 setvar 𝑥
3 cvv 3436 . . 3 class V
4 vz . . . . . . 7 setvar 𝑧
54cv 1540 . . . . . 6 class 𝑧
6 vy . . . . . . . 8 setvar 𝑦
76cv 1540 . . . . . . 7 class 𝑦
87cint 4895 . . . . . 6 class 𝑦
95, 8wceq 1541 . . . . 5 wff 𝑧 = 𝑦
102cv 1540 . . . . . . 7 class 𝑥
1110cpw 4547 . . . . . 6 class 𝒫 𝑥
12 cfn 8869 . . . . . 6 class Fin
1311, 12cin 3896 . . . . 5 class (𝒫 𝑥 ∩ Fin)
149, 6, 13wrex 3056 . . . 4 wff 𝑦 ∈ (𝒫 𝑥 ∩ Fin)𝑧 = 𝑦
1514, 4cab 2709 . . 3 class {𝑧 ∣ ∃𝑦 ∈ (𝒫 𝑥 ∩ Fin)𝑧 = 𝑦}
162, 3, 15cmpt 5170 . 2 class (𝑥 ∈ V ↦ {𝑧 ∣ ∃𝑦 ∈ (𝒫 𝑥 ∩ Fin)𝑧 = 𝑦})
171, 16wceq 1541 1 wff fi = (𝑥 ∈ V ↦ {𝑧 ∣ ∃𝑦 ∈ (𝒫 𝑥 ∩ Fin)𝑧 = 𝑦})
Colors of variables: wff setvar class
This definition is referenced by:  fival  9296
  Copyright terms: Public domain W3C validator