MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-fi Structured version   Visualization version   GIF version

Definition df-fi 9301
Description: Function whose value is the class of finite intersections of the elements of the argument. Note that the empty intersection being the universal class, hence a proper class, it cannot be an element of that class. Therefore, the function value is the class of nonempty finite intersections of elements of the argument (see elfi2 9304). (Contributed by FL, 27-Apr-2008.)
Assertion
Ref Expression
df-fi fi = (𝑥 ∈ V ↦ {𝑧 ∣ ∃𝑦 ∈ (𝒫 𝑥 ∩ Fin)𝑧 = 𝑦})
Distinct variable group:   𝑥,𝑦,𝑧

Detailed syntax breakdown of Definition df-fi
StepHypRef Expression
1 cfi 9300 . 2 class fi
2 vx . . 3 setvar 𝑥
3 cvv 3436 . . 3 class V
4 vz . . . . . . 7 setvar 𝑧
54cv 1539 . . . . . 6 class 𝑧
6 vy . . . . . . . 8 setvar 𝑦
76cv 1539 . . . . . . 7 class 𝑦
87cint 4896 . . . . . 6 class 𝑦
95, 8wceq 1540 . . . . 5 wff 𝑧 = 𝑦
102cv 1539 . . . . . . 7 class 𝑥
1110cpw 4551 . . . . . 6 class 𝒫 𝑥
12 cfn 8872 . . . . . 6 class Fin
1311, 12cin 3902 . . . . 5 class (𝒫 𝑥 ∩ Fin)
149, 6, 13wrex 3053 . . . 4 wff 𝑦 ∈ (𝒫 𝑥 ∩ Fin)𝑧 = 𝑦
1514, 4cab 2707 . . 3 class {𝑧 ∣ ∃𝑦 ∈ (𝒫 𝑥 ∩ Fin)𝑧 = 𝑦}
162, 3, 15cmpt 5173 . 2 class (𝑥 ∈ V ↦ {𝑧 ∣ ∃𝑦 ∈ (𝒫 𝑥 ∩ Fin)𝑧 = 𝑦})
171, 16wceq 1540 1 wff fi = (𝑥 ∈ V ↦ {𝑧 ∣ ∃𝑦 ∈ (𝒫 𝑥 ∩ Fin)𝑧 = 𝑦})
Colors of variables: wff setvar class
This definition is referenced by:  fival  9302
  Copyright terms: Public domain W3C validator