MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-fi Structured version   Visualization version   GIF version

Definition df-fi 9448
Description: Function whose value is the class of finite intersections of the elements of the argument. Note that the empty intersection being the universal class, hence a proper class, it cannot be an element of that class. Therefore, the function value is the class of nonempty finite intersections of elements of the argument (see elfi2 9451). (Contributed by FL, 27-Apr-2008.)
Assertion
Ref Expression
df-fi fi = (𝑥 ∈ V ↦ {𝑧 ∣ ∃𝑦 ∈ (𝒫 𝑥 ∩ Fin)𝑧 = 𝑦})
Distinct variable group:   𝑥,𝑦,𝑧

Detailed syntax breakdown of Definition df-fi
StepHypRef Expression
1 cfi 9447 . 2 class fi
2 vx . . 3 setvar 𝑥
3 cvv 3477 . . 3 class V
4 vz . . . . . . 7 setvar 𝑧
54cv 1535 . . . . . 6 class 𝑧
6 vy . . . . . . . 8 setvar 𝑦
76cv 1535 . . . . . . 7 class 𝑦
87cint 4950 . . . . . 6 class 𝑦
95, 8wceq 1536 . . . . 5 wff 𝑧 = 𝑦
102cv 1535 . . . . . . 7 class 𝑥
1110cpw 4604 . . . . . 6 class 𝒫 𝑥
12 cfn 8983 . . . . . 6 class Fin
1311, 12cin 3961 . . . . 5 class (𝒫 𝑥 ∩ Fin)
149, 6, 13wrex 3067 . . . 4 wff 𝑦 ∈ (𝒫 𝑥 ∩ Fin)𝑧 = 𝑦
1514, 4cab 2711 . . 3 class {𝑧 ∣ ∃𝑦 ∈ (𝒫 𝑥 ∩ Fin)𝑧 = 𝑦}
162, 3, 15cmpt 5230 . 2 class (𝑥 ∈ V ↦ {𝑧 ∣ ∃𝑦 ∈ (𝒫 𝑥 ∩ Fin)𝑧 = 𝑦})
171, 16wceq 1536 1 wff fi = (𝑥 ∈ V ↦ {𝑧 ∣ ∃𝑦 ∈ (𝒫 𝑥 ∩ Fin)𝑧 = 𝑦})
Colors of variables: wff setvar class
This definition is referenced by:  fival  9449
  Copyright terms: Public domain W3C validator