Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > df-fi | Structured version Visualization version GIF version |
Description: Function whose value is the class of finite intersections of the elements of the argument. Note that the empty intersection being the universal class, hence a proper class, it cannot be an element of that class. Therefore, the function value is the class of nonempty finite intersections of elements of the argument (see elfi2 9171). (Contributed by FL, 27-Apr-2008.) |
Ref | Expression |
---|---|
df-fi | ⊢ fi = (𝑥 ∈ V ↦ {𝑧 ∣ ∃𝑦 ∈ (𝒫 𝑥 ∩ Fin)𝑧 = ∩ 𝑦}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cfi 9167 | . 2 class fi | |
2 | vx | . . 3 setvar 𝑥 | |
3 | cvv 3431 | . . 3 class V | |
4 | vz | . . . . . . 7 setvar 𝑧 | |
5 | 4 | cv 1538 | . . . . . 6 class 𝑧 |
6 | vy | . . . . . . . 8 setvar 𝑦 | |
7 | 6 | cv 1538 | . . . . . . 7 class 𝑦 |
8 | 7 | cint 4881 | . . . . . 6 class ∩ 𝑦 |
9 | 5, 8 | wceq 1539 | . . . . 5 wff 𝑧 = ∩ 𝑦 |
10 | 2 | cv 1538 | . . . . . . 7 class 𝑥 |
11 | 10 | cpw 4535 | . . . . . 6 class 𝒫 𝑥 |
12 | cfn 8731 | . . . . . 6 class Fin | |
13 | 11, 12 | cin 3887 | . . . . 5 class (𝒫 𝑥 ∩ Fin) |
14 | 9, 6, 13 | wrex 3065 | . . . 4 wff ∃𝑦 ∈ (𝒫 𝑥 ∩ Fin)𝑧 = ∩ 𝑦 |
15 | 14, 4 | cab 2715 | . . 3 class {𝑧 ∣ ∃𝑦 ∈ (𝒫 𝑥 ∩ Fin)𝑧 = ∩ 𝑦} |
16 | 2, 3, 15 | cmpt 5159 | . 2 class (𝑥 ∈ V ↦ {𝑧 ∣ ∃𝑦 ∈ (𝒫 𝑥 ∩ Fin)𝑧 = ∩ 𝑦}) |
17 | 1, 16 | wceq 1539 | 1 wff fi = (𝑥 ∈ V ↦ {𝑧 ∣ ∃𝑦 ∈ (𝒫 𝑥 ∩ Fin)𝑧 = ∩ 𝑦}) |
Colors of variables: wff setvar class |
This definition is referenced by: fival 9169 |
Copyright terms: Public domain | W3C validator |