MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-fi Structured version   Visualization version   GIF version

Definition df-fi 9179
Description: Function whose value is the class of finite intersections of the elements of the argument. Note that the empty intersection being the universal class, hence a proper class, it cannot be an element of that class. Therefore, the function value is the class of nonempty finite intersections of elements of the argument (see elfi2 9182). (Contributed by FL, 27-Apr-2008.)
Assertion
Ref Expression
df-fi fi = (𝑥 ∈ V ↦ {𝑧 ∣ ∃𝑦 ∈ (𝒫 𝑥 ∩ Fin)𝑧 = 𝑦})
Distinct variable group:   𝑥,𝑦,𝑧

Detailed syntax breakdown of Definition df-fi
StepHypRef Expression
1 cfi 9178 . 2 class fi
2 vx . . 3 setvar 𝑥
3 cvv 3433 . . 3 class V
4 vz . . . . . . 7 setvar 𝑧
54cv 1538 . . . . . 6 class 𝑧
6 vy . . . . . . . 8 setvar 𝑦
76cv 1538 . . . . . . 7 class 𝑦
87cint 4880 . . . . . 6 class 𝑦
95, 8wceq 1539 . . . . 5 wff 𝑧 = 𝑦
102cv 1538 . . . . . . 7 class 𝑥
1110cpw 4534 . . . . . 6 class 𝒫 𝑥
12 cfn 8742 . . . . . 6 class Fin
1311, 12cin 3887 . . . . 5 class (𝒫 𝑥 ∩ Fin)
149, 6, 13wrex 3066 . . . 4 wff 𝑦 ∈ (𝒫 𝑥 ∩ Fin)𝑧 = 𝑦
1514, 4cab 2716 . . 3 class {𝑧 ∣ ∃𝑦 ∈ (𝒫 𝑥 ∩ Fin)𝑧 = 𝑦}
162, 3, 15cmpt 5158 . 2 class (𝑥 ∈ V ↦ {𝑧 ∣ ∃𝑦 ∈ (𝒫 𝑥 ∩ Fin)𝑧 = 𝑦})
171, 16wceq 1539 1 wff fi = (𝑥 ∈ V ↦ {𝑧 ∣ ∃𝑦 ∈ (𝒫 𝑥 ∩ Fin)𝑧 = 𝑦})
Colors of variables: wff setvar class
This definition is referenced by:  fival  9180
  Copyright terms: Public domain W3C validator