Proof of Theorem elfi2
| Step | Hyp | Ref
| Expression |
| 1 | | elex 3485 |
. . 3
⊢ (𝐴 ∈ (fi‘𝐵) → 𝐴 ∈ V) |
| 2 | 1 | a1i 11 |
. 2
⊢ (𝐵 ∈ 𝑉 → (𝐴 ∈ (fi‘𝐵) → 𝐴 ∈ V)) |
| 3 | | simpr 484 |
. . . . 5
⊢ ((𝑥 ∈ ((𝒫 𝐵 ∩ Fin) ∖ {∅})
∧ 𝐴 = ∩ 𝑥)
→ 𝐴 = ∩ 𝑥) |
| 4 | | eldifsni 4771 |
. . . . . . 7
⊢ (𝑥 ∈ ((𝒫 𝐵 ∩ Fin) ∖ {∅})
→ 𝑥 ≠
∅) |
| 5 | 4 | adantr 480 |
. . . . . 6
⊢ ((𝑥 ∈ ((𝒫 𝐵 ∩ Fin) ∖ {∅})
∧ 𝐴 = ∩ 𝑥)
→ 𝑥 ≠
∅) |
| 6 | | intex 5319 |
. . . . . 6
⊢ (𝑥 ≠ ∅ ↔ ∩ 𝑥
∈ V) |
| 7 | 5, 6 | sylib 218 |
. . . . 5
⊢ ((𝑥 ∈ ((𝒫 𝐵 ∩ Fin) ∖ {∅})
∧ 𝐴 = ∩ 𝑥)
→ ∩ 𝑥 ∈ V) |
| 8 | 3, 7 | eqeltrd 2835 |
. . . 4
⊢ ((𝑥 ∈ ((𝒫 𝐵 ∩ Fin) ∖ {∅})
∧ 𝐴 = ∩ 𝑥)
→ 𝐴 ∈
V) |
| 9 | 8 | rexlimiva 3134 |
. . 3
⊢
(∃𝑥 ∈
((𝒫 𝐵 ∩ Fin)
∖ {∅})𝐴 = ∩ 𝑥
→ 𝐴 ∈
V) |
| 10 | 9 | a1i 11 |
. 2
⊢ (𝐵 ∈ 𝑉 → (∃𝑥 ∈ ((𝒫 𝐵 ∩ Fin) ∖ {∅})𝐴 = ∩
𝑥 → 𝐴 ∈ V)) |
| 11 | | elfi 9430 |
. . . 4
⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ 𝑉) → (𝐴 ∈ (fi‘𝐵) ↔ ∃𝑥 ∈ (𝒫 𝐵 ∩ Fin)𝐴 = ∩ 𝑥)) |
| 12 | | vprc 5290 |
. . . . . . . . . . 11
⊢ ¬ V
∈ V |
| 13 | | elsni 4623 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈ {∅} → 𝑥 = ∅) |
| 14 | 13 | inteqd 4932 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ {∅} → ∩ 𝑥 =
∩ ∅) |
| 15 | | int0 4943 |
. . . . . . . . . . . . 13
⊢ ∩ ∅ = V |
| 16 | 14, 15 | eqtrdi 2787 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ {∅} → ∩ 𝑥 =
V) |
| 17 | 16 | eleq1d 2820 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ {∅} → (∩ 𝑥
∈ V ↔ V ∈ V)) |
| 18 | 12, 17 | mtbiri 327 |
. . . . . . . . . 10
⊢ (𝑥 ∈ {∅} → ¬
∩ 𝑥 ∈ V) |
| 19 | | simpr 484 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ V ∧ 𝐵 ∈ 𝑉) ∧ 𝐴 = ∩ 𝑥) → 𝐴 = ∩ 𝑥) |
| 20 | | simpll 766 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ V ∧ 𝐵 ∈ 𝑉) ∧ 𝐴 = ∩ 𝑥) → 𝐴 ∈ V) |
| 21 | 19, 20 | eqeltrrd 2836 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ V ∧ 𝐵 ∈ 𝑉) ∧ 𝐴 = ∩ 𝑥) → ∩ 𝑥
∈ V) |
| 22 | 18, 21 | nsyl3 138 |
. . . . . . . . 9
⊢ (((𝐴 ∈ V ∧ 𝐵 ∈ 𝑉) ∧ 𝐴 = ∩ 𝑥) → ¬ 𝑥 ∈
{∅}) |
| 23 | 22 | biantrud 531 |
. . . . . . . 8
⊢ (((𝐴 ∈ V ∧ 𝐵 ∈ 𝑉) ∧ 𝐴 = ∩ 𝑥) → (𝑥 ∈ (𝒫 𝐵 ∩ Fin) ↔ (𝑥 ∈ (𝒫 𝐵 ∩ Fin) ∧ ¬ 𝑥 ∈ {∅}))) |
| 24 | | eldif 3941 |
. . . . . . . 8
⊢ (𝑥 ∈ ((𝒫 𝐵 ∩ Fin) ∖ {∅})
↔ (𝑥 ∈ (𝒫
𝐵 ∩ Fin) ∧ ¬
𝑥 ∈
{∅})) |
| 25 | 23, 24 | bitr4di 289 |
. . . . . . 7
⊢ (((𝐴 ∈ V ∧ 𝐵 ∈ 𝑉) ∧ 𝐴 = ∩ 𝑥) → (𝑥 ∈ (𝒫 𝐵 ∩ Fin) ↔ 𝑥 ∈ ((𝒫 𝐵 ∩ Fin) ∖
{∅}))) |
| 26 | 25 | pm5.32da 579 |
. . . . . 6
⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ 𝑉) → ((𝐴 = ∩ 𝑥 ∧ 𝑥 ∈ (𝒫 𝐵 ∩ Fin)) ↔ (𝐴 = ∩ 𝑥 ∧ 𝑥 ∈ ((𝒫 𝐵 ∩ Fin) ∖
{∅})))) |
| 27 | | ancom 460 |
. . . . . 6
⊢ ((𝑥 ∈ (𝒫 𝐵 ∩ Fin) ∧ 𝐴 = ∩
𝑥) ↔ (𝐴 = ∩
𝑥 ∧ 𝑥 ∈ (𝒫 𝐵 ∩ Fin))) |
| 28 | | ancom 460 |
. . . . . 6
⊢ ((𝑥 ∈ ((𝒫 𝐵 ∩ Fin) ∖ {∅})
∧ 𝐴 = ∩ 𝑥)
↔ (𝐴 = ∩ 𝑥
∧ 𝑥 ∈ ((𝒫
𝐵 ∩ Fin) ∖
{∅}))) |
| 29 | 26, 27, 28 | 3bitr4g 314 |
. . . . 5
⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ 𝑉) → ((𝑥 ∈ (𝒫 𝐵 ∩ Fin) ∧ 𝐴 = ∩ 𝑥) ↔ (𝑥 ∈ ((𝒫 𝐵 ∩ Fin) ∖ {∅}) ∧ 𝐴 = ∩
𝑥))) |
| 30 | 29 | rexbidv2 3161 |
. . . 4
⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ 𝑉) → (∃𝑥 ∈ (𝒫 𝐵 ∩ Fin)𝐴 = ∩ 𝑥 ↔ ∃𝑥 ∈ ((𝒫 𝐵 ∩ Fin) ∖
{∅})𝐴 = ∩ 𝑥)) |
| 31 | 11, 30 | bitrd 279 |
. . 3
⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ 𝑉) → (𝐴 ∈ (fi‘𝐵) ↔ ∃𝑥 ∈ ((𝒫 𝐵 ∩ Fin) ∖ {∅})𝐴 = ∩
𝑥)) |
| 32 | 31 | expcom 413 |
. 2
⊢ (𝐵 ∈ 𝑉 → (𝐴 ∈ V → (𝐴 ∈ (fi‘𝐵) ↔ ∃𝑥 ∈ ((𝒫 𝐵 ∩ Fin) ∖ {∅})𝐴 = ∩
𝑥))) |
| 33 | 2, 10, 32 | pm5.21ndd 379 |
1
⊢ (𝐵 ∈ 𝑉 → (𝐴 ∈ (fi‘𝐵) ↔ ∃𝑥 ∈ ((𝒫 𝐵 ∩ Fin) ∖ {∅})𝐴 = ∩
𝑥)) |