MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elfi2 Structured version   Visualization version   GIF version

Theorem elfi2 9305
Description: The empty intersection need not be considered in the set of finite intersections. (Contributed by Mario Carneiro, 21-Mar-2015.)
Assertion
Ref Expression
elfi2 (𝐵𝑉 → (𝐴 ∈ (fi‘𝐵) ↔ ∃𝑥 ∈ ((𝒫 𝐵 ∩ Fin) ∖ {∅})𝐴 = 𝑥))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝑉

Proof of Theorem elfi2
StepHypRef Expression
1 elex 3458 . . 3 (𝐴 ∈ (fi‘𝐵) → 𝐴 ∈ V)
21a1i 11 . 2 (𝐵𝑉 → (𝐴 ∈ (fi‘𝐵) → 𝐴 ∈ V))
3 simpr 484 . . . . 5 ((𝑥 ∈ ((𝒫 𝐵 ∩ Fin) ∖ {∅}) ∧ 𝐴 = 𝑥) → 𝐴 = 𝑥)
4 eldifsni 4741 . . . . . . 7 (𝑥 ∈ ((𝒫 𝐵 ∩ Fin) ∖ {∅}) → 𝑥 ≠ ∅)
54adantr 480 . . . . . 6 ((𝑥 ∈ ((𝒫 𝐵 ∩ Fin) ∖ {∅}) ∧ 𝐴 = 𝑥) → 𝑥 ≠ ∅)
6 intex 5284 . . . . . 6 (𝑥 ≠ ∅ ↔ 𝑥 ∈ V)
75, 6sylib 218 . . . . 5 ((𝑥 ∈ ((𝒫 𝐵 ∩ Fin) ∖ {∅}) ∧ 𝐴 = 𝑥) → 𝑥 ∈ V)
83, 7eqeltrd 2833 . . . 4 ((𝑥 ∈ ((𝒫 𝐵 ∩ Fin) ∖ {∅}) ∧ 𝐴 = 𝑥) → 𝐴 ∈ V)
98rexlimiva 3126 . . 3 (∃𝑥 ∈ ((𝒫 𝐵 ∩ Fin) ∖ {∅})𝐴 = 𝑥𝐴 ∈ V)
109a1i 11 . 2 (𝐵𝑉 → (∃𝑥 ∈ ((𝒫 𝐵 ∩ Fin) ∖ {∅})𝐴 = 𝑥𝐴 ∈ V))
11 elfi 9304 . . . 4 ((𝐴 ∈ V ∧ 𝐵𝑉) → (𝐴 ∈ (fi‘𝐵) ↔ ∃𝑥 ∈ (𝒫 𝐵 ∩ Fin)𝐴 = 𝑥))
12 vprc 5255 . . . . . . . . . . 11 ¬ V ∈ V
13 elsni 4592 . . . . . . . . . . . . . 14 (𝑥 ∈ {∅} → 𝑥 = ∅)
1413inteqd 4902 . . . . . . . . . . . . 13 (𝑥 ∈ {∅} → 𝑥 = ∅)
15 int0 4912 . . . . . . . . . . . . 13 ∅ = V
1614, 15eqtrdi 2784 . . . . . . . . . . . 12 (𝑥 ∈ {∅} → 𝑥 = V)
1716eleq1d 2818 . . . . . . . . . . 11 (𝑥 ∈ {∅} → ( 𝑥 ∈ V ↔ V ∈ V))
1812, 17mtbiri 327 . . . . . . . . . 10 (𝑥 ∈ {∅} → ¬ 𝑥 ∈ V)
19 simpr 484 . . . . . . . . . . 11 (((𝐴 ∈ V ∧ 𝐵𝑉) ∧ 𝐴 = 𝑥) → 𝐴 = 𝑥)
20 simpll 766 . . . . . . . . . . 11 (((𝐴 ∈ V ∧ 𝐵𝑉) ∧ 𝐴 = 𝑥) → 𝐴 ∈ V)
2119, 20eqeltrrd 2834 . . . . . . . . . 10 (((𝐴 ∈ V ∧ 𝐵𝑉) ∧ 𝐴 = 𝑥) → 𝑥 ∈ V)
2218, 21nsyl3 138 . . . . . . . . 9 (((𝐴 ∈ V ∧ 𝐵𝑉) ∧ 𝐴 = 𝑥) → ¬ 𝑥 ∈ {∅})
2322biantrud 531 . . . . . . . 8 (((𝐴 ∈ V ∧ 𝐵𝑉) ∧ 𝐴 = 𝑥) → (𝑥 ∈ (𝒫 𝐵 ∩ Fin) ↔ (𝑥 ∈ (𝒫 𝐵 ∩ Fin) ∧ ¬ 𝑥 ∈ {∅})))
24 eldif 3908 . . . . . . . 8 (𝑥 ∈ ((𝒫 𝐵 ∩ Fin) ∖ {∅}) ↔ (𝑥 ∈ (𝒫 𝐵 ∩ Fin) ∧ ¬ 𝑥 ∈ {∅}))
2523, 24bitr4di 289 . . . . . . 7 (((𝐴 ∈ V ∧ 𝐵𝑉) ∧ 𝐴 = 𝑥) → (𝑥 ∈ (𝒫 𝐵 ∩ Fin) ↔ 𝑥 ∈ ((𝒫 𝐵 ∩ Fin) ∖ {∅})))
2625pm5.32da 579 . . . . . 6 ((𝐴 ∈ V ∧ 𝐵𝑉) → ((𝐴 = 𝑥𝑥 ∈ (𝒫 𝐵 ∩ Fin)) ↔ (𝐴 = 𝑥𝑥 ∈ ((𝒫 𝐵 ∩ Fin) ∖ {∅}))))
27 ancom 460 . . . . . 6 ((𝑥 ∈ (𝒫 𝐵 ∩ Fin) ∧ 𝐴 = 𝑥) ↔ (𝐴 = 𝑥𝑥 ∈ (𝒫 𝐵 ∩ Fin)))
28 ancom 460 . . . . . 6 ((𝑥 ∈ ((𝒫 𝐵 ∩ Fin) ∖ {∅}) ∧ 𝐴 = 𝑥) ↔ (𝐴 = 𝑥𝑥 ∈ ((𝒫 𝐵 ∩ Fin) ∖ {∅})))
2926, 27, 283bitr4g 314 . . . . 5 ((𝐴 ∈ V ∧ 𝐵𝑉) → ((𝑥 ∈ (𝒫 𝐵 ∩ Fin) ∧ 𝐴 = 𝑥) ↔ (𝑥 ∈ ((𝒫 𝐵 ∩ Fin) ∖ {∅}) ∧ 𝐴 = 𝑥)))
3029rexbidv2 3153 . . . 4 ((𝐴 ∈ V ∧ 𝐵𝑉) → (∃𝑥 ∈ (𝒫 𝐵 ∩ Fin)𝐴 = 𝑥 ↔ ∃𝑥 ∈ ((𝒫 𝐵 ∩ Fin) ∖ {∅})𝐴 = 𝑥))
3111, 30bitrd 279 . . 3 ((𝐴 ∈ V ∧ 𝐵𝑉) → (𝐴 ∈ (fi‘𝐵) ↔ ∃𝑥 ∈ ((𝒫 𝐵 ∩ Fin) ∖ {∅})𝐴 = 𝑥))
3231expcom 413 . 2 (𝐵𝑉 → (𝐴 ∈ V → (𝐴 ∈ (fi‘𝐵) ↔ ∃𝑥 ∈ ((𝒫 𝐵 ∩ Fin) ∖ {∅})𝐴 = 𝑥)))
332, 10, 32pm5.21ndd 379 1 (𝐵𝑉 → (𝐴 ∈ (fi‘𝐵) ↔ ∃𝑥 ∈ ((𝒫 𝐵 ∩ Fin) ∖ {∅})𝐴 = 𝑥))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1541  wcel 2113  wne 2929  wrex 3057  Vcvv 3437  cdif 3895  cin 3897  c0 4282  𝒫 cpw 4549  {csn 4575   cint 4897  cfv 6486  Fincfn 8875  ficfi 9301
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-int 4898  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-iota 6442  df-fun 6488  df-fv 6494  df-fi 9302
This theorem is referenced by:  fifo  9323  firest  17338  alexsublem  23960  ispisys2  34187
  Copyright terms: Public domain W3C validator