MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elfi2 Structured version   Visualization version   GIF version

Theorem elfi2 9103
Description: The empty intersection need not be considered in the set of finite intersections. (Contributed by Mario Carneiro, 21-Mar-2015.)
Assertion
Ref Expression
elfi2 (𝐵𝑉 → (𝐴 ∈ (fi‘𝐵) ↔ ∃𝑥 ∈ ((𝒫 𝐵 ∩ Fin) ∖ {∅})𝐴 = 𝑥))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝑉

Proof of Theorem elfi2
StepHypRef Expression
1 elex 3440 . . 3 (𝐴 ∈ (fi‘𝐵) → 𝐴 ∈ V)
21a1i 11 . 2 (𝐵𝑉 → (𝐴 ∈ (fi‘𝐵) → 𝐴 ∈ V))
3 simpr 484 . . . . 5 ((𝑥 ∈ ((𝒫 𝐵 ∩ Fin) ∖ {∅}) ∧ 𝐴 = 𝑥) → 𝐴 = 𝑥)
4 eldifsni 4720 . . . . . . 7 (𝑥 ∈ ((𝒫 𝐵 ∩ Fin) ∖ {∅}) → 𝑥 ≠ ∅)
54adantr 480 . . . . . 6 ((𝑥 ∈ ((𝒫 𝐵 ∩ Fin) ∖ {∅}) ∧ 𝐴 = 𝑥) → 𝑥 ≠ ∅)
6 intex 5256 . . . . . 6 (𝑥 ≠ ∅ ↔ 𝑥 ∈ V)
75, 6sylib 217 . . . . 5 ((𝑥 ∈ ((𝒫 𝐵 ∩ Fin) ∖ {∅}) ∧ 𝐴 = 𝑥) → 𝑥 ∈ V)
83, 7eqeltrd 2839 . . . 4 ((𝑥 ∈ ((𝒫 𝐵 ∩ Fin) ∖ {∅}) ∧ 𝐴 = 𝑥) → 𝐴 ∈ V)
98rexlimiva 3209 . . 3 (∃𝑥 ∈ ((𝒫 𝐵 ∩ Fin) ∖ {∅})𝐴 = 𝑥𝐴 ∈ V)
109a1i 11 . 2 (𝐵𝑉 → (∃𝑥 ∈ ((𝒫 𝐵 ∩ Fin) ∖ {∅})𝐴 = 𝑥𝐴 ∈ V))
11 elfi 9102 . . . 4 ((𝐴 ∈ V ∧ 𝐵𝑉) → (𝐴 ∈ (fi‘𝐵) ↔ ∃𝑥 ∈ (𝒫 𝐵 ∩ Fin)𝐴 = 𝑥))
12 vprc 5234 . . . . . . . . . . 11 ¬ V ∈ V
13 elsni 4575 . . . . . . . . . . . . . 14 (𝑥 ∈ {∅} → 𝑥 = ∅)
1413inteqd 4881 . . . . . . . . . . . . 13 (𝑥 ∈ {∅} → 𝑥 = ∅)
15 int0 4890 . . . . . . . . . . . . 13 ∅ = V
1614, 15eqtrdi 2795 . . . . . . . . . . . 12 (𝑥 ∈ {∅} → 𝑥 = V)
1716eleq1d 2823 . . . . . . . . . . 11 (𝑥 ∈ {∅} → ( 𝑥 ∈ V ↔ V ∈ V))
1812, 17mtbiri 326 . . . . . . . . . 10 (𝑥 ∈ {∅} → ¬ 𝑥 ∈ V)
19 simpr 484 . . . . . . . . . . 11 (((𝐴 ∈ V ∧ 𝐵𝑉) ∧ 𝐴 = 𝑥) → 𝐴 = 𝑥)
20 simpll 763 . . . . . . . . . . 11 (((𝐴 ∈ V ∧ 𝐵𝑉) ∧ 𝐴 = 𝑥) → 𝐴 ∈ V)
2119, 20eqeltrrd 2840 . . . . . . . . . 10 (((𝐴 ∈ V ∧ 𝐵𝑉) ∧ 𝐴 = 𝑥) → 𝑥 ∈ V)
2218, 21nsyl3 138 . . . . . . . . 9 (((𝐴 ∈ V ∧ 𝐵𝑉) ∧ 𝐴 = 𝑥) → ¬ 𝑥 ∈ {∅})
2322biantrud 531 . . . . . . . 8 (((𝐴 ∈ V ∧ 𝐵𝑉) ∧ 𝐴 = 𝑥) → (𝑥 ∈ (𝒫 𝐵 ∩ Fin) ↔ (𝑥 ∈ (𝒫 𝐵 ∩ Fin) ∧ ¬ 𝑥 ∈ {∅})))
24 eldif 3893 . . . . . . . 8 (𝑥 ∈ ((𝒫 𝐵 ∩ Fin) ∖ {∅}) ↔ (𝑥 ∈ (𝒫 𝐵 ∩ Fin) ∧ ¬ 𝑥 ∈ {∅}))
2523, 24bitr4di 288 . . . . . . 7 (((𝐴 ∈ V ∧ 𝐵𝑉) ∧ 𝐴 = 𝑥) → (𝑥 ∈ (𝒫 𝐵 ∩ Fin) ↔ 𝑥 ∈ ((𝒫 𝐵 ∩ Fin) ∖ {∅})))
2625pm5.32da 578 . . . . . 6 ((𝐴 ∈ V ∧ 𝐵𝑉) → ((𝐴 = 𝑥𝑥 ∈ (𝒫 𝐵 ∩ Fin)) ↔ (𝐴 = 𝑥𝑥 ∈ ((𝒫 𝐵 ∩ Fin) ∖ {∅}))))
27 ancom 460 . . . . . 6 ((𝑥 ∈ (𝒫 𝐵 ∩ Fin) ∧ 𝐴 = 𝑥) ↔ (𝐴 = 𝑥𝑥 ∈ (𝒫 𝐵 ∩ Fin)))
28 ancom 460 . . . . . 6 ((𝑥 ∈ ((𝒫 𝐵 ∩ Fin) ∖ {∅}) ∧ 𝐴 = 𝑥) ↔ (𝐴 = 𝑥𝑥 ∈ ((𝒫 𝐵 ∩ Fin) ∖ {∅})))
2926, 27, 283bitr4g 313 . . . . 5 ((𝐴 ∈ V ∧ 𝐵𝑉) → ((𝑥 ∈ (𝒫 𝐵 ∩ Fin) ∧ 𝐴 = 𝑥) ↔ (𝑥 ∈ ((𝒫 𝐵 ∩ Fin) ∖ {∅}) ∧ 𝐴 = 𝑥)))
3029rexbidv2 3223 . . . 4 ((𝐴 ∈ V ∧ 𝐵𝑉) → (∃𝑥 ∈ (𝒫 𝐵 ∩ Fin)𝐴 = 𝑥 ↔ ∃𝑥 ∈ ((𝒫 𝐵 ∩ Fin) ∖ {∅})𝐴 = 𝑥))
3111, 30bitrd 278 . . 3 ((𝐴 ∈ V ∧ 𝐵𝑉) → (𝐴 ∈ (fi‘𝐵) ↔ ∃𝑥 ∈ ((𝒫 𝐵 ∩ Fin) ∖ {∅})𝐴 = 𝑥))
3231expcom 413 . 2 (𝐵𝑉 → (𝐴 ∈ V → (𝐴 ∈ (fi‘𝐵) ↔ ∃𝑥 ∈ ((𝒫 𝐵 ∩ Fin) ∖ {∅})𝐴 = 𝑥)))
332, 10, 32pm5.21ndd 380 1 (𝐵𝑉 → (𝐴 ∈ (fi‘𝐵) ↔ ∃𝑥 ∈ ((𝒫 𝐵 ∩ Fin) ∖ {∅})𝐴 = 𝑥))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wne 2942  wrex 3064  Vcvv 3422  cdif 3880  cin 3882  c0 4253  𝒫 cpw 4530  {csn 4558   cint 4876  cfv 6418  Fincfn 8691  ficfi 9099
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-int 4877  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-iota 6376  df-fun 6420  df-fv 6426  df-fi 9100
This theorem is referenced by:  fifo  9121  firest  17060  alexsublem  23103  ispisys2  32021
  Copyright terms: Public domain W3C validator