HomeHome Metamath Proof Explorer
Theorem List (p. 95 of 464)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-29181)
  Hilbert Space Explorer  Hilbert Space Explorer
(29182-30704)
  Users' Mathboxes  Users' Mathboxes
(30705-46395)
 

Theorem List for Metamath Proof Explorer - 9401-9500   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremtrpredeq1d 9401 Equality deduction for transitive predecessors. (Contributed by Scott Fenton, 2-Feb-2011.)
(𝜑𝑅 = 𝑆)       (𝜑 → TrPred(𝑅, 𝐴, 𝑋) = TrPred(𝑆, 𝐴, 𝑋))
 
Theoremtrpredeq2d 9402 Equality deduction for transitive predecessors. (Contributed by Scott Fenton, 2-Feb-2011.)
(𝜑𝐴 = 𝐵)       (𝜑 → TrPred(𝑅, 𝐴, 𝑋) = TrPred(𝑅, 𝐵, 𝑋))
 
Theoremtrpredeq3d 9403 Equality deduction for transitive predecessors. (Contributed by Scott Fenton, 2-Feb-2011.)
(𝜑𝑋 = 𝑌)       (𝜑 → TrPred(𝑅, 𝐴, 𝑋) = TrPred(𝑅, 𝐴, 𝑌))
 
Theoremeltrpred 9404* A class is a transitive predecessor iff it is in some value of the underlying function. This theorem is not meant to be used directly; use trpredpred 9406 and trpredmintr 9409 instead. (Contributed by Scott Fenton, 28-Apr-2012.)
(𝑌 ∈ TrPred(𝑅, 𝐴, 𝑋) ↔ ∃𝑖 ∈ ω 𝑌 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖))
 
Theoremtrpredlem1 9405* Technical lemma for transitive predecessors properties. All values of the transitive predecessors' underlying function are subclasses of the base class. (Contributed by Scott Fenton, 28-Apr-2012.)
(Pred(𝑅, 𝐴, 𝑋) ∈ 𝐵 → ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖) ⊆ 𝐴)
 
Theoremtrpredpred 9406 Assuming it is a set, the predecessor class is a subset of the class of transitive predecessors. (Contributed by Scott Fenton, 18-Feb-2011.)
(Pred(𝑅, 𝐴, 𝑋) ∈ 𝐵 → Pred(𝑅, 𝐴, 𝑋) ⊆ TrPred(𝑅, 𝐴, 𝑋))
 
Theoremtrpredss 9407 The transitive predecessors form a subclass of the base class. (Contributed by Scott Fenton, 20-Feb-2011.)
(Pred(𝑅, 𝐴, 𝑋) ∈ 𝐵 → TrPred(𝑅, 𝐴, 𝑋) ⊆ 𝐴)
 
Theoremtrpredtr 9408 Predecessors of a transitive predecessor are transitive predecessors. (Contributed by Scott Fenton, 20-Feb-2011.) (Revised by Mario Carneiro, 26-Jun-2015.)
((𝑋𝐴𝑅 Se 𝐴) → (𝑌 ∈ TrPred(𝑅, 𝐴, 𝑋) → Pred(𝑅, 𝐴, 𝑌) ⊆ TrPred(𝑅, 𝐴, 𝑋)))
 
Theoremtrpredmintr 9409* The transitive predecessors form the smallest superclass of predecessors closed under taking predecessors. (Contributed by Scott Fenton, 25-Apr-2012.) (Revised by Mario Carneiro, 26-Jun-2015.)
(((𝑋𝐴𝑅 Se 𝐴) ∧ (∀𝑦𝐵 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵 ∧ Pred(𝑅, 𝐴, 𝑋) ⊆ 𝐵)) → TrPred(𝑅, 𝐴, 𝑋) ⊆ 𝐵)
 
Theoremtrpred0 9410 The class of transitive predecessors is empty when 𝐴 is empty. (Contributed by Scott Fenton, 30-Apr-2012.)
TrPred(𝑅, ∅, 𝑋) = ∅
 
Theoremtrpredelss 9411 Given a transitive predecessor 𝑌 of 𝑋, the transitive predecessors of 𝑌 form a subclass of the transitive predecessors of 𝑋. (Contributed by Scott Fenton, 25-Apr-2012.) (Revised by Mario Carneiro, 26-Jun-2015.)
((𝑋𝐴𝑅 Se 𝐴) → (𝑌 ∈ TrPred(𝑅, 𝐴, 𝑋) → TrPred(𝑅, 𝐴, 𝑌) ⊆ TrPred(𝑅, 𝐴, 𝑋)))
 
Theoremdftrpred3g 9412* The transitive predecessors of 𝑋 are equal to the predecessors of 𝑋 together with their transitive predecessors. (Contributed by Scott Fenton, 26-Apr-2012.) (Revised by Mario Carneiro, 26-Jun-2015.)
((𝑋𝐴𝑅 Se 𝐴) → TrPred(𝑅, 𝐴, 𝑋) = (Pred(𝑅, 𝐴, 𝑋) ∪ 𝑦 ∈ Pred (𝑅, 𝐴, 𝑋)TrPred(𝑅, 𝐴, 𝑦)))
 
Theoremdftrpred4g 9413* Another recursive expression for the transitive predecessors. (Contributed by Scott Fenton, 27-Apr-2012.) (Revised by Mario Carneiro, 26-Jun-2015.)
((𝑋𝐴𝑅 Se 𝐴) → TrPred(𝑅, 𝐴, 𝑋) = 𝑦 ∈ Pred (𝑅, 𝐴, 𝑋)({𝑦} ∪ TrPred(𝑅, 𝐴, 𝑦)))
 
Theoremtrpredpo 9414 If 𝑅 partially orders 𝐴, then the transitive predecessors are the same as the immediate predecessors . (Contributed by Scott Fenton, 28-Apr-2012.) (Revised by Mario Carneiro, 26-Jun-2015.)
((𝑅 Po 𝐴𝑋𝐴𝑅 Se 𝐴) → TrPred(𝑅, 𝐴, 𝑋) = Pred(𝑅, 𝐴, 𝑋))
 
Theoremtrpredrec 9415* A transitive predecessor of 𝑋 is either an immediate predecessor of 𝑋 or an immediate predecessor of a transitive predecessor of 𝑋. (Contributed by Scott Fenton, 9-May-2012.) (Revised by Mario Carneiro, 26-Jun-2015.)
((𝑋𝐴𝑅 Se 𝐴) → (𝑌 ∈ TrPred(𝑅, 𝐴, 𝑋) → (𝑌 ∈ Pred(𝑅, 𝐴, 𝑋) ∨ ∃𝑧 ∈ TrPred (𝑅, 𝐴, 𝑋)𝑌𝑅𝑧)))
 
Theoremtrpredex 9416 The transitive predecessors under a relation form a set.

This is the first theorem in the transitive predecessor series that requires the axiom of infinity. (Contributed by Scott Fenton, 18-Feb-2011.)

TrPred(𝑅, 𝐴, 𝑋) ∈ V
 
2.6.5  Transitive closure
 
Theoremtrcl 9417* For any set 𝐴, show the properties of its transitive closure 𝐶. Similar to Theorem 9.1 of [TakeutiZaring] p. 73 except that we show an explicit expression for the transitive closure rather than just its existence. See tz9.1 9418 for an abbreviated version showing existence. (Contributed by NM, 14-Sep-2003.) (Revised by Mario Carneiro, 11-Sep-2015.)
𝐴 ∈ V    &   𝐹 = (rec((𝑧 ∈ V ↦ (𝑧 𝑧)), 𝐴) ↾ ω)    &   𝐶 = 𝑦 ∈ ω (𝐹𝑦)       (𝐴𝐶 ∧ Tr 𝐶 ∧ ∀𝑥((𝐴𝑥 ∧ Tr 𝑥) → 𝐶𝑥))
 
Theoremtz9.1 9418* Every set has a transitive closure (the smallest transitive extension). Theorem 9.1 of [TakeutiZaring] p. 73. See trcl 9417 for an explicit expression for the transitive closure. Apparently open problems are whether this theorem can be proved without the Axiom of Infinity; if not, then whether it implies Infinity; and if not, what is the "property" that Infinity has that the other axioms don't have that is weaker than Infinity itself?

(Added 22-Mar-2011) The following article seems to answer the first question, that it can't be proved without Infinity, in the affirmative: Mancini, Antonella and Zambella, Domenico (2001). "A note on recursive models of set theories." Notre Dame Journal of Formal Logic, 42(2):109-115. (Thanks to Scott Fenton.) (Contributed by NM, 15-Sep-2003.)

𝐴 ∈ V       𝑥(𝐴𝑥 ∧ Tr 𝑥 ∧ ∀𝑦((𝐴𝑦 ∧ Tr 𝑦) → 𝑥𝑦))
 
Theoremtz9.1c 9419* Alternate expression for the existence of transitive closures tz9.1 9418: the intersection of all transitive sets containing 𝐴 is a set. (Contributed by Mario Carneiro, 22-Mar-2013.)
𝐴 ∈ V        {𝑥 ∣ (𝐴𝑥 ∧ Tr 𝑥)} ∈ V
 
Theoremepfrs 9420* The strong form of the Axiom of Regularity (no sethood requirement on 𝐴), with the axiom itself present as an antecedent. See also zfregs 9421. (Contributed by Mario Carneiro, 22-Mar-2013.)
(( E Fr 𝐴𝐴 ≠ ∅) → ∃𝑥𝐴 (𝑥𝐴) = ∅)
 
Theoremzfregs 9421* The strong form of the Axiom of Regularity, which does not require that 𝐴 be a set. Axiom 6' of [TakeutiZaring] p. 21. See also epfrs 9420. (Contributed by NM, 17-Sep-2003.)
(𝐴 ≠ ∅ → ∃𝑥𝐴 (𝑥𝐴) = ∅)
 
Theoremzfregs2 9422* Alternate strong form of the Axiom of Regularity. Not every element of a nonempty class contains some element of that class. (Contributed by Alan Sare, 24-Oct-2011.) (Proof shortened by Wolf Lammen, 27-Sep-2013.)
(𝐴 ≠ ∅ → ¬ ∀𝑥𝐴𝑦(𝑦𝐴𝑦𝑥))
 
Theoremsetind 9423* Set (epsilon) induction. Theorem 5.22 of [TakeutiZaring] p. 21. (Contributed by NM, 17-Sep-2003.)
(∀𝑥(𝑥𝐴𝑥𝐴) → 𝐴 = V)
 
Theoremsetind2 9424 Set (epsilon) induction, stated compactly. Given as a homework problem in 1992 by George Boolos (1940-1996). (Contributed by NM, 17-Sep-2003.)
(𝒫 𝐴𝐴𝐴 = V)
 
Syntaxctc 9425 Extend class notation to include the transitive closure function.
class TC
 
Definitiondf-tc 9426* The transitive closure function. (Contributed by Mario Carneiro, 23-Jun-2013.)
TC = (𝑥 ∈ V ↦ {𝑦 ∣ (𝑥𝑦 ∧ Tr 𝑦)})
 
Theoremtcvalg 9427* Value of the transitive closure function. (The fact that this intersection exists is a non-trivial fact that depends on ax-inf 9326; see tz9.1 9418.) (Contributed by Mario Carneiro, 23-Jun-2013.)
(𝐴𝑉 → (TC‘𝐴) = {𝑥 ∣ (𝐴𝑥 ∧ Tr 𝑥)})
 
Theoremtcid 9428 Defining property of the transitive closure function: it contains its argument as a subset. (Contributed by Mario Carneiro, 23-Jun-2013.)
(𝐴𝑉𝐴 ⊆ (TC‘𝐴))
 
Theoremtctr 9429 Defining property of the transitive closure function: it is transitive. (Contributed by Mario Carneiro, 23-Jun-2013.)
Tr (TC‘𝐴)
 
Theoremtcmin 9430 Defining property of the transitive closure function: it is a subset of any transitive class containing 𝐴. (Contributed by Mario Carneiro, 23-Jun-2013.)
(𝐴𝑉 → ((𝐴𝐵 ∧ Tr 𝐵) → (TC‘𝐴) ⊆ 𝐵))
 
Theoremtc2 9431* A variant of the definition of the transitive closure function, using instead the smallest transitive set containing 𝐴 as a member, gives almost the same set, except that 𝐴 itself must be added because it is not usually a member of (TC‘𝐴) (and it is never a member if 𝐴 is well-founded). (Contributed by Mario Carneiro, 23-Jun-2013.)
𝐴 ∈ V       ((TC‘𝐴) ∪ {𝐴}) = {𝑥 ∣ (𝐴𝑥 ∧ Tr 𝑥)}
 
Theoremtcsni 9432 The transitive closure of a singleton. Proof suggested by Gérard Lang. (Contributed by Mario Carneiro, 4-Jun-2015.)
𝐴 ∈ V       (TC‘{𝐴}) = ((TC‘𝐴) ∪ {𝐴})
 
Theoremtcss 9433 The transitive closure function inherits the subset relation. (Contributed by Mario Carneiro, 23-Jun-2013.)
𝐴 ∈ V       (𝐵𝐴 → (TC‘𝐵) ⊆ (TC‘𝐴))
 
Theoremtcel 9434 The transitive closure function converts the element relation to the subset relation. (Contributed by Mario Carneiro, 23-Jun-2013.)
𝐴 ∈ V       (𝐵𝐴 → (TC‘𝐵) ⊆ (TC‘𝐴))
 
Theoremtcidm 9435 The transitive closure function is idempotent. (Contributed by Mario Carneiro, 23-Jun-2013.)
(TC‘(TC‘𝐴)) = (TC‘𝐴)
 
Theoremtc0 9436 The transitive closure of the empty set. (Contributed by Mario Carneiro, 4-Jun-2015.)
(TC‘∅) = ∅
 
Theoremtc00 9437 The transitive closure is empty iff its argument is. Proof suggested by Gérard Lang. (Contributed by Mario Carneiro, 4-Jun-2015.)
(𝐴𝑉 → ((TC‘𝐴) = ∅ ↔ 𝐴 = ∅))
 
2.6.6  Well-Founded Induction
 
Theoremfrmin 9438* Every (possibly proper) subclass of a class 𝐴 with a well-founded set-like relation 𝑅 has a minimal element. This is a very strong generalization of tz6.26 6235 and tz7.5 6272. (Contributed by Scott Fenton, 4-Feb-2011.) (Revised by Mario Carneiro, 26-Jun-2015.)
(((𝑅 Fr 𝐴𝑅 Se 𝐴) ∧ (𝐵𝐴𝐵 ≠ ∅)) → ∃𝑦𝐵 Pred(𝑅, 𝐵, 𝑦) = ∅)
 
Theoremfrind 9439* A subclass of a well-founded class 𝐴 with the property that whenever it contains all predecessors of an element of 𝐴 it also contains that element, is equal to 𝐴. Compare wfi 6238 and tfi 7675, which are special cases of this theorem that do not require the axiom of infinity. (Contributed by Scott Fenton, 6-Feb-2011.) (Revised by Mario Carneiro, 26-Jun-2015.)
(((𝑅 Fr 𝐴𝑅 Se 𝐴) ∧ (𝐵𝐴 ∧ ∀𝑦𝐴 (Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵𝑦𝐵))) → 𝐴 = 𝐵)
 
Theoremfrinsg 9440* Well-Founded Induction Schema. If a property passes from all elements less than 𝑦 of a well-founded class 𝐴 to 𝑦 itself (induction hypothesis), then the property holds for all elements of 𝐴. Theorem 5.6(ii) of [Levy] p. 64. (Contributed by Scott Fenton, 7-Feb-2011.) (Revised by Mario Carneiro, 26-Jun-2015.)
(𝑦𝐴 → (∀𝑧 ∈ Pred (𝑅, 𝐴, 𝑦)[𝑧 / 𝑦]𝜑𝜑))       ((𝑅 Fr 𝐴𝑅 Se 𝐴) → ∀𝑦𝐴 𝜑)
 
Theoremfrins 9441* Well-Founded Induction Schema. If a property passes from all elements less than 𝑦 of a well-founded class 𝐴 to 𝑦 itself (induction hypothesis), then the property holds for all elements of 𝐴. (Contributed by Scott Fenton, 6-Feb-2011.) (Revised by Mario Carneiro, 26-Jun-2015.)
𝑅 Fr 𝐴    &   𝑅 Se 𝐴    &   (𝑦𝐴 → (∀𝑧 ∈ Pred (𝑅, 𝐴, 𝑦)[𝑧 / 𝑦]𝜑𝜑))       (𝑦𝐴𝜑)
 
Theoremfrins2f 9442* Well-Founded Induction schema, using implicit substitution. (Contributed by Scott Fenton, 7-Feb-2011.) (Revised by Mario Carneiro, 11-Dec-2016.)
(𝑦𝐴 → (∀𝑧 ∈ Pred (𝑅, 𝐴, 𝑦)𝜓𝜑))    &   𝑦𝜓    &   (𝑦 = 𝑧 → (𝜑𝜓))       ((𝑅 Fr 𝐴𝑅 Se 𝐴) → ∀𝑦𝐴 𝜑)
 
Theoremfrins2 9443* Well-Founded Induction schema, using implicit substitution. (Contributed by Scott Fenton, 8-Feb-2011.) (Revised by Mario Carneiro, 26-Jun-2015.)
(𝑦𝐴 → (∀𝑧 ∈ Pred (𝑅, 𝐴, 𝑦)𝜓𝜑))    &   (𝑦 = 𝑧 → (𝜑𝜓))       ((𝑅 Fr 𝐴𝑅 Se 𝐴) → ∀𝑦𝐴 𝜑)
 
Theoremfrins3 9444* Well-Founded Induction schema, using implicit substitution. (Contributed by Scott Fenton, 6-Feb-2011.) (Revised by Mario Carneiro, 26-Jun-2015.)
(𝑦 = 𝑧 → (𝜑𝜓))    &   (𝑦 = 𝐵 → (𝜑𝜒))    &   (𝑦𝐴 → (∀𝑧 ∈ Pred (𝑅, 𝐴, 𝑦)𝜓𝜑))       (((𝑅 Fr 𝐴𝑅 Se 𝐴) ∧ 𝐵𝐴) → 𝜒)
 
2.6.7  Well-Founded Recursion
 
Theoremfrr3g 9445* Functions defined by well-founded recursion are identical up to relation, domain, and characteristic function. General version of frr3 9450. (Contributed by Scott Fenton, 10-Feb-2011.) (Revised by Mario Carneiro, 26-Jun-2015.)
(((𝑅 Fr 𝐴𝑅 Se 𝐴) ∧ (𝐹 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐹𝑦) = (𝑦𝐻(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦)))) ∧ (𝐺 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐺𝑦) = (𝑦𝐻(𝐺 ↾ Pred(𝑅, 𝐴, 𝑦))))) → 𝐹 = 𝐺)
 
Theoremfrrlem15 9446* Lemma for general well-founded recursion. Two acceptable functions are compatible. (Contributed by Scott Fenton, 11-Sep-2023.)
𝐵 = {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))}    &   𝐹 = frecs(𝑅, 𝐴, 𝐺)       (((𝑅 Fr 𝐴𝑅 Se 𝐴) ∧ (𝑔𝐵𝐵)) → ((𝑥𝑔𝑢𝑥𝑣) → 𝑢 = 𝑣))
 
Theoremfrrlem16 9447* Lemma for general well-founded recursion. Establish a subset relationship. (Contributed by Scott Fenton, 11-Sep-2023.)
(((𝑅 Fr 𝐴𝑅 Se 𝐴) ∧ 𝑧𝐴) → ∀𝑤 ∈ TrPred (𝑅, 𝐴, 𝑧)Pred(𝑅, 𝐴, 𝑤) ⊆ TrPred(𝑅, 𝐴, 𝑧))
 
Theoremfrr1 9448 Law of general well-founded recursion, part one. This theorem and the following two drop the partial order requirement from fpr1 8090, fpr2 8091, and fpr3 8092, which requires using the axiom of infinity (Contributed by Scott Fenton, 11-Sep-2023.)
𝐹 = frecs(𝑅, 𝐴, 𝐺)       ((𝑅 Fr 𝐴𝑅 Se 𝐴) → 𝐹 Fn 𝐴)
 
Theoremfrr2 9449 Law of general well-founded recursion, part two. Now we establish the value of 𝐹 within 𝐴. (Contributed by Scott Fenton, 11-Sep-2023.)
𝐹 = frecs(𝑅, 𝐴, 𝐺)       (((𝑅 Fr 𝐴𝑅 Se 𝐴) ∧ 𝑋𝐴) → (𝐹𝑋) = (𝑋𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑋))))
 
Theoremfrr3 9450* Law of general well-founded recursion, part three. Finally, we show that 𝐹 is unique. We do this by showing that any function 𝐻 with the same properties we proved of 𝐹 in frr1 9448 and frr2 9449 is identical to 𝐹. (Contributed by Scott Fenton, 11-Sep-2023.)
𝐹 = frecs(𝑅, 𝐴, 𝐺)       (((𝑅 Fr 𝐴𝑅 Se 𝐴) ∧ (𝐻 Fn 𝐴 ∧ ∀𝑧𝐴 (𝐻𝑧) = (𝑧𝐺(𝐻 ↾ Pred(𝑅, 𝐴, 𝑧))))) → 𝐹 = 𝐻)
 
2.6.8  Rank
 
Syntaxcr1 9451 Extend class definition to include the cumulative hierarchy of sets function.
class 𝑅1
 
Syntaxcrnk 9452 Extend class definition to include rank function.
class rank
 
Definitiondf-r1 9453 Define the cumulative hierarchy of sets function, using Takeuti and Zaring's notation (𝑅1). Starting with the empty set, this function builds up layers of sets where the next layer is the power set of the previous layer (and the union of previous layers when the argument is a limit ordinal). Using the Axiom of Regularity, we can show that any set whatsoever belongs to one of the layers of this hierarchy (see tz9.13 9480). Our definition expresses Definition 9.9 of [TakeutiZaring] p. 76 in a closed form, from which we derive the recursive definition as Theorems r10 9457, r1suc 9459, and r1lim 9461. Theorem r1val1 9475 shows a recursive definition that works for all values, and Theorems r1val2 9526 and r1val3 9527 show the value expressed in terms of rank. Other notations for this function are R with the argument as a subscript (Equation 3.1 of [BellMachover] p. 477), V with a subscript (Definition of [Enderton] p. 202), M with a subscript (Definition 15.19 of [Monk1] p. 113), the capital Greek letter psi (Definition of [Mendelson] p. 281), and bold-face R (Definition 2.1 of [Kunen] p. 95). (Contributed by NM, 2-Sep-2003.)
𝑅1 = rec((𝑥 ∈ V ↦ 𝒫 𝑥), ∅)
 
Definitiondf-rank 9454* Define the rank function. See rankval 9505, rankval2 9507, rankval3 9529, or rankval4 9556 its value. The rank is a kind of "inverse" of the cumulative hierarchy of sets function 𝑅1: given a set, it returns an ordinal number telling us the smallest layer of the hierarchy to which the set belongs. Based on Definition 9.14 of [TakeutiZaring] p. 79. Theorem rankid 9522 illustrates the "inverse" concept. Another nice theorem showing the relationship is rankr1a 9525. (Contributed by NM, 11-Oct-2003.)
rank = (𝑥 ∈ V ↦ {𝑦 ∈ On ∣ 𝑥 ∈ (𝑅1‘suc 𝑦)})
 
Theoremr1funlim 9455 The cumulative hierarchy of sets function is a function on a limit ordinal. (This weak form of r1fnon 9456 avoids ax-rep 5205.) (Contributed by Mario Carneiro, 16-Nov-2014.)
(Fun 𝑅1 ∧ Lim dom 𝑅1)
 
Theoremr1fnon 9456 The cumulative hierarchy of sets function is a function on the class of ordinal numbers. (Contributed by NM, 5-Oct-2003.) (Revised by Mario Carneiro, 10-Sep-2013.)
𝑅1 Fn On
 
Theoremr10 9457 Value of the cumulative hierarchy of sets function at . Part of Definition 9.9 of [TakeutiZaring] p. 76. (Contributed by NM, 2-Sep-2003.) (Revised by Mario Carneiro, 10-Sep-2013.)
(𝑅1‘∅) = ∅
 
Theoremr1sucg 9458 Value of the cumulative hierarchy of sets function at a successor ordinal. Part of Definition 9.9 of [TakeutiZaring] p. 76. (Contributed by Mario Carneiro, 16-Nov-2014.)
(𝐴 ∈ dom 𝑅1 → (𝑅1‘suc 𝐴) = 𝒫 (𝑅1𝐴))
 
Theoremr1suc 9459 Value of the cumulative hierarchy of sets function at a successor ordinal. Part of Definition 9.9 of [TakeutiZaring] p. 76. (Contributed by NM, 2-Sep-2003.) (Revised by Mario Carneiro, 10-Sep-2013.)
(𝐴 ∈ On → (𝑅1‘suc 𝐴) = 𝒫 (𝑅1𝐴))
 
Theoremr1limg 9460* Value of the cumulative hierarchy of sets function at a limit ordinal. Part of Definition 9.9 of [TakeutiZaring] p. 76. (Contributed by Mario Carneiro, 16-Nov-2014.)
((𝐴 ∈ dom 𝑅1 ∧ Lim 𝐴) → (𝑅1𝐴) = 𝑥𝐴 (𝑅1𝑥))
 
Theoremr1lim 9461* Value of the cumulative hierarchy of sets function at a limit ordinal. Part of Definition 9.9 of [TakeutiZaring] p. 76. (Contributed by NM, 4-Oct-2003.) (Revised by Mario Carneiro, 16-Nov-2014.)
((𝐴𝐵 ∧ Lim 𝐴) → (𝑅1𝐴) = 𝑥𝐴 (𝑅1𝑥))
 
Theoremr1fin 9462 The first ω levels of the cumulative hierarchy are all finite. (Contributed by Mario Carneiro, 15-May-2013.)
(𝐴 ∈ ω → (𝑅1𝐴) ∈ Fin)
 
Theoremr1sdom 9463 Each stage in the cumulative hierarchy is strictly larger than the last. (Contributed by Mario Carneiro, 19-Apr-2013.)
((𝐴 ∈ On ∧ 𝐵𝐴) → (𝑅1𝐵) ≺ (𝑅1𝐴))
 
Theoremr111 9464 The cumulative hierarchy is a one-to-one function. (Contributed by Mario Carneiro, 19-Apr-2013.)
𝑅1:On–1-1→V
 
Theoremr1tr 9465 The cumulative hierarchy of sets is transitive. Lemma 7T of [Enderton] p. 202. (Contributed by NM, 8-Sep-2003.) (Revised by Mario Carneiro, 16-Nov-2014.)
Tr (𝑅1𝐴)
 
Theoremr1tr2 9466 The union of a cumulative hierarchy of sets at ordinal 𝐴 is a subset of the hierarchy at 𝐴. JFM CLASSES1 th. 40. (Contributed by FL, 20-Apr-2011.)
(𝑅1𝐴) ⊆ (𝑅1𝐴)
 
Theoremr1ordg 9467 Ordering relation for the cumulative hierarchy of sets. Part of Proposition 9.10(2) of [TakeutiZaring] p. 77. (Contributed by NM, 8-Sep-2003.)
(𝐵 ∈ dom 𝑅1 → (𝐴𝐵 → (𝑅1𝐴) ∈ (𝑅1𝐵)))
 
Theoremr1ord3g 9468 Ordering relation for the cumulative hierarchy of sets. Part of Theorem 3.3(i) of [BellMachover] p. 478. (Contributed by NM, 22-Sep-2003.)
((𝐴 ∈ dom 𝑅1𝐵 ∈ dom 𝑅1) → (𝐴𝐵 → (𝑅1𝐴) ⊆ (𝑅1𝐵)))
 
Theoremr1ord 9469 Ordering relation for the cumulative hierarchy of sets. Part of Proposition 9.10(2) of [TakeutiZaring] p. 77. (Contributed by NM, 8-Sep-2003.) (Revised by Mario Carneiro, 16-Nov-2014.)
(𝐵 ∈ On → (𝐴𝐵 → (𝑅1𝐴) ∈ (𝑅1𝐵)))
 
Theoremr1ord2 9470 Ordering relation for the cumulative hierarchy of sets. Part of Proposition 9.10(2) of [TakeutiZaring] p. 77. (Contributed by NM, 22-Sep-2003.)
(𝐵 ∈ On → (𝐴𝐵 → (𝑅1𝐴) ⊆ (𝑅1𝐵)))
 
Theoremr1ord3 9471 Ordering relation for the cumulative hierarchy of sets. Part of Theorem 3.3(i) of [BellMachover] p. 478. (Contributed by NM, 22-Sep-2003.)
((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴𝐵 → (𝑅1𝐴) ⊆ (𝑅1𝐵)))
 
Theoremr1sssuc 9472 The value of the cumulative hierarchy of sets function is a subset of its value at the successor. JFM CLASSES1 Th. 39. (Contributed by FL, 20-Apr-2011.)
(𝐴 ∈ On → (𝑅1𝐴) ⊆ (𝑅1‘suc 𝐴))
 
Theoremr1pwss 9473 Each set of the cumulative hierarchy is closed under subsets. (Contributed by Mario Carneiro, 16-Nov-2014.)
(𝐴 ∈ (𝑅1𝐵) → 𝒫 𝐴 ⊆ (𝑅1𝐵))
 
Theoremr1sscl 9474 Each set of the cumulative hierarchy is closed under subsets. (Contributed by Mario Carneiro, 16-Nov-2014.)
((𝐴 ∈ (𝑅1𝐵) ∧ 𝐶𝐴) → 𝐶 ∈ (𝑅1𝐵))
 
Theoremr1val1 9475* The value of the cumulative hierarchy of sets function expressed recursively. Theorem 7Q of [Enderton] p. 202. (Contributed by NM, 25-Nov-2003.) (Revised by Mario Carneiro, 17-Nov-2014.)
(𝐴 ∈ dom 𝑅1 → (𝑅1𝐴) = 𝑥𝐴 𝒫 (𝑅1𝑥))
 
Theoremtz9.12lem1 9476* Lemma for tz9.12 9479. (Contributed by NM, 22-Sep-2003.) (Revised by Mario Carneiro, 11-Sep-2015.)
𝐴 ∈ V    &   𝐹 = (𝑧 ∈ V ↦ {𝑣 ∈ On ∣ 𝑧 ∈ (𝑅1𝑣)})       (𝐹𝐴) ⊆ On
 
Theoremtz9.12lem2 9477* Lemma for tz9.12 9479. (Contributed by NM, 22-Sep-2003.)
𝐴 ∈ V    &   𝐹 = (𝑧 ∈ V ↦ {𝑣 ∈ On ∣ 𝑧 ∈ (𝑅1𝑣)})       suc (𝐹𝐴) ∈ On
 
Theoremtz9.12lem3 9478* Lemma for tz9.12 9479. (Contributed by NM, 22-Sep-2003.) (Revised by Mario Carneiro, 11-Sep-2015.)
𝐴 ∈ V    &   𝐹 = (𝑧 ∈ V ↦ {𝑣 ∈ On ∣ 𝑧 ∈ (𝑅1𝑣)})       (∀𝑥𝐴𝑦 ∈ On 𝑥 ∈ (𝑅1𝑦) → 𝐴 ∈ (𝑅1‘suc suc (𝐹𝐴)))
 
Theoremtz9.12 9479* A set is well-founded if all of its elements are well-founded. Proposition 9.12 of [TakeutiZaring] p. 78. The main proof consists of tz9.12lem1 9476 through tz9.12lem3 9478. (Contributed by NM, 22-Sep-2003.)
𝐴 ∈ V       (∀𝑥𝐴𝑦 ∈ On 𝑥 ∈ (𝑅1𝑦) → ∃𝑦 ∈ On 𝐴 ∈ (𝑅1𝑦))
 
Theoremtz9.13 9480* Every set is well-founded, assuming the Axiom of Regularity. In other words, every set belongs to a layer of the cumulative hierarchy of sets. Proposition 9.13 of [TakeutiZaring] p. 78. (Contributed by NM, 23-Sep-2003.)
𝐴 ∈ V       𝑥 ∈ On 𝐴 ∈ (𝑅1𝑥)
 
Theoremtz9.13g 9481* Every set is well-founded, assuming the Axiom of Regularity. Proposition 9.13 of [TakeutiZaring] p. 78. This variant of tz9.13 9480 expresses the class existence requirement as an antecedent. (Contributed by NM, 4-Oct-2003.)
(𝐴𝑉 → ∃𝑥 ∈ On 𝐴 ∈ (𝑅1𝑥))
 
Theoremrankwflemb 9482* Two ways of saying a set is well-founded. (Contributed by NM, 11-Oct-2003.) (Revised by Mario Carneiro, 16-Nov-2014.)
(𝐴 (𝑅1 “ On) ↔ ∃𝑥 ∈ On 𝐴 ∈ (𝑅1‘suc 𝑥))
 
Theoremrankf 9483 The domain and range of the rank function. (Contributed by Mario Carneiro, 28-May-2013.) (Revised by Mario Carneiro, 12-Sep-2013.)
rank: (𝑅1 “ On)⟶On
 
Theoremrankon 9484 The rank of a set is an ordinal number. Proposition 9.15(1) of [TakeutiZaring] p. 79. (Contributed by NM, 5-Oct-2003.) (Revised by Mario Carneiro, 12-Sep-2013.)
(rank‘𝐴) ∈ On
 
Theoremr1elwf 9485 Any member of the cumulative hierarchy is well-founded. (Contributed by Mario Carneiro, 28-May-2013.) (Revised by Mario Carneiro, 16-Nov-2014.)
(𝐴 ∈ (𝑅1𝐵) → 𝐴 (𝑅1 “ On))
 
Theoremrankvalb 9486* Value of the rank function. Definition 9.14 of [TakeutiZaring] p. 79 (proved as a theorem from our definition). This variant of rankval 9505 does not use Regularity, and so requires the assumption that 𝐴 is in the range of 𝑅1. (Contributed by NM, 11-Oct-2003.) (Revised by Mario Carneiro, 10-Sep-2013.)
(𝐴 (𝑅1 “ On) → (rank‘𝐴) = {𝑥 ∈ On ∣ 𝐴 ∈ (𝑅1‘suc 𝑥)})
 
Theoremrankr1ai 9487 One direction of rankr1a 9525. (Contributed by Mario Carneiro, 28-May-2013.) (Revised by Mario Carneiro, 17-Nov-2014.)
(𝐴 ∈ (𝑅1𝐵) → (rank‘𝐴) ∈ 𝐵)
 
Theoremrankvaln 9488 Value of the rank function at a non-well-founded set. (The antecedent is always false under Foundation, by unir1 9502, unless 𝐴 is a proper class.) (Contributed by Mario Carneiro, 22-Mar-2013.) (Revised by Mario Carneiro, 10-Sep-2013.)
𝐴 (𝑅1 “ On) → (rank‘𝐴) = ∅)
 
Theoremrankidb 9489 Identity law for the rank function. (Contributed by NM, 3-Oct-2003.) (Revised by Mario Carneiro, 22-Mar-2013.)
(𝐴 (𝑅1 “ On) → 𝐴 ∈ (𝑅1‘suc (rank‘𝐴)))
 
Theoremrankdmr1 9490 A rank is a member of the cumulative hierarchy. (Contributed by Mario Carneiro, 17-Nov-2014.)
(rank‘𝐴) ∈ dom 𝑅1
 
Theoremrankr1ag 9491 A version of rankr1a 9525 that is suitable without assuming Regularity or Replacement. (Contributed by Mario Carneiro, 3-Jun-2013.) (Revised by Mario Carneiro, 17-Nov-2014.)
((𝐴 (𝑅1 “ On) ∧ 𝐵 ∈ dom 𝑅1) → (𝐴 ∈ (𝑅1𝐵) ↔ (rank‘𝐴) ∈ 𝐵))
 
Theoremrankr1bg 9492 A relationship between rank and 𝑅1. See rankr1ag 9491 for the membership version. (Contributed by Mario Carneiro, 17-Nov-2014.)
((𝐴 (𝑅1 “ On) ∧ 𝐵 ∈ dom 𝑅1) → (𝐴 ⊆ (𝑅1𝐵) ↔ (rank‘𝐴) ⊆ 𝐵))
 
Theoremr1rankidb 9493 Any set is a subset of the hierarchy of its rank. (Contributed by Mario Carneiro, 3-Jun-2013.) (Revised by Mario Carneiro, 17-Nov-2014.)
(𝐴 (𝑅1 “ On) → 𝐴 ⊆ (𝑅1‘(rank‘𝐴)))
 
Theoremr1elssi 9494 The range of the 𝑅1 function is transitive. Lemma 2.10 of [Kunen] p. 97. One direction of r1elss 9495 that doesn't need 𝐴 to be a set. (Contributed by Mario Carneiro, 22-Mar-2013.) (Revised by Mario Carneiro, 16-Nov-2014.)
(𝐴 (𝑅1 “ On) → 𝐴 (𝑅1 “ On))
 
Theoremr1elss 9495 The range of the 𝑅1 function is transitive. Lemma 2.10 of [Kunen] p. 97. (Contributed by Mario Carneiro, 22-Mar-2013.) (Revised by Mario Carneiro, 16-Nov-2014.)
𝐴 ∈ V       (𝐴 (𝑅1 “ On) ↔ 𝐴 (𝑅1 “ On))
 
Theorempwwf 9496 A power set is well-founded iff the base set is. (Contributed by Mario Carneiro, 8-Jun-2013.) (Revised by Mario Carneiro, 16-Nov-2014.)
(𝐴 (𝑅1 “ On) ↔ 𝒫 𝐴 (𝑅1 “ On))
 
Theoremsswf 9497 A subset of a well-founded set is well-founded. (Contributed by Mario Carneiro, 17-Nov-2014.)
((𝐴 (𝑅1 “ On) ∧ 𝐵𝐴) → 𝐵 (𝑅1 “ On))
 
Theoremsnwf 9498 A singleton is well-founded if its element is. (Contributed by Mario Carneiro, 10-Jun-2013.) (Revised by Mario Carneiro, 16-Nov-2014.)
(𝐴 (𝑅1 “ On) → {𝐴} ∈ (𝑅1 “ On))
 
Theoremunwf 9499 A binary union is well-founded iff its elements are. (Contributed by Mario Carneiro, 10-Jun-2013.) (Revised by Mario Carneiro, 17-Nov-2014.)
((𝐴 (𝑅1 “ On) ∧ 𝐵 (𝑅1 “ On)) ↔ (𝐴𝐵) ∈ (𝑅1 “ On))
 
Theoremprwf 9500 An unordered pair is well-founded if its elements are. (Contributed by Mario Carneiro, 10-Jun-2013.) (Revised by Mario Carneiro, 17-Nov-2014.)
((𝐴 (𝑅1 “ On) ∧ 𝐵 (𝑅1 “ On)) → {𝐴, 𝐵} ∈ (𝑅1 “ On))
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42600 427 42601-42700 428 42701-42800 429 42801-42900 430 42901-43000 431 43001-43100 432 43101-43200 433 43201-43300 434 43301-43400 435 43401-43500 436 43501-43600 437 43601-43700 438 43701-43800 439 43801-43900 440 43901-44000 441 44001-44100 442 44101-44200 443 44201-44300 444 44301-44400 445 44401-44500 446 44501-44600 447 44601-44700 448 44701-44800 449 44801-44900 450 44901-45000 451 45001-45100 452 45101-45200 453 45201-45300 454 45301-45400 455 45401-45500 456 45501-45600 457 45601-45700 458 45701-45800 459 45801-45900 460 45901-46000 461 46001-46100 462 46101-46200 463 46201-46300 464 46301-46395
  Copyright terms: Public domain < Previous  Next >