| Metamath
Proof Explorer Theorem List (p. 95 of 498) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30854) |
(30855-32377) |
(32378-49798) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Definition | df-inf 9401 | Define the infimum of class 𝐴. It is meaningful when 𝑅 is a relation that strictly orders 𝐵 and when the infimum exists. For example, 𝑅 could be 'less than', 𝐵 could be the set of real numbers, and 𝐴 could be the set of all positive reals; in this case the infimum is 0. The infimum is defined as the supremum using the converse ordering relation. In the given example, 0 is the supremum of all reals (greatest real number) for which all positive reals are greater. (Contributed by AV, 2-Sep-2020.) |
| ⊢ inf(𝐴, 𝐵, 𝑅) = sup(𝐴, 𝐵, ◡𝑅) | ||
| Theorem | dfsup2 9402 | Quantifier-free definition of supremum. (Contributed by Scott Fenton, 19-Feb-2013.) |
| ⊢ sup(𝐵, 𝐴, 𝑅) = ∪ (𝐴 ∖ ((◡𝑅 “ 𝐵) ∪ (𝑅 “ (𝐴 ∖ (◡𝑅 “ 𝐵))))) | ||
| Theorem | supeq1 9403 | Equality theorem for supremum. (Contributed by NM, 22-May-1999.) |
| ⊢ (𝐵 = 𝐶 → sup(𝐵, 𝐴, 𝑅) = sup(𝐶, 𝐴, 𝑅)) | ||
| Theorem | supeq1d 9404 | Equality deduction for supremum. (Contributed by Paul Chapman, 22-Jun-2011.) |
| ⊢ (𝜑 → 𝐵 = 𝐶) ⇒ ⊢ (𝜑 → sup(𝐵, 𝐴, 𝑅) = sup(𝐶, 𝐴, 𝑅)) | ||
| Theorem | supeq1i 9405 | Equality inference for supremum. (Contributed by Paul Chapman, 22-Jun-2011.) |
| ⊢ 𝐵 = 𝐶 ⇒ ⊢ sup(𝐵, 𝐴, 𝑅) = sup(𝐶, 𝐴, 𝑅) | ||
| Theorem | supeq2 9406 | Equality theorem for supremum. (Contributed by Jeff Madsen, 2-Sep-2009.) |
| ⊢ (𝐵 = 𝐶 → sup(𝐴, 𝐵, 𝑅) = sup(𝐴, 𝐶, 𝑅)) | ||
| Theorem | supeq3 9407 | Equality theorem for supremum. (Contributed by Scott Fenton, 13-Jun-2018.) |
| ⊢ (𝑅 = 𝑆 → sup(𝐴, 𝐵, 𝑅) = sup(𝐴, 𝐵, 𝑆)) | ||
| Theorem | supeq123d 9408 | Equality deduction for supremum. (Contributed by Stefan O'Rear, 20-Jan-2015.) |
| ⊢ (𝜑 → 𝐴 = 𝐷) & ⊢ (𝜑 → 𝐵 = 𝐸) & ⊢ (𝜑 → 𝐶 = 𝐹) ⇒ ⊢ (𝜑 → sup(𝐴, 𝐵, 𝐶) = sup(𝐷, 𝐸, 𝐹)) | ||
| Theorem | nfsup 9409 | Hypothesis builder for supremum. (Contributed by Mario Carneiro, 20-Mar-2014.) |
| ⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝐵 & ⊢ Ⅎ𝑥𝑅 ⇒ ⊢ Ⅎ𝑥sup(𝐴, 𝐵, 𝑅) | ||
| Theorem | supmo 9410* | Any class 𝐵 has at most one supremum in 𝐴 (where 𝑅 is interpreted as 'less than'). (Contributed by NM, 5-May-1999.) (Revised by Mario Carneiro, 24-Dec-2016.) |
| ⊢ (𝜑 → 𝑅 Or 𝐴) ⇒ ⊢ (𝜑 → ∃*𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧))) | ||
| Theorem | supexd 9411 | A supremum is a set. (Contributed by NM, 22-May-1999.) (Revised by Mario Carneiro, 24-Dec-2016.) |
| ⊢ (𝜑 → 𝑅 Or 𝐴) ⇒ ⊢ (𝜑 → sup(𝐵, 𝐴, 𝑅) ∈ V) | ||
| Theorem | supeu 9412* | A supremum is unique. Similar to Theorem I.26 of [Apostol] p. 24 (but for suprema in general). (Contributed by NM, 12-Oct-2004.) |
| ⊢ (𝜑 → 𝑅 Or 𝐴) & ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧))) ⇒ ⊢ (𝜑 → ∃!𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧))) | ||
| Theorem | supval2 9413* | Alternate expression for the supremum. (Contributed by Mario Carneiro, 24-Dec-2016.) (Revised by Thierry Arnoux, 24-Sep-2017.) |
| ⊢ (𝜑 → 𝑅 Or 𝐴) ⇒ ⊢ (𝜑 → sup(𝐵, 𝐴, 𝑅) = (℩𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧)))) | ||
| Theorem | eqsup 9414* | Sufficient condition for an element to be equal to the supremum. (Contributed by Mario Carneiro, 21-Apr-2015.) |
| ⊢ (𝜑 → 𝑅 Or 𝐴) ⇒ ⊢ (𝜑 → ((𝐶 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐵 ¬ 𝐶𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝐶 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧)) → sup(𝐵, 𝐴, 𝑅) = 𝐶)) | ||
| Theorem | eqsupd 9415* | Sufficient condition for an element to be equal to the supremum. (Contributed by Mario Carneiro, 21-Apr-2015.) |
| ⊢ (𝜑 → 𝑅 Or 𝐴) & ⊢ (𝜑 → 𝐶 ∈ 𝐴) & ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → ¬ 𝐶𝑅𝑦) & ⊢ ((𝜑 ∧ (𝑦 ∈ 𝐴 ∧ 𝑦𝑅𝐶)) → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧) ⇒ ⊢ (𝜑 → sup(𝐵, 𝐴, 𝑅) = 𝐶) | ||
| Theorem | supcl 9416* | A supremum belongs to its base class (closure law). See also supub 9417 and suplub 9418. (Contributed by NM, 12-Oct-2004.) |
| ⊢ (𝜑 → 𝑅 Or 𝐴) & ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧))) ⇒ ⊢ (𝜑 → sup(𝐵, 𝐴, 𝑅) ∈ 𝐴) | ||
| Theorem | supub 9417* |
A supremum is an upper bound. See also supcl 9416 and suplub 9418.
This proof demonstrates how to expand an iota-based definition (df-iota 6467) using riotacl2 7363. (Contributed by NM, 12-Oct-2004.) (Proof shortened by Mario Carneiro, 24-Dec-2016.) |
| ⊢ (𝜑 → 𝑅 Or 𝐴) & ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧))) ⇒ ⊢ (𝜑 → (𝐶 ∈ 𝐵 → ¬ sup(𝐵, 𝐴, 𝑅)𝑅𝐶)) | ||
| Theorem | suplub 9418* | A supremum is the least upper bound. See also supcl 9416 and supub 9417. (Contributed by NM, 13-Oct-2004.) (Revised by Mario Carneiro, 24-Dec-2016.) |
| ⊢ (𝜑 → 𝑅 Or 𝐴) & ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧))) ⇒ ⊢ (𝜑 → ((𝐶 ∈ 𝐴 ∧ 𝐶𝑅sup(𝐵, 𝐴, 𝑅)) → ∃𝑧 ∈ 𝐵 𝐶𝑅𝑧)) | ||
| Theorem | suplub2 9419* | Bidirectional form of suplub 9418. (Contributed by Mario Carneiro, 6-Sep-2014.) |
| ⊢ (𝜑 → 𝑅 Or 𝐴) & ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧))) & ⊢ (𝜑 → 𝐵 ⊆ 𝐴) ⇒ ⊢ ((𝜑 ∧ 𝐶 ∈ 𝐴) → (𝐶𝑅sup(𝐵, 𝐴, 𝑅) ↔ ∃𝑧 ∈ 𝐵 𝐶𝑅𝑧)) | ||
| Theorem | supnub 9420* | An upper bound is not less than the supremum. (Contributed by NM, 13-Oct-2004.) |
| ⊢ (𝜑 → 𝑅 Or 𝐴) & ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧))) ⇒ ⊢ (𝜑 → ((𝐶 ∈ 𝐴 ∧ ∀𝑧 ∈ 𝐵 ¬ 𝐶𝑅𝑧) → ¬ 𝐶𝑅sup(𝐵, 𝐴, 𝑅))) | ||
| Theorem | supssd 9421* | Inequality deduction for supremum of a subset. (Contributed by Thierry Arnoux, 21-Mar-2017.) |
| ⊢ (𝜑 → 𝑅 Or 𝐴) & ⊢ (𝜑 → 𝐵 ⊆ 𝐶) & ⊢ (𝜑 → 𝐶 ⊆ 𝐴) & ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧))) & ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐶 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐶 𝑦𝑅𝑧))) ⇒ ⊢ (𝜑 → ¬ sup(𝐶, 𝐴, 𝑅)𝑅sup(𝐵, 𝐴, 𝑅)) | ||
| Theorem | supex 9422 | A supremum is a set. (Contributed by NM, 22-May-1999.) |
| ⊢ 𝑅 Or 𝐴 ⇒ ⊢ sup(𝐵, 𝐴, 𝑅) ∈ V | ||
| Theorem | sup00 9423 | The supremum under an empty base set is always the empty set. (Contributed by AV, 4-Sep-2020.) |
| ⊢ sup(𝐵, ∅, 𝑅) = ∅ | ||
| Theorem | sup0riota 9424* | The supremum of an empty set is the smallest element of the base set. (Contributed by AV, 4-Sep-2020.) |
| ⊢ (𝑅 Or 𝐴 → sup(∅, 𝐴, 𝑅) = (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑦𝑅𝑥)) | ||
| Theorem | sup0 9425* | The supremum of an empty set under a base set which has a unique smallest element is the smallest element of the base set. (Contributed by AV, 4-Sep-2020.) |
| ⊢ ((𝑅 Or 𝐴 ∧ (𝑋 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑦𝑅𝑋) ∧ ∃!𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑦𝑅𝑥) → sup(∅, 𝐴, 𝑅) = 𝑋) | ||
| Theorem | supmax 9426* | The greatest element of a set is its supremum. Note that the converse is not true; the supremum might not be an element of the set considered. (Contributed by Jeff Hoffman, 17-Jun-2008.) (Proof shortened by OpenAI, 30-Mar-2020.) |
| ⊢ (𝜑 → 𝑅 Or 𝐴) & ⊢ (𝜑 → 𝐶 ∈ 𝐴) & ⊢ (𝜑 → 𝐶 ∈ 𝐵) & ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → ¬ 𝐶𝑅𝑦) ⇒ ⊢ (𝜑 → sup(𝐵, 𝐴, 𝑅) = 𝐶) | ||
| Theorem | fisup2g 9427* | A finite set satisfies the conditions to have a supremum. (Contributed by Mario Carneiro, 28-Apr-2015.) |
| ⊢ ((𝑅 Or 𝐴 ∧ (𝐵 ∈ Fin ∧ 𝐵 ≠ ∅ ∧ 𝐵 ⊆ 𝐴)) → ∃𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧))) | ||
| Theorem | fisupcl 9428 | A nonempty finite set contains its supremum. (Contributed by Jeff Madsen, 9-May-2011.) |
| ⊢ ((𝑅 Or 𝐴 ∧ (𝐵 ∈ Fin ∧ 𝐵 ≠ ∅ ∧ 𝐵 ⊆ 𝐴)) → sup(𝐵, 𝐴, 𝑅) ∈ 𝐵) | ||
| Theorem | supgtoreq 9429 | The supremum of a finite set is greater than or equal to all the elements of the set. (Contributed by AV, 1-Oct-2019.) |
| ⊢ (𝜑 → 𝑅 Or 𝐴) & ⊢ (𝜑 → 𝐵 ⊆ 𝐴) & ⊢ (𝜑 → 𝐵 ∈ Fin) & ⊢ (𝜑 → 𝐶 ∈ 𝐵) & ⊢ (𝜑 → 𝑆 = sup(𝐵, 𝐴, 𝑅)) ⇒ ⊢ (𝜑 → (𝐶𝑅𝑆 ∨ 𝐶 = 𝑆)) | ||
| Theorem | suppr 9430 | The supremum of a pair. (Contributed by NM, 17-Jun-2007.) (Proof shortened by Mario Carneiro, 24-Dec-2016.) |
| ⊢ ((𝑅 Or 𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴) → sup({𝐵, 𝐶}, 𝐴, 𝑅) = if(𝐶𝑅𝐵, 𝐵, 𝐶)) | ||
| Theorem | supsn 9431 | The supremum of a singleton. (Contributed by NM, 2-Oct-2007.) |
| ⊢ ((𝑅 Or 𝐴 ∧ 𝐵 ∈ 𝐴) → sup({𝐵}, 𝐴, 𝑅) = 𝐵) | ||
| Theorem | supisolem 9432* | Lemma for supiso 9434. (Contributed by Mario Carneiro, 24-Dec-2016.) |
| ⊢ (𝜑 → 𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵)) & ⊢ (𝜑 → 𝐶 ⊆ 𝐴) ⇒ ⊢ ((𝜑 ∧ 𝐷 ∈ 𝐴) → ((∀𝑦 ∈ 𝐶 ¬ 𝐷𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝐷 → ∃𝑧 ∈ 𝐶 𝑦𝑅𝑧)) ↔ (∀𝑤 ∈ (𝐹 “ 𝐶) ¬ (𝐹‘𝐷)𝑆𝑤 ∧ ∀𝑤 ∈ 𝐵 (𝑤𝑆(𝐹‘𝐷) → ∃𝑣 ∈ (𝐹 “ 𝐶)𝑤𝑆𝑣)))) | ||
| Theorem | supisoex 9433* | Lemma for supiso 9434. (Contributed by Mario Carneiro, 24-Dec-2016.) |
| ⊢ (𝜑 → 𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵)) & ⊢ (𝜑 → 𝐶 ⊆ 𝐴) & ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐶 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐶 𝑦𝑅𝑧))) ⇒ ⊢ (𝜑 → ∃𝑢 ∈ 𝐵 (∀𝑤 ∈ (𝐹 “ 𝐶) ¬ 𝑢𝑆𝑤 ∧ ∀𝑤 ∈ 𝐵 (𝑤𝑆𝑢 → ∃𝑣 ∈ (𝐹 “ 𝐶)𝑤𝑆𝑣))) | ||
| Theorem | supiso 9434* | Image of a supremum under an isomorphism. (Contributed by Mario Carneiro, 24-Dec-2016.) |
| ⊢ (𝜑 → 𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵)) & ⊢ (𝜑 → 𝐶 ⊆ 𝐴) & ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐶 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐶 𝑦𝑅𝑧))) & ⊢ (𝜑 → 𝑅 Or 𝐴) ⇒ ⊢ (𝜑 → sup((𝐹 “ 𝐶), 𝐵, 𝑆) = (𝐹‘sup(𝐶, 𝐴, 𝑅))) | ||
| Theorem | infeq1 9435 | Equality theorem for infimum. (Contributed by AV, 2-Sep-2020.) |
| ⊢ (𝐵 = 𝐶 → inf(𝐵, 𝐴, 𝑅) = inf(𝐶, 𝐴, 𝑅)) | ||
| Theorem | infeq1d 9436 | Equality deduction for infimum. (Contributed by AV, 2-Sep-2020.) |
| ⊢ (𝜑 → 𝐵 = 𝐶) ⇒ ⊢ (𝜑 → inf(𝐵, 𝐴, 𝑅) = inf(𝐶, 𝐴, 𝑅)) | ||
| Theorem | infeq1i 9437 | Equality inference for infimum. (Contributed by AV, 2-Sep-2020.) |
| ⊢ 𝐵 = 𝐶 ⇒ ⊢ inf(𝐵, 𝐴, 𝑅) = inf(𝐶, 𝐴, 𝑅) | ||
| Theorem | infeq2 9438 | Equality theorem for infimum. (Contributed by AV, 2-Sep-2020.) |
| ⊢ (𝐵 = 𝐶 → inf(𝐴, 𝐵, 𝑅) = inf(𝐴, 𝐶, 𝑅)) | ||
| Theorem | infeq3 9439 | Equality theorem for infimum. (Contributed by AV, 2-Sep-2020.) |
| ⊢ (𝑅 = 𝑆 → inf(𝐴, 𝐵, 𝑅) = inf(𝐴, 𝐵, 𝑆)) | ||
| Theorem | infeq123d 9440 | Equality deduction for infimum. (Contributed by AV, 2-Sep-2020.) |
| ⊢ (𝜑 → 𝐴 = 𝐷) & ⊢ (𝜑 → 𝐵 = 𝐸) & ⊢ (𝜑 → 𝐶 = 𝐹) ⇒ ⊢ (𝜑 → inf(𝐴, 𝐵, 𝐶) = inf(𝐷, 𝐸, 𝐹)) | ||
| Theorem | nfinf 9441 | Hypothesis builder for infimum. (Contributed by AV, 2-Sep-2020.) |
| ⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝐵 & ⊢ Ⅎ𝑥𝑅 ⇒ ⊢ Ⅎ𝑥inf(𝐴, 𝐵, 𝑅) | ||
| Theorem | infexd 9442 | An infimum is a set. (Contributed by AV, 2-Sep-2020.) |
| ⊢ (𝜑 → 𝑅 Or 𝐴) ⇒ ⊢ (𝜑 → inf(𝐵, 𝐴, 𝑅) ∈ V) | ||
| Theorem | eqinf 9443* | Sufficient condition for an element to be equal to the infimum. (Contributed by AV, 2-Sep-2020.) |
| ⊢ (𝜑 → 𝑅 Or 𝐴) ⇒ ⊢ (𝜑 → ((𝐶 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝐶 ∧ ∀𝑦 ∈ 𝐴 (𝐶𝑅𝑦 → ∃𝑧 ∈ 𝐵 𝑧𝑅𝑦)) → inf(𝐵, 𝐴, 𝑅) = 𝐶)) | ||
| Theorem | eqinfd 9444* | Sufficient condition for an element to be equal to the infimum. (Contributed by AV, 3-Sep-2020.) |
| ⊢ (𝜑 → 𝑅 Or 𝐴) & ⊢ (𝜑 → 𝐶 ∈ 𝐴) & ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → ¬ 𝑦𝑅𝐶) & ⊢ ((𝜑 ∧ (𝑦 ∈ 𝐴 ∧ 𝐶𝑅𝑦)) → ∃𝑧 ∈ 𝐵 𝑧𝑅𝑦) ⇒ ⊢ (𝜑 → inf(𝐵, 𝐴, 𝑅) = 𝐶) | ||
| Theorem | infval 9445* | Alternate expression for the infimum. (Contributed by AV, 2-Sep-2020.) |
| ⊢ (𝜑 → 𝑅 Or 𝐴) ⇒ ⊢ (𝜑 → inf(𝐵, 𝐴, 𝑅) = (℩𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → ∃𝑧 ∈ 𝐵 𝑧𝑅𝑦)))) | ||
| Theorem | infcllem 9446* | Lemma for infcl 9447, inflb 9448, infglb 9449, etc. (Contributed by AV, 3-Sep-2020.) |
| ⊢ (𝜑 → 𝑅 Or 𝐴) & ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → ∃𝑧 ∈ 𝐵 𝑧𝑅𝑦))) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 ¬ 𝑥◡𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦◡𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦◡𝑅𝑧))) | ||
| Theorem | infcl 9447* | An infimum belongs to its base class (closure law). See also inflb 9448 and infglb 9449. (Contributed by AV, 3-Sep-2020.) |
| ⊢ (𝜑 → 𝑅 Or 𝐴) & ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → ∃𝑧 ∈ 𝐵 𝑧𝑅𝑦))) ⇒ ⊢ (𝜑 → inf(𝐵, 𝐴, 𝑅) ∈ 𝐴) | ||
| Theorem | inflb 9448* | An infimum is a lower bound. See also infcl 9447 and infglb 9449. (Contributed by AV, 3-Sep-2020.) |
| ⊢ (𝜑 → 𝑅 Or 𝐴) & ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → ∃𝑧 ∈ 𝐵 𝑧𝑅𝑦))) ⇒ ⊢ (𝜑 → (𝐶 ∈ 𝐵 → ¬ 𝐶𝑅inf(𝐵, 𝐴, 𝑅))) | ||
| Theorem | infglb 9449* | An infimum is the greatest lower bound. See also infcl 9447 and inflb 9448. (Contributed by AV, 3-Sep-2020.) |
| ⊢ (𝜑 → 𝑅 Or 𝐴) & ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → ∃𝑧 ∈ 𝐵 𝑧𝑅𝑦))) ⇒ ⊢ (𝜑 → ((𝐶 ∈ 𝐴 ∧ inf(𝐵, 𝐴, 𝑅)𝑅𝐶) → ∃𝑧 ∈ 𝐵 𝑧𝑅𝐶)) | ||
| Theorem | infglbb 9450* | Bidirectional form of infglb 9449. (Contributed by AV, 3-Sep-2020.) |
| ⊢ (𝜑 → 𝑅 Or 𝐴) & ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → ∃𝑧 ∈ 𝐵 𝑧𝑅𝑦))) & ⊢ (𝜑 → 𝐵 ⊆ 𝐴) ⇒ ⊢ ((𝜑 ∧ 𝐶 ∈ 𝐴) → (inf(𝐵, 𝐴, 𝑅)𝑅𝐶 ↔ ∃𝑧 ∈ 𝐵 𝑧𝑅𝐶)) | ||
| Theorem | infnlb 9451* | A lower bound is not greater than the infimum. (Contributed by AV, 3-Sep-2020.) |
| ⊢ (𝜑 → 𝑅 Or 𝐴) & ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → ∃𝑧 ∈ 𝐵 𝑧𝑅𝑦))) ⇒ ⊢ (𝜑 → ((𝐶 ∈ 𝐴 ∧ ∀𝑧 ∈ 𝐵 ¬ 𝑧𝑅𝐶) → ¬ inf(𝐵, 𝐴, 𝑅)𝑅𝐶)) | ||
| Theorem | infssd 9452* | Inequality deduction for infimum of a subset. (Contributed by AV, 4-Oct-2020.) |
| ⊢ (𝜑 → 𝑅 Or 𝐴) & ⊢ (𝜑 → 𝐶 ⊆ 𝐵) & ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐶 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → ∃𝑧 ∈ 𝐶 𝑧𝑅𝑦))) & ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → ∃𝑧 ∈ 𝐵 𝑧𝑅𝑦))) ⇒ ⊢ (𝜑 → ¬ inf(𝐶, 𝐴, 𝑅)𝑅inf(𝐵, 𝐴, 𝑅)) | ||
| Theorem | infex 9453 | An infimum is a set. (Contributed by AV, 3-Sep-2020.) |
| ⊢ 𝑅 Or 𝐴 ⇒ ⊢ inf(𝐵, 𝐴, 𝑅) ∈ V | ||
| Theorem | infmin 9454* | The smallest element of a set is its infimum. Note that the converse is not true; the infimum might not be an element of the set considered. (Contributed by AV, 3-Sep-2020.) |
| ⊢ (𝜑 → 𝑅 Or 𝐴) & ⊢ (𝜑 → 𝐶 ∈ 𝐴) & ⊢ (𝜑 → 𝐶 ∈ 𝐵) & ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → ¬ 𝑦𝑅𝐶) ⇒ ⊢ (𝜑 → inf(𝐵, 𝐴, 𝑅) = 𝐶) | ||
| Theorem | infmo 9455* | Any class 𝐵 has at most one infimum in 𝐴 (where 𝑅 is interpreted as 'less than'). (Contributed by AV, 6-Oct-2020.) |
| ⊢ (𝜑 → 𝑅 Or 𝐴) ⇒ ⊢ (𝜑 → ∃*𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → ∃𝑧 ∈ 𝐵 𝑧𝑅𝑦))) | ||
| Theorem | infeu 9456* | An infimum is unique. (Contributed by AV, 6-Oct-2020.) |
| ⊢ (𝜑 → 𝑅 Or 𝐴) & ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → ∃𝑧 ∈ 𝐵 𝑧𝑅𝑦))) ⇒ ⊢ (𝜑 → ∃!𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → ∃𝑧 ∈ 𝐵 𝑧𝑅𝑦))) | ||
| Theorem | fimin2g 9457* | A finite set has a minimum under a total order. (Contributed by AV, 6-Oct-2020.) |
| ⊢ ((𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑦𝑅𝑥) | ||
| Theorem | fiming 9458* | A finite set has a minimum under a total order. (Contributed by AV, 6-Oct-2020.) |
| ⊢ ((𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≠ 𝑦 → 𝑥𝑅𝑦)) | ||
| Theorem | fiinfg 9459* | Lemma showing existence and closure of infimum of a finite set. (Contributed by AV, 6-Oct-2020.) |
| ⊢ ((𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐴 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → ∃𝑧 ∈ 𝐴 𝑧𝑅𝑦))) | ||
| Theorem | fiinf2g 9460* | A finite set satisfies the conditions to have an infimum. (Contributed by AV, 6-Oct-2020.) |
| ⊢ ((𝑅 Or 𝐴 ∧ (𝐵 ∈ Fin ∧ 𝐵 ≠ ∅ ∧ 𝐵 ⊆ 𝐴)) → ∃𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → ∃𝑧 ∈ 𝐵 𝑧𝑅𝑦))) | ||
| Theorem | fiinfcl 9461 | A nonempty finite set contains its infimum. (Contributed by AV, 3-Sep-2020.) |
| ⊢ ((𝑅 Or 𝐴 ∧ (𝐵 ∈ Fin ∧ 𝐵 ≠ ∅ ∧ 𝐵 ⊆ 𝐴)) → inf(𝐵, 𝐴, 𝑅) ∈ 𝐵) | ||
| Theorem | infltoreq 9462 | The infimum of a finite set is less than or equal to all the elements of the set. (Contributed by AV, 4-Sep-2020.) |
| ⊢ (𝜑 → 𝑅 Or 𝐴) & ⊢ (𝜑 → 𝐵 ⊆ 𝐴) & ⊢ (𝜑 → 𝐵 ∈ Fin) & ⊢ (𝜑 → 𝐶 ∈ 𝐵) & ⊢ (𝜑 → 𝑆 = inf(𝐵, 𝐴, 𝑅)) ⇒ ⊢ (𝜑 → (𝑆𝑅𝐶 ∨ 𝐶 = 𝑆)) | ||
| Theorem | infpr 9463 | The infimum of a pair. (Contributed by AV, 4-Sep-2020.) |
| ⊢ ((𝑅 Or 𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴) → inf({𝐵, 𝐶}, 𝐴, 𝑅) = if(𝐵𝑅𝐶, 𝐵, 𝐶)) | ||
| Theorem | infsupprpr 9464 | The infimum of a proper pair is less than the supremum of this pair. (Contributed by AV, 13-Mar-2023.) |
| ⊢ ((𝑅 Or 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ∧ 𝐵 ≠ 𝐶)) → inf({𝐵, 𝐶}, 𝐴, 𝑅)𝑅sup({𝐵, 𝐶}, 𝐴, 𝑅)) | ||
| Theorem | infsn 9465 | The infimum of a singleton. (Contributed by NM, 2-Oct-2007.) |
| ⊢ ((𝑅 Or 𝐴 ∧ 𝐵 ∈ 𝐴) → inf({𝐵}, 𝐴, 𝑅) = 𝐵) | ||
| Theorem | inf00 9466 | The infimum regarding an empty base set is always the empty set. (Contributed by AV, 4-Sep-2020.) |
| ⊢ inf(𝐵, ∅, 𝑅) = ∅ | ||
| Theorem | infempty 9467* | The infimum of an empty set under a base set which has a unique greatest element is the greatest element of the base set. (Contributed by AV, 4-Sep-2020.) |
| ⊢ ((𝑅 Or 𝐴 ∧ (𝑋 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑋𝑅𝑦) ∧ ∃!𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥𝑅𝑦) → inf(∅, 𝐴, 𝑅) = 𝑋) | ||
| Theorem | infiso 9468* | Image of an infimum under an isomorphism. (Contributed by AV, 4-Sep-2020.) |
| ⊢ (𝜑 → 𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵)) & ⊢ (𝜑 → 𝐶 ⊆ 𝐴) & ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐶 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → ∃𝑧 ∈ 𝐶 𝑧𝑅𝑦))) & ⊢ (𝜑 → 𝑅 Or 𝐴) ⇒ ⊢ (𝜑 → inf((𝐹 “ 𝐶), 𝐵, 𝑆) = (𝐹‘inf(𝐶, 𝐴, 𝑅))) | ||
| Syntax | coi 9469 | Extend class definition to include the canonical order isomorphism to an ordinal. |
| class OrdIso(𝑅, 𝐴) | ||
| Definition | df-oi 9470* | Define the canonical order isomorphism from the well-order 𝑅 on 𝐴 to an ordinal. (Contributed by Mario Carneiro, 23-May-2015.) |
| ⊢ OrdIso(𝑅, 𝐴) = if((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴), (recs((ℎ ∈ V ↦ (℩𝑣 ∈ {𝑤 ∈ 𝐴 ∣ ∀𝑗 ∈ ran ℎ 𝑗𝑅𝑤}∀𝑢 ∈ {𝑤 ∈ 𝐴 ∣ ∀𝑗 ∈ ran ℎ 𝑗𝑅𝑤} ¬ 𝑢𝑅𝑣))) ↾ {𝑥 ∈ On ∣ ∃𝑡 ∈ 𝐴 ∀𝑧 ∈ (recs((ℎ ∈ V ↦ (℩𝑣 ∈ {𝑤 ∈ 𝐴 ∣ ∀𝑗 ∈ ran ℎ 𝑗𝑅𝑤}∀𝑢 ∈ {𝑤 ∈ 𝐴 ∣ ∀𝑗 ∈ ran ℎ 𝑗𝑅𝑤} ¬ 𝑢𝑅𝑣))) “ 𝑥)𝑧𝑅𝑡}), ∅) | ||
| Theorem | dfoi 9471* | Rewrite df-oi 9470 with abbreviations. (Contributed by Mario Carneiro, 24-Jun-2015.) |
| ⊢ 𝐶 = {𝑤 ∈ 𝐴 ∣ ∀𝑗 ∈ ran ℎ 𝑗𝑅𝑤} & ⊢ 𝐺 = (ℎ ∈ V ↦ (℩𝑣 ∈ 𝐶 ∀𝑢 ∈ 𝐶 ¬ 𝑢𝑅𝑣)) & ⊢ 𝐹 = recs(𝐺) ⇒ ⊢ OrdIso(𝑅, 𝐴) = if((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴), (𝐹 ↾ {𝑥 ∈ On ∣ ∃𝑡 ∈ 𝐴 ∀𝑧 ∈ (𝐹 “ 𝑥)𝑧𝑅𝑡}), ∅) | ||
| Theorem | oieq1 9472 | Equality theorem for ordinal isomorphism. (Contributed by Mario Carneiro, 23-May-2015.) |
| ⊢ (𝑅 = 𝑆 → OrdIso(𝑅, 𝐴) = OrdIso(𝑆, 𝐴)) | ||
| Theorem | oieq2 9473 | Equality theorem for ordinal isomorphism. (Contributed by Mario Carneiro, 23-May-2015.) |
| ⊢ (𝐴 = 𝐵 → OrdIso(𝑅, 𝐴) = OrdIso(𝑅, 𝐵)) | ||
| Theorem | nfoi 9474 | Hypothesis builder for ordinal isomorphism. (Contributed by Mario Carneiro, 23-May-2015.) (Revised by Mario Carneiro, 15-Oct-2016.) |
| ⊢ Ⅎ𝑥𝑅 & ⊢ Ⅎ𝑥𝐴 ⇒ ⊢ Ⅎ𝑥OrdIso(𝑅, 𝐴) | ||
| Theorem | ordiso2 9475 | Generalize ordiso 9476 to proper classes. (Contributed by Mario Carneiro, 24-Jun-2015.) |
| ⊢ ((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) → 𝐴 = 𝐵) | ||
| Theorem | ordiso 9476* | Order-isomorphic ordinal numbers are equal. (Contributed by Jeff Hankins, 16-Oct-2009.) (Proof shortened by Mario Carneiro, 24-Jun-2015.) |
| ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 = 𝐵 ↔ ∃𝑓 𝑓 Isom E , E (𝐴, 𝐵))) | ||
| Theorem | ordtypecbv 9477* | Lemma for ordtype 9492. (Contributed by Mario Carneiro, 26-Jun-2015.) |
| ⊢ 𝐹 = recs(𝐺) & ⊢ 𝐶 = {𝑤 ∈ 𝐴 ∣ ∀𝑗 ∈ ran ℎ 𝑗𝑅𝑤} & ⊢ 𝐺 = (ℎ ∈ V ↦ (℩𝑣 ∈ 𝐶 ∀𝑢 ∈ 𝐶 ¬ 𝑢𝑅𝑣)) ⇒ ⊢ recs((𝑓 ∈ V ↦ (℩𝑠 ∈ {𝑦 ∈ 𝐴 ∣ ∀𝑖 ∈ ran 𝑓 𝑖𝑅𝑦}∀𝑟 ∈ {𝑦 ∈ 𝐴 ∣ ∀𝑖 ∈ ran 𝑓 𝑖𝑅𝑦} ¬ 𝑟𝑅𝑠))) = 𝐹 | ||
| Theorem | ordtypelem1 9478* | Lemma for ordtype 9492. (Contributed by Mario Carneiro, 24-Jun-2015.) |
| ⊢ 𝐹 = recs(𝐺) & ⊢ 𝐶 = {𝑤 ∈ 𝐴 ∣ ∀𝑗 ∈ ran ℎ 𝑗𝑅𝑤} & ⊢ 𝐺 = (ℎ ∈ V ↦ (℩𝑣 ∈ 𝐶 ∀𝑢 ∈ 𝐶 ¬ 𝑢𝑅𝑣)) & ⊢ 𝑇 = {𝑥 ∈ On ∣ ∃𝑡 ∈ 𝐴 ∀𝑧 ∈ (𝐹 “ 𝑥)𝑧𝑅𝑡} & ⊢ 𝑂 = OrdIso(𝑅, 𝐴) & ⊢ (𝜑 → 𝑅 We 𝐴) & ⊢ (𝜑 → 𝑅 Se 𝐴) ⇒ ⊢ (𝜑 → 𝑂 = (𝐹 ↾ 𝑇)) | ||
| Theorem | ordtypelem2 9479* | Lemma for ordtype 9492. (Contributed by Mario Carneiro, 24-Jun-2015.) |
| ⊢ 𝐹 = recs(𝐺) & ⊢ 𝐶 = {𝑤 ∈ 𝐴 ∣ ∀𝑗 ∈ ran ℎ 𝑗𝑅𝑤} & ⊢ 𝐺 = (ℎ ∈ V ↦ (℩𝑣 ∈ 𝐶 ∀𝑢 ∈ 𝐶 ¬ 𝑢𝑅𝑣)) & ⊢ 𝑇 = {𝑥 ∈ On ∣ ∃𝑡 ∈ 𝐴 ∀𝑧 ∈ (𝐹 “ 𝑥)𝑧𝑅𝑡} & ⊢ 𝑂 = OrdIso(𝑅, 𝐴) & ⊢ (𝜑 → 𝑅 We 𝐴) & ⊢ (𝜑 → 𝑅 Se 𝐴) ⇒ ⊢ (𝜑 → Ord 𝑇) | ||
| Theorem | ordtypelem3 9480* | Lemma for ordtype 9492. (Contributed by Mario Carneiro, 24-Jun-2015.) |
| ⊢ 𝐹 = recs(𝐺) & ⊢ 𝐶 = {𝑤 ∈ 𝐴 ∣ ∀𝑗 ∈ ran ℎ 𝑗𝑅𝑤} & ⊢ 𝐺 = (ℎ ∈ V ↦ (℩𝑣 ∈ 𝐶 ∀𝑢 ∈ 𝐶 ¬ 𝑢𝑅𝑣)) & ⊢ 𝑇 = {𝑥 ∈ On ∣ ∃𝑡 ∈ 𝐴 ∀𝑧 ∈ (𝐹 “ 𝑥)𝑧𝑅𝑡} & ⊢ 𝑂 = OrdIso(𝑅, 𝐴) & ⊢ (𝜑 → 𝑅 We 𝐴) & ⊢ (𝜑 → 𝑅 Se 𝐴) ⇒ ⊢ ((𝜑 ∧ 𝑀 ∈ (𝑇 ∩ dom 𝐹)) → (𝐹‘𝑀) ∈ {𝑣 ∈ {𝑤 ∈ 𝐴 ∣ ∀𝑗 ∈ (𝐹 “ 𝑀)𝑗𝑅𝑤} ∣ ∀𝑢 ∈ {𝑤 ∈ 𝐴 ∣ ∀𝑗 ∈ (𝐹 “ 𝑀)𝑗𝑅𝑤} ¬ 𝑢𝑅𝑣}) | ||
| Theorem | ordtypelem4 9481* | Lemma for ordtype 9492. (Contributed by Mario Carneiro, 24-Jun-2015.) |
| ⊢ 𝐹 = recs(𝐺) & ⊢ 𝐶 = {𝑤 ∈ 𝐴 ∣ ∀𝑗 ∈ ran ℎ 𝑗𝑅𝑤} & ⊢ 𝐺 = (ℎ ∈ V ↦ (℩𝑣 ∈ 𝐶 ∀𝑢 ∈ 𝐶 ¬ 𝑢𝑅𝑣)) & ⊢ 𝑇 = {𝑥 ∈ On ∣ ∃𝑡 ∈ 𝐴 ∀𝑧 ∈ (𝐹 “ 𝑥)𝑧𝑅𝑡} & ⊢ 𝑂 = OrdIso(𝑅, 𝐴) & ⊢ (𝜑 → 𝑅 We 𝐴) & ⊢ (𝜑 → 𝑅 Se 𝐴) ⇒ ⊢ (𝜑 → 𝑂:(𝑇 ∩ dom 𝐹)⟶𝐴) | ||
| Theorem | ordtypelem5 9482* | Lemma for ordtype 9492. (Contributed by Mario Carneiro, 25-Jun-2015.) |
| ⊢ 𝐹 = recs(𝐺) & ⊢ 𝐶 = {𝑤 ∈ 𝐴 ∣ ∀𝑗 ∈ ran ℎ 𝑗𝑅𝑤} & ⊢ 𝐺 = (ℎ ∈ V ↦ (℩𝑣 ∈ 𝐶 ∀𝑢 ∈ 𝐶 ¬ 𝑢𝑅𝑣)) & ⊢ 𝑇 = {𝑥 ∈ On ∣ ∃𝑡 ∈ 𝐴 ∀𝑧 ∈ (𝐹 “ 𝑥)𝑧𝑅𝑡} & ⊢ 𝑂 = OrdIso(𝑅, 𝐴) & ⊢ (𝜑 → 𝑅 We 𝐴) & ⊢ (𝜑 → 𝑅 Se 𝐴) ⇒ ⊢ (𝜑 → (Ord dom 𝑂 ∧ 𝑂:dom 𝑂⟶𝐴)) | ||
| Theorem | ordtypelem6 9483* | Lemma for ordtype 9492. (Contributed by Mario Carneiro, 24-Jun-2015.) |
| ⊢ 𝐹 = recs(𝐺) & ⊢ 𝐶 = {𝑤 ∈ 𝐴 ∣ ∀𝑗 ∈ ran ℎ 𝑗𝑅𝑤} & ⊢ 𝐺 = (ℎ ∈ V ↦ (℩𝑣 ∈ 𝐶 ∀𝑢 ∈ 𝐶 ¬ 𝑢𝑅𝑣)) & ⊢ 𝑇 = {𝑥 ∈ On ∣ ∃𝑡 ∈ 𝐴 ∀𝑧 ∈ (𝐹 “ 𝑥)𝑧𝑅𝑡} & ⊢ 𝑂 = OrdIso(𝑅, 𝐴) & ⊢ (𝜑 → 𝑅 We 𝐴) & ⊢ (𝜑 → 𝑅 Se 𝐴) ⇒ ⊢ ((𝜑 ∧ 𝑀 ∈ dom 𝑂) → (𝑁 ∈ 𝑀 → (𝑂‘𝑁)𝑅(𝑂‘𝑀))) | ||
| Theorem | ordtypelem7 9484* | Lemma for ordtype 9492. ran 𝑂 is an initial segment of 𝐴 under the well-order 𝑅. (Contributed by Mario Carneiro, 25-Jun-2015.) |
| ⊢ 𝐹 = recs(𝐺) & ⊢ 𝐶 = {𝑤 ∈ 𝐴 ∣ ∀𝑗 ∈ ran ℎ 𝑗𝑅𝑤} & ⊢ 𝐺 = (ℎ ∈ V ↦ (℩𝑣 ∈ 𝐶 ∀𝑢 ∈ 𝐶 ¬ 𝑢𝑅𝑣)) & ⊢ 𝑇 = {𝑥 ∈ On ∣ ∃𝑡 ∈ 𝐴 ∀𝑧 ∈ (𝐹 “ 𝑥)𝑧𝑅𝑡} & ⊢ 𝑂 = OrdIso(𝑅, 𝐴) & ⊢ (𝜑 → 𝑅 We 𝐴) & ⊢ (𝜑 → 𝑅 Se 𝐴) ⇒ ⊢ (((𝜑 ∧ 𝑁 ∈ 𝐴) ∧ 𝑀 ∈ dom 𝑂) → ((𝑂‘𝑀)𝑅𝑁 ∨ 𝑁 ∈ ran 𝑂)) | ||
| Theorem | ordtypelem8 9485* | Lemma for ordtype 9492. (Contributed by Mario Carneiro, 25-Jun-2015.) |
| ⊢ 𝐹 = recs(𝐺) & ⊢ 𝐶 = {𝑤 ∈ 𝐴 ∣ ∀𝑗 ∈ ran ℎ 𝑗𝑅𝑤} & ⊢ 𝐺 = (ℎ ∈ V ↦ (℩𝑣 ∈ 𝐶 ∀𝑢 ∈ 𝐶 ¬ 𝑢𝑅𝑣)) & ⊢ 𝑇 = {𝑥 ∈ On ∣ ∃𝑡 ∈ 𝐴 ∀𝑧 ∈ (𝐹 “ 𝑥)𝑧𝑅𝑡} & ⊢ 𝑂 = OrdIso(𝑅, 𝐴) & ⊢ (𝜑 → 𝑅 We 𝐴) & ⊢ (𝜑 → 𝑅 Se 𝐴) ⇒ ⊢ (𝜑 → 𝑂 Isom E , 𝑅 (dom 𝑂, ran 𝑂)) | ||
| Theorem | ordtypelem9 9486* | Lemma for ordtype 9492. Either the function OrdIso is an isomorphism onto all of 𝐴, or OrdIso is not a set, which by oif 9490 implies that either ran 𝑂 ⊆ 𝐴 is a proper class or dom 𝑂 = On. (Contributed by Mario Carneiro, 25-Jun-2015.) (Revised by AV, 28-Jul-2024.) |
| ⊢ 𝐹 = recs(𝐺) & ⊢ 𝐶 = {𝑤 ∈ 𝐴 ∣ ∀𝑗 ∈ ran ℎ 𝑗𝑅𝑤} & ⊢ 𝐺 = (ℎ ∈ V ↦ (℩𝑣 ∈ 𝐶 ∀𝑢 ∈ 𝐶 ¬ 𝑢𝑅𝑣)) & ⊢ 𝑇 = {𝑥 ∈ On ∣ ∃𝑡 ∈ 𝐴 ∀𝑧 ∈ (𝐹 “ 𝑥)𝑧𝑅𝑡} & ⊢ 𝑂 = OrdIso(𝑅, 𝐴) & ⊢ (𝜑 → 𝑅 We 𝐴) & ⊢ (𝜑 → 𝑅 Se 𝐴) & ⊢ (𝜑 → 𝑂 ∈ 𝑉) ⇒ ⊢ (𝜑 → 𝑂 Isom E , 𝑅 (dom 𝑂, 𝐴)) | ||
| Theorem | ordtypelem10 9487* | Lemma for ordtype 9492. Using ax-rep 5237, exclude the possibility that 𝑂 is a proper class and does not enumerate all of 𝐴. (Contributed by Mario Carneiro, 25-Jun-2015.) |
| ⊢ 𝐹 = recs(𝐺) & ⊢ 𝐶 = {𝑤 ∈ 𝐴 ∣ ∀𝑗 ∈ ran ℎ 𝑗𝑅𝑤} & ⊢ 𝐺 = (ℎ ∈ V ↦ (℩𝑣 ∈ 𝐶 ∀𝑢 ∈ 𝐶 ¬ 𝑢𝑅𝑣)) & ⊢ 𝑇 = {𝑥 ∈ On ∣ ∃𝑡 ∈ 𝐴 ∀𝑧 ∈ (𝐹 “ 𝑥)𝑧𝑅𝑡} & ⊢ 𝑂 = OrdIso(𝑅, 𝐴) & ⊢ (𝜑 → 𝑅 We 𝐴) & ⊢ (𝜑 → 𝑅 Se 𝐴) ⇒ ⊢ (𝜑 → 𝑂 Isom E , 𝑅 (dom 𝑂, 𝐴)) | ||
| Theorem | oi0 9488 | Definition of the ordinal isomorphism when its arguments are not meaningful. (Contributed by Mario Carneiro, 25-Jun-2015.) |
| ⊢ 𝐹 = OrdIso(𝑅, 𝐴) ⇒ ⊢ (¬ (𝑅 We 𝐴 ∧ 𝑅 Se 𝐴) → 𝐹 = ∅) | ||
| Theorem | oicl 9489 | The order type of the well-order 𝑅 on 𝐴 is an ordinal. (Contributed by Mario Carneiro, 23-May-2015.) (Revised by Mario Carneiro, 25-Jun-2015.) |
| ⊢ 𝐹 = OrdIso(𝑅, 𝐴) ⇒ ⊢ Ord dom 𝐹 | ||
| Theorem | oif 9490 | The order isomorphism of the well-order 𝑅 on 𝐴 is a function. (Contributed by Mario Carneiro, 23-May-2015.) |
| ⊢ 𝐹 = OrdIso(𝑅, 𝐴) ⇒ ⊢ 𝐹:dom 𝐹⟶𝐴 | ||
| Theorem | oiiso2 9491 | The order isomorphism of the well-order 𝑅 on 𝐴 is an isomorphism onto ran 𝑂 (which is a subset of 𝐴 by oif 9490). (Contributed by Mario Carneiro, 25-Jun-2015.) |
| ⊢ 𝐹 = OrdIso(𝑅, 𝐴) ⇒ ⊢ ((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴) → 𝐹 Isom E , 𝑅 (dom 𝐹, ran 𝐹)) | ||
| Theorem | ordtype 9492 | For any set-like well-ordered class, there is an isomorphic ordinal number called its order type. (Contributed by Jeff Hankins, 17-Oct-2009.) (Revised by Mario Carneiro, 25-Jun-2015.) |
| ⊢ 𝐹 = OrdIso(𝑅, 𝐴) ⇒ ⊢ ((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴) → 𝐹 Isom E , 𝑅 (dom 𝐹, 𝐴)) | ||
| Theorem | oiiniseg 9493 | ran 𝐹 is an initial segment of 𝐴 under the well-order 𝑅. (Contributed by Mario Carneiro, 26-Jun-2015.) |
| ⊢ 𝐹 = OrdIso(𝑅, 𝐴) ⇒ ⊢ (((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴) ∧ (𝑁 ∈ 𝐴 ∧ 𝑀 ∈ dom 𝐹)) → ((𝐹‘𝑀)𝑅𝑁 ∨ 𝑁 ∈ ran 𝐹)) | ||
| Theorem | ordtype2 9494 | For any set-like well-ordered class, if the order isomorphism exists (is a set), then it maps some ordinal onto 𝐴 isomorphically. Otherwise, 𝐹 is a proper class, which implies that either ran 𝐹 ⊆ 𝐴 is a proper class or dom 𝐹 = On. This weak version of ordtype 9492 does not require the Axiom of Replacement. (Contributed by Mario Carneiro, 25-Jun-2015.) |
| ⊢ 𝐹 = OrdIso(𝑅, 𝐴) ⇒ ⊢ ((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ 𝐹 ∈ V) → 𝐹 Isom E , 𝑅 (dom 𝐹, 𝐴)) | ||
| Theorem | oiexg 9495 | The order isomorphism on a set is a set. (Contributed by Mario Carneiro, 25-Jun-2015.) |
| ⊢ 𝐹 = OrdIso(𝑅, 𝐴) ⇒ ⊢ (𝐴 ∈ 𝑉 → 𝐹 ∈ V) | ||
| Theorem | oion 9496 | The order type of the well-order 𝑅 on 𝐴 is an ordinal. (Contributed by Stefan O'Rear, 11-Feb-2015.) (Revised by Mario Carneiro, 23-May-2015.) |
| ⊢ 𝐹 = OrdIso(𝑅, 𝐴) ⇒ ⊢ (𝐴 ∈ 𝑉 → dom 𝐹 ∈ On) | ||
| Theorem | oiiso 9497 | The order isomorphism of the well-order 𝑅 on 𝐴 is an isomorphism. (Contributed by Mario Carneiro, 23-May-2015.) |
| ⊢ 𝐹 = OrdIso(𝑅, 𝐴) ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑅 We 𝐴) → 𝐹 Isom E , 𝑅 (dom 𝐹, 𝐴)) | ||
| Theorem | oien 9498 | The order type of a well-ordered set is equinumerous to the set. (Contributed by Mario Carneiro, 23-May-2015.) |
| ⊢ 𝐹 = OrdIso(𝑅, 𝐴) ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑅 We 𝐴) → dom 𝐹 ≈ 𝐴) | ||
| Theorem | oieu 9499 | Uniqueness of the unique ordinal isomorphism. (Contributed by Mario Carneiro, 23-May-2015.) (Revised by Mario Carneiro, 25-Jun-2015.) |
| ⊢ 𝐹 = OrdIso(𝑅, 𝐴) ⇒ ⊢ ((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴) → ((Ord 𝐵 ∧ 𝐺 Isom E , 𝑅 (𝐵, 𝐴)) ↔ (𝐵 = dom 𝐹 ∧ 𝐺 = 𝐹))) | ||
| Theorem | oismo 9500 | When 𝐴 is a subclass of On, 𝐹 is a strictly monotone ordinal functions, and it is also complete (it is an isomorphism onto all of 𝐴). The proof avoids ax-rep 5237 (the second statement is trivial under ax-rep 5237). (Contributed by Mario Carneiro, 26-Jun-2015.) |
| ⊢ 𝐹 = OrdIso( E , 𝐴) ⇒ ⊢ (𝐴 ⊆ On → (Smo 𝐹 ∧ ran 𝐹 = 𝐴)) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |