![]() |
Metamath
Proof Explorer Theorem List (p. 95 of 489) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-30950) |
![]() (30951-32473) |
![]() (32474-48899) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | rneqdmfinf1o 9401 | Any function from a finite set onto the same set must be a bijection. (Contributed by AV, 5-Jul-2021.) |
⊢ ((𝐴 ∈ Fin ∧ 𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐴) → 𝐹:𝐴–1-1-onto→𝐴) | ||
Theorem | fidomdm 9402 | Any finite set dominates its domain. (Contributed by Mario Carneiro, 22-Sep-2013.) (Revised by Mario Carneiro, 16-Nov-2014.) |
⊢ (𝐹 ∈ Fin → dom 𝐹 ≼ 𝐹) | ||
Theorem | dmfi 9403 | The domain of a finite set is finite. (Contributed by Mario Carneiro, 24-Sep-2013.) |
⊢ (𝐴 ∈ Fin → dom 𝐴 ∈ Fin) | ||
Theorem | fundmfibi 9404 | A function is finite if and only if its domain is finite. (Contributed by AV, 10-Jan-2020.) |
⊢ (Fun 𝐹 → (𝐹 ∈ Fin ↔ dom 𝐹 ∈ Fin)) | ||
Theorem | resfnfinfin 9405 | The restriction of a function to a finite set is finite. (Contributed by Alexander van der Vekens, 3-Feb-2018.) |
⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ Fin) → (𝐹 ↾ 𝐵) ∈ Fin) | ||
Theorem | residfi 9406 | A restricted identity function is finite iff the restricting class is finite. (Contributed by AV, 10-Jan-2020.) |
⊢ (( I ↾ 𝐴) ∈ Fin ↔ 𝐴 ∈ Fin) | ||
Theorem | cnvfiALT 9407 | Shorter proof of cnvfi 9243 using ax-pow 5383. (Contributed by Mario Carneiro, 28-Dec-2014.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝐴 ∈ Fin → ◡𝐴 ∈ Fin) | ||
Theorem | rnfi 9408 | The range of a finite set is finite. (Contributed by Mario Carneiro, 28-Dec-2014.) |
⊢ (𝐴 ∈ Fin → ran 𝐴 ∈ Fin) | ||
Theorem | f1dmvrnfibi 9409 | A one-to-one function whose domain is a set is finite if and only if its range is finite. See also f1vrnfibi 9410. (Contributed by AV, 10-Jan-2020.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴–1-1→𝐵) → (𝐹 ∈ Fin ↔ ran 𝐹 ∈ Fin)) | ||
Theorem | f1vrnfibi 9410 | A one-to-one function which is a set is finite if and only if its range is finite. See also f1dmvrnfibi 9409. (Contributed by AV, 10-Jan-2020.) |
⊢ ((𝐹 ∈ 𝑉 ∧ 𝐹:𝐴–1-1→𝐵) → (𝐹 ∈ Fin ↔ ran 𝐹 ∈ Fin)) | ||
Theorem | iunfi 9411* | The finite union of finite sets is finite. Exercise 13 of [Enderton] p. 144. This is the indexed union version of unifi 9412. Note that 𝐵 depends on 𝑥, i.e. can be thought of as 𝐵(𝑥). (Contributed by NM, 23-Mar-2006.) (Proof shortened by Mario Carneiro, 31-Aug-2015.) |
⊢ ((𝐴 ∈ Fin ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ Fin) → ∪ 𝑥 ∈ 𝐴 𝐵 ∈ Fin) | ||
Theorem | unifi 9412 | The finite union of finite sets is finite. Exercise 13 of [Enderton] p. 144. (Contributed by NM, 22-Aug-2008.) (Revised by Mario Carneiro, 31-Aug-2015.) |
⊢ ((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) → ∪ 𝐴 ∈ Fin) | ||
Theorem | unifi2 9413* | The finite union of finite sets is finite. Exercise 13 of [Enderton] p. 144. This version of unifi 9412 is useful only if we assume the Axiom of Infinity (see comments in fin2inf 9370). (Contributed by NM, 11-Mar-2006.) |
⊢ ((𝐴 ≺ ω ∧ ∀𝑥 ∈ 𝐴 𝑥 ≺ ω) → ∪ 𝐴 ≺ ω) | ||
Theorem | infssuni 9414* | If an infinite set 𝐴 is included in the underlying set of a finite cover 𝐵, then there exists a set of the cover that contains an infinite number of element of 𝐴. (Contributed by FL, 2-Aug-2009.) |
⊢ ((¬ 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ 𝐴 ⊆ ∪ 𝐵) → ∃𝑥 ∈ 𝐵 ¬ (𝐴 ∩ 𝑥) ∈ Fin) | ||
Theorem | unirnffid 9415 | The union of the range of a function from a finite set into the class of finite sets is finite. Deduction form. (Contributed by David Moews, 1-May-2017.) |
⊢ (𝜑 → 𝐹:𝑇⟶Fin) & ⊢ (𝜑 → 𝑇 ∈ Fin) ⇒ ⊢ (𝜑 → ∪ ran 𝐹 ∈ Fin) | ||
Theorem | pwfilemOLD 9416* | Obsolete version of pwfilem 9384 as of 7-Sep-2024. (Contributed by NM, 26-Mar-2007.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ 𝐹 = (𝑐 ∈ 𝒫 𝑏 ↦ (𝑐 ∪ {𝑥})) ⇒ ⊢ (𝒫 𝑏 ∈ Fin → 𝒫 (𝑏 ∪ {𝑥}) ∈ Fin) | ||
Theorem | pwfiOLD 9417 | Obsolete version of pwfi 9385 as of 7-Sep-2024. (Contributed by NM, 26-Mar-2007.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝐴 ∈ Fin ↔ 𝒫 𝐴 ∈ Fin) | ||
Theorem | mapfi 9418 | Set exponentiation of finite sets is finite. (Contributed by Jeff Madsen, 19-Jun-2011.) |
⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (𝐴 ↑m 𝐵) ∈ Fin) | ||
Theorem | ixpfi 9419* | A Cartesian product of finitely many finite sets is finite. (Contributed by Jeff Madsen, 19-Jun-2011.) |
⊢ ((𝐴 ∈ Fin ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ Fin) → X𝑥 ∈ 𝐴 𝐵 ∈ Fin) | ||
Theorem | ixpfi2 9420* | A Cartesian product of finite sets such that all but finitely many are singletons is finite. (Note that 𝐵(𝑥) and 𝐷(𝑥) are both possibly dependent on 𝑥.) (Contributed by Mario Carneiro, 25-Jan-2015.) |
⊢ (𝜑 → 𝐶 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ 𝐶)) → 𝐵 ⊆ {𝐷}) ⇒ ⊢ (𝜑 → X𝑥 ∈ 𝐴 𝐵 ∈ Fin) | ||
Theorem | mptfi 9421* | A finite mapping set is finite. (Contributed by Mario Carneiro, 31-Aug-2015.) |
⊢ (𝐴 ∈ Fin → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ Fin) | ||
Theorem | abrexfi 9422* | An image set from a finite set is finite. (Contributed by Mario Carneiro, 13-Feb-2014.) |
⊢ (𝐴 ∈ Fin → {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} ∈ Fin) | ||
Theorem | cnvimamptfin 9423* | A preimage of a mapping with a finite domain under any class is finite. In contrast to fisuppfi 9441, the range of the mapping needs not to be known. (Contributed by AV, 21-Dec-2018.) |
⊢ (𝜑 → 𝑁 ∈ Fin) ⇒ ⊢ (𝜑 → (◡(𝑝 ∈ 𝑁 ↦ 𝑋) “ 𝑌) ∈ Fin) | ||
Theorem | elfpw 9424 | Membership in a class of finite subsets. (Contributed by Stefan O'Rear, 4-Apr-2015.) (Revised by Mario Carneiro, 22-Aug-2015.) |
⊢ (𝐴 ∈ (𝒫 𝐵 ∩ Fin) ↔ (𝐴 ⊆ 𝐵 ∧ 𝐴 ∈ Fin)) | ||
Theorem | unifpw 9425 | A set is the union of its finite subsets. (Contributed by Stefan O'Rear, 2-Apr-2015.) |
⊢ ∪ (𝒫 𝐴 ∩ Fin) = 𝐴 | ||
Theorem | f1opwfi 9426* | A one-to-one mapping induces a one-to-one mapping on finite subsets. (Contributed by Mario Carneiro, 25-Jan-2015.) |
⊢ (𝐹:𝐴–1-1-onto→𝐵 → (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐹 “ 𝑏)):(𝒫 𝐴 ∩ Fin)–1-1-onto→(𝒫 𝐵 ∩ Fin)) | ||
Theorem | fissuni 9427* | A finite subset of a union is covered by finitely many elements. (Contributed by Stefan O'Rear, 2-Apr-2015.) |
⊢ ((𝐴 ⊆ ∪ 𝐵 ∧ 𝐴 ∈ Fin) → ∃𝑐 ∈ (𝒫 𝐵 ∩ Fin)𝐴 ⊆ ∪ 𝑐) | ||
Theorem | fipreima 9428* | Given a finite subset 𝐴 of the range of a function, there exists a finite subset of the domain whose image is 𝐴. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Stefan O'Rear, 22-Feb-2015.) |
⊢ ((𝐹 Fn 𝐵 ∧ 𝐴 ⊆ ran 𝐹 ∧ 𝐴 ∈ Fin) → ∃𝑐 ∈ (𝒫 𝐵 ∩ Fin)(𝐹 “ 𝑐) = 𝐴) | ||
Theorem | finsschain 9429* | A finite subset of the union of a superset chain is a subset of some element of the chain. A useful preliminary result for alexsub 24074 and others. (Contributed by Jeff Hankins, 25-Jan-2010.) (Proof shortened by Mario Carneiro, 11-Feb-2015.) (Revised by Mario Carneiro, 18-May-2015.) |
⊢ (((𝐴 ≠ ∅ ∧ [⊊] Or 𝐴) ∧ (𝐵 ∈ Fin ∧ 𝐵 ⊆ ∪ 𝐴)) → ∃𝑧 ∈ 𝐴 𝐵 ⊆ 𝑧) | ||
Theorem | indexfi 9430* | If for every element of a finite indexing set 𝐴 there exists a corresponding element of another set 𝐵, then there exists a finite subset of 𝐵 consisting only of those elements which are indexed by 𝐴. Proven without the Axiom of Choice, unlike indexdom 37694. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 12-Sep-2015.) |
⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ 𝑀 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑) → ∃𝑐 ∈ Fin (𝑐 ⊆ 𝐵 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝑐 𝜑 ∧ ∀𝑦 ∈ 𝑐 ∃𝑥 ∈ 𝐴 𝜑)) | ||
Syntax | cfsupp 9431 | Extend class definition to include the predicate to be a finitely supported function. |
class finSupp | ||
Definition | df-fsupp 9432* | Define the property of a function to be finitely supported (in relation to a given zero). (Contributed by AV, 23-May-2019.) |
⊢ finSupp = {〈𝑟, 𝑧〉 ∣ (Fun 𝑟 ∧ (𝑟 supp 𝑧) ∈ Fin)} | ||
Theorem | relfsupp 9433 | The property of a function to be finitely supported is a relation. (Contributed by AV, 7-Jun-2019.) |
⊢ Rel finSupp | ||
Theorem | relprcnfsupp 9434 | A proper class is never finitely supported. (Contributed by AV, 7-Jun-2019.) |
⊢ (¬ 𝐴 ∈ V → ¬ 𝐴 finSupp 𝑍) | ||
Theorem | isfsupp 9435 | The property of a class to be a finitely supported function (in relation to a given zero). (Contributed by AV, 23-May-2019.) |
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (𝑅 finSupp 𝑍 ↔ (Fun 𝑅 ∧ (𝑅 supp 𝑍) ∈ Fin))) | ||
Theorem | isfsuppd 9436 | Deduction form of isfsupp 9435. (Contributed by SN, 29-Jul-2024.) |
⊢ (𝜑 → 𝑅 ∈ 𝑉) & ⊢ (𝜑 → 𝑍 ∈ 𝑊) & ⊢ (𝜑 → Fun 𝑅) & ⊢ (𝜑 → (𝑅 supp 𝑍) ∈ Fin) ⇒ ⊢ (𝜑 → 𝑅 finSupp 𝑍) | ||
Theorem | funisfsupp 9437 | The property of a function to be finitely supported (in relation to a given zero). (Contributed by AV, 23-May-2019.) |
⊢ ((Fun 𝑅 ∧ 𝑅 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (𝑅 finSupp 𝑍 ↔ (𝑅 supp 𝑍) ∈ Fin)) | ||
Theorem | fsuppimp 9438 | Implications of a class being a finitely supported function (in relation to a given zero). (Contributed by AV, 26-May-2019.) |
⊢ (𝑅 finSupp 𝑍 → (Fun 𝑅 ∧ (𝑅 supp 𝑍) ∈ Fin)) | ||
Theorem | fsuppimpd 9439 | A finitely supported function is a function with a finite support. (Contributed by AV, 6-Jun-2019.) |
⊢ (𝜑 → 𝐹 finSupp 𝑍) ⇒ ⊢ (𝜑 → (𝐹 supp 𝑍) ∈ Fin) | ||
Theorem | fsuppfund 9440 | A finitely supported function is a function. (Contributed by SN, 8-Mar-2025.) |
⊢ (𝜑 → 𝐹 finSupp 𝑍) ⇒ ⊢ (𝜑 → Fun 𝐹) | ||
Theorem | fisuppfi 9441 | A function on a finite set is finitely supported. (Contributed by Mario Carneiro, 20-Jun-2015.) |
⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) ⇒ ⊢ (𝜑 → (◡𝐹 “ 𝐶) ∈ Fin) | ||
Theorem | fidmfisupp 9442 | A function with a finite domain is finitely supported. (Contributed by Glauco Siliprandi, 24-Dec-2020.) |
⊢ (𝜑 → 𝐹:𝐷⟶𝑅) & ⊢ (𝜑 → 𝐷 ∈ Fin) & ⊢ (𝜑 → 𝑍 ∈ 𝑉) ⇒ ⊢ (𝜑 → 𝐹 finSupp 𝑍) | ||
Theorem | fdmfisuppfi 9443 | The support of a function with a finite domain is always finite. (Contributed by AV, 27-Apr-2019.) |
⊢ (𝜑 → 𝐹:𝐷⟶𝑅) & ⊢ (𝜑 → 𝐷 ∈ Fin) & ⊢ (𝜑 → 𝑍 ∈ 𝑉) ⇒ ⊢ (𝜑 → (𝐹 supp 𝑍) ∈ Fin) | ||
Theorem | fdmfifsupp 9444 | A function with a finite domain is always finitely supported. (Contributed by AV, 25-May-2019.) |
⊢ (𝜑 → 𝐹:𝐷⟶𝑅) & ⊢ (𝜑 → 𝐷 ∈ Fin) & ⊢ (𝜑 → 𝑍 ∈ 𝑉) ⇒ ⊢ (𝜑 → 𝐹 finSupp 𝑍) | ||
Theorem | fsuppmptdm 9445* | A mapping with a finite domain is finitely supported. (Contributed by AV, 7-Jun-2019.) |
⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝑌) & ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑌 ∈ 𝑉) & ⊢ (𝜑 → 𝑍 ∈ 𝑊) ⇒ ⊢ (𝜑 → 𝐹 finSupp 𝑍) | ||
Theorem | fndmfisuppfi 9446 | The support of a function with a finite domain is always finite. (Contributed by AV, 25-May-2019.) |
⊢ (𝜑 → 𝐹 Fn 𝐷) & ⊢ (𝜑 → 𝐷 ∈ Fin) & ⊢ (𝜑 → 𝑍 ∈ 𝑉) ⇒ ⊢ (𝜑 → (𝐹 supp 𝑍) ∈ Fin) | ||
Theorem | fndmfifsupp 9447 | A function with a finite domain is always finitely supported. (Contributed by AV, 25-May-2019.) |
⊢ (𝜑 → 𝐹 Fn 𝐷) & ⊢ (𝜑 → 𝐷 ∈ Fin) & ⊢ (𝜑 → 𝑍 ∈ 𝑉) ⇒ ⊢ (𝜑 → 𝐹 finSupp 𝑍) | ||
Theorem | suppeqfsuppbi 9448 | If two functions have the same support, one function is finitely supported iff the other one is finitely supported. (Contributed by AV, 30-Jun-2019.) |
⊢ (((𝐹 ∈ 𝑈 ∧ Fun 𝐹) ∧ (𝐺 ∈ 𝑉 ∧ Fun 𝐺)) → ((𝐹 supp 𝑍) = (𝐺 supp 𝑍) → (𝐹 finSupp 𝑍 ↔ 𝐺 finSupp 𝑍))) | ||
Theorem | suppssfifsupp 9449 | If the support of a function is a subset of a finite set, the function is finitely supported. (Contributed by AV, 15-Jul-2019.) |
⊢ (((𝐺 ∈ 𝑉 ∧ Fun 𝐺 ∧ 𝑍 ∈ 𝑊) ∧ (𝐹 ∈ Fin ∧ (𝐺 supp 𝑍) ⊆ 𝐹)) → 𝐺 finSupp 𝑍) | ||
Theorem | fsuppsssupp 9450 | If the support of a function is a subset of the support of a finitely supported function, the function is finitely supported. (Contributed by AV, 2-Jul-2019.) (Proof shortened by AV, 15-Jul-2019.) |
⊢ (((𝐺 ∈ 𝑉 ∧ Fun 𝐺) ∧ (𝐹 finSupp 𝑍 ∧ (𝐺 supp 𝑍) ⊆ (𝐹 supp 𝑍))) → 𝐺 finSupp 𝑍) | ||
Theorem | fsuppsssuppgd 9451 | If the support of a function is a subset of a finite support, it is finite. Deduction associated with fsuppsssupp 9450. (Contributed by SN, 6-Mar-2025.) |
⊢ (𝜑 → 𝐺 ∈ 𝑉) & ⊢ (𝜑 → 𝑍 ∈ 𝑊) & ⊢ (𝜑 → Fun 𝐺) & ⊢ (𝜑 → 𝐹 finSupp 𝑂) & ⊢ (𝜑 → (𝐺 supp 𝑍) ⊆ (𝐹 supp 𝑂)) ⇒ ⊢ (𝜑 → 𝐺 finSupp 𝑍) | ||
Theorem | fsuppss 9452 | A subset of a finitely supported function is a finitely supported function. (Contributed by SN, 8-Mar-2025.) |
⊢ (𝜑 → 𝐹 ⊆ 𝐺) & ⊢ (𝜑 → 𝐺 finSupp 𝑍) ⇒ ⊢ (𝜑 → 𝐹 finSupp 𝑍) | ||
Theorem | fsuppssov1 9453* | Formula building theorem for finite support: operator with left annihilator. Finite support version of suppssov1 8238. (Contributed by SN, 26-Apr-2025.) |
⊢ (𝜑 → (𝑥 ∈ 𝐷 ↦ 𝐴) finSupp 𝑌) & ⊢ ((𝜑 ∧ 𝑣 ∈ 𝑅) → (𝑌𝑂𝑣) = 𝑍) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → 𝐴 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → 𝐵 ∈ 𝑅) & ⊢ (𝜑 → 𝑍 ∈ 𝑊) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝐷 ↦ (𝐴𝑂𝐵)) finSupp 𝑍) | ||
Theorem | fsuppxpfi 9454 | The cartesian product of two finitely supported functions is finite. (Contributed by AV, 17-Jul-2019.) |
⊢ ((𝐹 finSupp 𝑍 ∧ 𝐺 finSupp 𝑍) → ((𝐹 supp 𝑍) × (𝐺 supp 𝑍)) ∈ Fin) | ||
Theorem | fczfsuppd 9455 | A constant function with value zero is finitely supported. (Contributed by AV, 30-Jun-2019.) |
⊢ (𝜑 → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → 𝑍 ∈ 𝑊) ⇒ ⊢ (𝜑 → (𝐵 × {𝑍}) finSupp 𝑍) | ||
Theorem | fsuppun 9456 | The union of two finitely supported functions is finitely supported (but not necessarily a function!). (Contributed by AV, 3-Jun-2019.) |
⊢ (𝜑 → 𝐹 finSupp 𝑍) & ⊢ (𝜑 → 𝐺 finSupp 𝑍) ⇒ ⊢ (𝜑 → ((𝐹 ∪ 𝐺) supp 𝑍) ∈ Fin) | ||
Theorem | fsuppunfi 9457 | The union of the support of two finitely supported functions is finite. (Contributed by AV, 1-Jul-2019.) |
⊢ (𝜑 → 𝐹 finSupp 𝑍) & ⊢ (𝜑 → 𝐺 finSupp 𝑍) ⇒ ⊢ (𝜑 → ((𝐹 supp 𝑍) ∪ (𝐺 supp 𝑍)) ∈ Fin) | ||
Theorem | fsuppunbi 9458 | If the union of two classes/functions is a function, this union is finitely supported iff the two functions are finitely supported. (Contributed by AV, 18-Jun-2019.) |
⊢ (𝜑 → Fun (𝐹 ∪ 𝐺)) ⇒ ⊢ (𝜑 → ((𝐹 ∪ 𝐺) finSupp 𝑍 ↔ (𝐹 finSupp 𝑍 ∧ 𝐺 finSupp 𝑍))) | ||
Theorem | 0fsupp 9459 | The empty set is a finitely supported function. (Contributed by AV, 19-Jul-2019.) |
⊢ (𝑍 ∈ 𝑉 → ∅ finSupp 𝑍) | ||
Theorem | snopfsupp 9460 | A singleton containing an ordered pair is a finitely supported function. (Contributed by AV, 19-Jul-2019.) |
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ∧ 𝑍 ∈ 𝑈) → {〈𝑋, 𝑌〉} finSupp 𝑍) | ||
Theorem | funsnfsupp 9461 | Finite support for a function extended by a singleton. (Contributed by Stefan O'Rear, 27-Feb-2015.) (Revised by AV, 19-Jul-2019.) |
⊢ (((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊) ∧ (Fun 𝐹 ∧ 𝑋 ∉ dom 𝐹)) → ((𝐹 ∪ {〈𝑋, 𝑌〉}) finSupp 𝑍 ↔ 𝐹 finSupp 𝑍)) | ||
Theorem | fsuppres 9462 | The restriction of a finitely supported function is finitely supported. (Contributed by AV, 14-Jul-2019.) |
⊢ (𝜑 → 𝐹 finSupp 𝑍) & ⊢ (𝜑 → 𝑍 ∈ 𝑉) ⇒ ⊢ (𝜑 → (𝐹 ↾ 𝑋) finSupp 𝑍) | ||
Theorem | fmptssfisupp 9463* | The restriction of a mapping function has finite support if that function has finite support. (Contributed by Thierry Arnoux, 21-Jan-2024.) |
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) finSupp 𝑍) & ⊢ (𝜑 → 𝐶 ⊆ 𝐴) & ⊢ (𝜑 → 𝑍 ∈ 𝑉) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝐶 ↦ 𝐵) finSupp 𝑍) | ||
Theorem | ressuppfi 9464 | If the support of the restriction of a function by a set which, subtracted from the domain of the function so that its difference is finite, the support of the function itself is finite. (Contributed by AV, 22-Apr-2019.) |
⊢ (𝜑 → (dom 𝐹 ∖ 𝐵) ∈ Fin) & ⊢ (𝜑 → 𝐹 ∈ 𝑊) & ⊢ (𝜑 → 𝐺 = (𝐹 ↾ 𝐵)) & ⊢ (𝜑 → (𝐺 supp 𝑍) ∈ Fin) & ⊢ (𝜑 → 𝑍 ∈ 𝑉) ⇒ ⊢ (𝜑 → (𝐹 supp 𝑍) ∈ Fin) | ||
Theorem | resfsupp 9465 | If the restriction of a function by a set which, subtracted from the domain of the function so that its difference is finitely supported, the function itself is finitely supported. (Contributed by AV, 27-May-2019.) |
⊢ (𝜑 → (dom 𝐹 ∖ 𝐵) ∈ Fin) & ⊢ (𝜑 → 𝐹 ∈ 𝑊) & ⊢ (𝜑 → Fun 𝐹) & ⊢ (𝜑 → 𝐺 = (𝐹 ↾ 𝐵)) & ⊢ (𝜑 → 𝐺 finSupp 𝑍) & ⊢ (𝜑 → 𝑍 ∈ 𝑉) ⇒ ⊢ (𝜑 → 𝐹 finSupp 𝑍) | ||
Theorem | resfifsupp 9466 | The restriction of a function to a finite set is finitely supported. (Contributed by AV, 12-Dec-2019.) |
⊢ (𝜑 → Fun 𝐹) & ⊢ (𝜑 → 𝑋 ∈ Fin) & ⊢ (𝜑 → 𝑍 ∈ 𝑉) ⇒ ⊢ (𝜑 → (𝐹 ↾ 𝑋) finSupp 𝑍) | ||
Theorem | ffsuppbi 9467 | Two ways of saying that a function with known codomain is finitely supported. (Contributed by AV, 8-Jul-2019.) |
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (𝐹:𝐼⟶𝑆 → (𝐹 finSupp 𝑍 ↔ (◡𝐹 “ (𝑆 ∖ {𝑍})) ∈ Fin))) | ||
Theorem | fsuppmptif 9468* | A function mapping an argument to either a value of a finitely supported function or zero is finitely supported. (Contributed by AV, 6-Jun-2019.) |
⊢ (𝜑 → 𝐹:𝐴⟶𝐵) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝑍 ∈ 𝑊) & ⊢ (𝜑 → 𝐹 finSupp 𝑍) ⇒ ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ if(𝑘 ∈ 𝐷, (𝐹‘𝑘), 𝑍)) finSupp 𝑍) | ||
Theorem | sniffsupp 9469* | A function mapping all but one arguments to zero is finitely supported. (Contributed by AV, 8-Jul-2019.) |
⊢ (𝜑 → 𝐼 ∈ 𝑉) & ⊢ (𝜑 → 0 ∈ 𝑊) & ⊢ 𝐹 = (𝑥 ∈ 𝐼 ↦ if(𝑥 = 𝑋, 𝐴, 0 )) ⇒ ⊢ (𝜑 → 𝐹 finSupp 0 ) | ||
Theorem | fsuppcolem 9470 | Lemma for fsuppco 9471. Formula building theorem for finite supports: rearranging the index set. (Contributed by Stefan O'Rear, 21-Mar-2015.) |
⊢ (𝜑 → (◡𝐹 “ (V ∖ {𝑍})) ∈ Fin) & ⊢ (𝜑 → 𝐺:𝑋–1-1→𝑌) ⇒ ⊢ (𝜑 → (◡(𝐹 ∘ 𝐺) “ (V ∖ {𝑍})) ∈ Fin) | ||
Theorem | fsuppco 9471 | The composition of a 1-1 function with a finitely supported function is finitely supported. (Contributed by AV, 28-May-2019.) |
⊢ (𝜑 → 𝐹 finSupp 𝑍) & ⊢ (𝜑 → 𝐺:𝑋–1-1→𝑌) & ⊢ (𝜑 → 𝑍 ∈ 𝑊) & ⊢ (𝜑 → 𝐹 ∈ 𝑉) ⇒ ⊢ (𝜑 → (𝐹 ∘ 𝐺) finSupp 𝑍) | ||
Theorem | fsuppco2 9472 | The composition of a function which maps the zero to zero with a finitely supported function is finitely supported. This is not only a special case of fsuppcor 9473 because it does not require that the "zero" is an element of the range of the finitely supported function. (Contributed by AV, 6-Jun-2019.) |
⊢ (𝜑 → 𝑍 ∈ 𝑊) & ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) & ⊢ (𝜑 → 𝐺:𝐵⟶𝐵) & ⊢ (𝜑 → 𝐴 ∈ 𝑈) & ⊢ (𝜑 → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → 𝐹 finSupp 𝑍) & ⊢ (𝜑 → (𝐺‘𝑍) = 𝑍) ⇒ ⊢ (𝜑 → (𝐺 ∘ 𝐹) finSupp 𝑍) | ||
Theorem | fsuppcor 9473 | The composition of a function which maps the zero of the range of a finitely supported function to the zero of its range with this finitely supported function is finitely supported. (Contributed by AV, 6-Jun-2019.) |
⊢ (𝜑 → 0 ∈ 𝑊) & ⊢ (𝜑 → 𝑍 ∈ 𝐵) & ⊢ (𝜑 → 𝐹:𝐴⟶𝐶) & ⊢ (𝜑 → 𝐺:𝐵⟶𝐷) & ⊢ (𝜑 → 𝐶 ⊆ 𝐵) & ⊢ (𝜑 → 𝐴 ∈ 𝑈) & ⊢ (𝜑 → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → 𝐹 finSupp 𝑍) & ⊢ (𝜑 → (𝐺‘𝑍) = 0 ) ⇒ ⊢ (𝜑 → (𝐺 ∘ 𝐹) finSupp 0 ) | ||
Theorem | mapfienlem1 9474* | Lemma 1 for mapfien 9477. (Contributed by AV, 3-Jul-2019.) (Revised by AV, 28-Jul-2024.) |
⊢ 𝑆 = {𝑥 ∈ (𝐵 ↑m 𝐴) ∣ 𝑥 finSupp 𝑍} & ⊢ 𝑇 = {𝑥 ∈ (𝐷 ↑m 𝐶) ∣ 𝑥 finSupp 𝑊} & ⊢ 𝑊 = (𝐺‘𝑍) & ⊢ (𝜑 → 𝐹:𝐶–1-1-onto→𝐴) & ⊢ (𝜑 → 𝐺:𝐵–1-1-onto→𝐷) & ⊢ (𝜑 → 𝐴 ∈ 𝑈) & ⊢ (𝜑 → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → 𝐶 ∈ 𝑋) & ⊢ (𝜑 → 𝐷 ∈ 𝑌) & ⊢ (𝜑 → 𝑍 ∈ 𝐵) ⇒ ⊢ ((𝜑 ∧ 𝑓 ∈ 𝑆) → (𝐺 ∘ (𝑓 ∘ 𝐹)) finSupp 𝑊) | ||
Theorem | mapfienlem2 9475* | Lemma 2 for mapfien 9477. (Contributed by AV, 3-Jul-2019.) (Revised by AV, 28-Jul-2024.) |
⊢ 𝑆 = {𝑥 ∈ (𝐵 ↑m 𝐴) ∣ 𝑥 finSupp 𝑍} & ⊢ 𝑇 = {𝑥 ∈ (𝐷 ↑m 𝐶) ∣ 𝑥 finSupp 𝑊} & ⊢ 𝑊 = (𝐺‘𝑍) & ⊢ (𝜑 → 𝐹:𝐶–1-1-onto→𝐴) & ⊢ (𝜑 → 𝐺:𝐵–1-1-onto→𝐷) & ⊢ (𝜑 → 𝐴 ∈ 𝑈) & ⊢ (𝜑 → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → 𝐶 ∈ 𝑋) & ⊢ (𝜑 → 𝐷 ∈ 𝑌) & ⊢ (𝜑 → 𝑍 ∈ 𝐵) ⇒ ⊢ ((𝜑 ∧ 𝑔 ∈ 𝑇) → ((◡𝐺 ∘ 𝑔) ∘ ◡𝐹) finSupp 𝑍) | ||
Theorem | mapfienlem3 9476* | Lemma 3 for mapfien 9477. (Contributed by AV, 3-Jul-2019.) (Revised by AV, 28-Jul-2024.) |
⊢ 𝑆 = {𝑥 ∈ (𝐵 ↑m 𝐴) ∣ 𝑥 finSupp 𝑍} & ⊢ 𝑇 = {𝑥 ∈ (𝐷 ↑m 𝐶) ∣ 𝑥 finSupp 𝑊} & ⊢ 𝑊 = (𝐺‘𝑍) & ⊢ (𝜑 → 𝐹:𝐶–1-1-onto→𝐴) & ⊢ (𝜑 → 𝐺:𝐵–1-1-onto→𝐷) & ⊢ (𝜑 → 𝐴 ∈ 𝑈) & ⊢ (𝜑 → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → 𝐶 ∈ 𝑋) & ⊢ (𝜑 → 𝐷 ∈ 𝑌) & ⊢ (𝜑 → 𝑍 ∈ 𝐵) ⇒ ⊢ ((𝜑 ∧ 𝑔 ∈ 𝑇) → ((◡𝐺 ∘ 𝑔) ∘ ◡𝐹) ∈ 𝑆) | ||
Theorem | mapfien 9477* | A bijection of the base sets induces a bijection on the set of finitely supported functions. (Contributed by Mario Carneiro, 30-May-2015.) (Revised by AV, 3-Jul-2019.) (Revised by AV, 28-Jul-2024.) |
⊢ 𝑆 = {𝑥 ∈ (𝐵 ↑m 𝐴) ∣ 𝑥 finSupp 𝑍} & ⊢ 𝑇 = {𝑥 ∈ (𝐷 ↑m 𝐶) ∣ 𝑥 finSupp 𝑊} & ⊢ 𝑊 = (𝐺‘𝑍) & ⊢ (𝜑 → 𝐹:𝐶–1-1-onto→𝐴) & ⊢ (𝜑 → 𝐺:𝐵–1-1-onto→𝐷) & ⊢ (𝜑 → 𝐴 ∈ 𝑈) & ⊢ (𝜑 → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → 𝐶 ∈ 𝑋) & ⊢ (𝜑 → 𝐷 ∈ 𝑌) & ⊢ (𝜑 → 𝑍 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝑓 ∈ 𝑆 ↦ (𝐺 ∘ (𝑓 ∘ 𝐹))):𝑆–1-1-onto→𝑇) | ||
Theorem | mapfien2 9478* | Equinumerousity relation for sets of finitely supported functions. (Contributed by Stefan O'Rear, 9-Jul-2015.) (Revised by AV, 7-Jul-2019.) |
⊢ 𝑆 = {𝑥 ∈ (𝐵 ↑m 𝐴) ∣ 𝑥 finSupp 0 } & ⊢ 𝑇 = {𝑥 ∈ (𝐷 ↑m 𝐶) ∣ 𝑥 finSupp 𝑊} & ⊢ (𝜑 → 𝐴 ≈ 𝐶) & ⊢ (𝜑 → 𝐵 ≈ 𝐷) & ⊢ (𝜑 → 0 ∈ 𝐵) & ⊢ (𝜑 → 𝑊 ∈ 𝐷) ⇒ ⊢ (𝜑 → 𝑆 ≈ 𝑇) | ||
Syntax | cfi 9479 | Extend class notation with the function whose value is the class of finite intersections of the elements of a given set. |
class fi | ||
Definition | df-fi 9480* | Function whose value is the class of finite intersections of the elements of the argument. Note that the empty intersection being the universal class, hence a proper class, it cannot be an element of that class. Therefore, the function value is the class of nonempty finite intersections of elements of the argument (see elfi2 9483). (Contributed by FL, 27-Apr-2008.) |
⊢ fi = (𝑥 ∈ V ↦ {𝑧 ∣ ∃𝑦 ∈ (𝒫 𝑥 ∩ Fin)𝑧 = ∩ 𝑦}) | ||
Theorem | fival 9481* | The set of all the finite intersections of the elements of 𝐴. (Contributed by FL, 27-Apr-2008.) (Revised by Mario Carneiro, 24-Nov-2013.) |
⊢ (𝐴 ∈ 𝑉 → (fi‘𝐴) = {𝑦 ∣ ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)𝑦 = ∩ 𝑥}) | ||
Theorem | elfi 9482* | Specific properties of an element of (fi‘𝐵). (Contributed by FL, 27-Apr-2008.) (Revised by Mario Carneiro, 24-Nov-2013.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ∈ (fi‘𝐵) ↔ ∃𝑥 ∈ (𝒫 𝐵 ∩ Fin)𝐴 = ∩ 𝑥)) | ||
Theorem | elfi2 9483* | The empty intersection need not be considered in the set of finite intersections. (Contributed by Mario Carneiro, 21-Mar-2015.) |
⊢ (𝐵 ∈ 𝑉 → (𝐴 ∈ (fi‘𝐵) ↔ ∃𝑥 ∈ ((𝒫 𝐵 ∩ Fin) ∖ {∅})𝐴 = ∩ 𝑥)) | ||
Theorem | elfir 9484 | Sufficient condition for an element of (fi‘𝐵). (Contributed by Mario Carneiro, 24-Nov-2013.) |
⊢ ((𝐵 ∈ 𝑉 ∧ (𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin)) → ∩ 𝐴 ∈ (fi‘𝐵)) | ||
Theorem | intrnfi 9485 | Sufficient condition for the intersection of the range of a function to be in the set of finite intersections. (Contributed by Mario Carneiro, 30-Aug-2015.) |
⊢ ((𝐵 ∈ 𝑉 ∧ (𝐹:𝐴⟶𝐵 ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin)) → ∩ ran 𝐹 ∈ (fi‘𝐵)) | ||
Theorem | iinfi 9486* | An indexed intersection of elements of 𝐶 is an element of the finite intersections of 𝐶. (Contributed by Mario Carneiro, 30-Aug-2015.) |
⊢ ((𝐶 ∈ 𝑉 ∧ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin)) → ∩ 𝑥 ∈ 𝐴 𝐵 ∈ (fi‘𝐶)) | ||
Theorem | inelfi 9487 | The intersection of two sets is a finite intersection. (Contributed by Thierry Arnoux, 6-Jan-2017.) |
⊢ ((𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴 ∩ 𝐵) ∈ (fi‘𝑋)) | ||
Theorem | ssfii 9488 | Any element of a set 𝐴 is the intersection of a finite subset of 𝐴. (Contributed by FL, 27-Apr-2008.) (Proof shortened by Mario Carneiro, 21-Mar-2015.) |
⊢ (𝐴 ∈ 𝑉 → 𝐴 ⊆ (fi‘𝐴)) | ||
Theorem | fi0 9489 | The set of finite intersections of the empty set. (Contributed by Mario Carneiro, 30-Aug-2015.) |
⊢ (fi‘∅) = ∅ | ||
Theorem | fieq0 9490 | A set is empty iff the class of all the finite intersections of that set is empty. (Contributed by FL, 27-Apr-2008.) (Revised by Mario Carneiro, 24-Nov-2013.) |
⊢ (𝐴 ∈ 𝑉 → (𝐴 = ∅ ↔ (fi‘𝐴) = ∅)) | ||
Theorem | fiin 9491 | The elements of (fi‘𝐶) are closed under finite intersection. (Contributed by Mario Carneiro, 24-Nov-2013.) |
⊢ ((𝐴 ∈ (fi‘𝐶) ∧ 𝐵 ∈ (fi‘𝐶)) → (𝐴 ∩ 𝐵) ∈ (fi‘𝐶)) | ||
Theorem | dffi2 9492* | The set of finite intersections is the smallest set that contains 𝐴 and is closed under pairwise intersection. (Contributed by Mario Carneiro, 24-Nov-2013.) |
⊢ (𝐴 ∈ 𝑉 → (fi‘𝐴) = ∩ {𝑧 ∣ (𝐴 ⊆ 𝑧 ∧ ∀𝑥 ∈ 𝑧 ∀𝑦 ∈ 𝑧 (𝑥 ∩ 𝑦) ∈ 𝑧)}) | ||
Theorem | fiss 9493 | Subset relationship for function fi. (Contributed by Jeff Hankins, 7-Oct-2009.) (Revised by Mario Carneiro, 24-Nov-2013.) |
⊢ ((𝐵 ∈ 𝑉 ∧ 𝐴 ⊆ 𝐵) → (fi‘𝐴) ⊆ (fi‘𝐵)) | ||
Theorem | inficl 9494* | A set which is closed under pairwise intersection is closed under finite intersection. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 24-Nov-2013.) |
⊢ (𝐴 ∈ 𝑉 → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ∩ 𝑦) ∈ 𝐴 ↔ (fi‘𝐴) = 𝐴)) | ||
Theorem | fipwuni 9495 | The set of finite intersections of a set is contained in the powerset of the union of the elements of 𝐴. (Contributed by Mario Carneiro, 24-Nov-2013.) (Proof shortened by Mario Carneiro, 21-Mar-2015.) |
⊢ (fi‘𝐴) ⊆ 𝒫 ∪ 𝐴 | ||
Theorem | fisn 9496 | A singleton is closed under finite intersections. (Contributed by Mario Carneiro, 3-Sep-2015.) |
⊢ (fi‘{𝐴}) = {𝐴} | ||
Theorem | fiuni 9497 | The union of the finite intersections of a set is simply the union of the set itself. (Contributed by Jeff Hankins, 5-Sep-2009.) (Revised by Mario Carneiro, 24-Nov-2013.) |
⊢ (𝐴 ∈ 𝑉 → ∪ 𝐴 = ∪ (fi‘𝐴)) | ||
Theorem | fipwss 9498 | If a set is a family of subsets of some base set, then so is its finite intersection. (Contributed by Stefan O'Rear, 2-Aug-2015.) |
⊢ (𝐴 ⊆ 𝒫 𝑋 → (fi‘𝐴) ⊆ 𝒫 𝑋) | ||
Theorem | elfiun 9499* | A finite intersection of elements taken from a union of collections. (Contributed by Jeff Hankins, 15-Nov-2009.) (Proof shortened by Mario Carneiro, 26-Nov-2013.) |
⊢ ((𝐵 ∈ 𝐷 ∧ 𝐶 ∈ 𝐾) → (𝐴 ∈ (fi‘(𝐵 ∪ 𝐶)) ↔ (𝐴 ∈ (fi‘𝐵) ∨ 𝐴 ∈ (fi‘𝐶) ∨ ∃𝑥 ∈ (fi‘𝐵)∃𝑦 ∈ (fi‘𝐶)𝐴 = (𝑥 ∩ 𝑦)))) | ||
Theorem | dffi3 9500* | The set of finite intersections can be "constructed" inductively by iterating binary intersection ω-many times. (Contributed by Mario Carneiro, 21-Mar-2015.) |
⊢ 𝑅 = (𝑢 ∈ V ↦ ran (𝑦 ∈ 𝑢, 𝑧 ∈ 𝑢 ↦ (𝑦 ∩ 𝑧))) ⇒ ⊢ (𝐴 ∈ 𝑉 → (fi‘𝐴) = ∪ (rec(𝑅, 𝐴) “ ω)) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |