![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fival | Structured version Visualization version GIF version |
Description: The set of all the finite intersections of the elements of 𝐴. (Contributed by FL, 27-Apr-2008.) (Revised by Mario Carneiro, 24-Nov-2013.) |
Ref | Expression |
---|---|
fival | ⊢ (𝐴 ∈ 𝑉 → (fi‘𝐴) = {𝑦 ∣ ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)𝑦 = ∩ 𝑥}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-fi 9480 | . 2 ⊢ fi = (𝑧 ∈ V ↦ {𝑦 ∣ ∃𝑥 ∈ (𝒫 𝑧 ∩ Fin)𝑦 = ∩ 𝑥}) | |
2 | pweq 4636 | . . . . 5 ⊢ (𝑧 = 𝐴 → 𝒫 𝑧 = 𝒫 𝐴) | |
3 | 2 | ineq1d 4240 | . . . 4 ⊢ (𝑧 = 𝐴 → (𝒫 𝑧 ∩ Fin) = (𝒫 𝐴 ∩ Fin)) |
4 | 3 | rexeqdv 3335 | . . 3 ⊢ (𝑧 = 𝐴 → (∃𝑥 ∈ (𝒫 𝑧 ∩ Fin)𝑦 = ∩ 𝑥 ↔ ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)𝑦 = ∩ 𝑥)) |
5 | 4 | abbidv 2811 | . 2 ⊢ (𝑧 = 𝐴 → {𝑦 ∣ ∃𝑥 ∈ (𝒫 𝑧 ∩ Fin)𝑦 = ∩ 𝑥} = {𝑦 ∣ ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)𝑦 = ∩ 𝑥}) |
6 | elex 3509 | . 2 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ V) | |
7 | simpr 484 | . . . . . . 7 ⊢ ((𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑦 = ∩ 𝑥) → 𝑦 = ∩ 𝑥) | |
8 | elinel1 4224 | . . . . . . . . 9 ⊢ (𝑥 ∈ (𝒫 𝐴 ∩ Fin) → 𝑥 ∈ 𝒫 𝐴) | |
9 | 8 | elpwid 4631 | . . . . . . . 8 ⊢ (𝑥 ∈ (𝒫 𝐴 ∩ Fin) → 𝑥 ⊆ 𝐴) |
10 | eqvisset 3508 | . . . . . . . . 9 ⊢ (𝑦 = ∩ 𝑥 → ∩ 𝑥 ∈ V) | |
11 | intex 5362 | . . . . . . . . 9 ⊢ (𝑥 ≠ ∅ ↔ ∩ 𝑥 ∈ V) | |
12 | 10, 11 | sylibr 234 | . . . . . . . 8 ⊢ (𝑦 = ∩ 𝑥 → 𝑥 ≠ ∅) |
13 | intssuni2 4997 | . . . . . . . 8 ⊢ ((𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅) → ∩ 𝑥 ⊆ ∪ 𝐴) | |
14 | 9, 12, 13 | syl2an 595 | . . . . . . 7 ⊢ ((𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑦 = ∩ 𝑥) → ∩ 𝑥 ⊆ ∪ 𝐴) |
15 | 7, 14 | eqsstrd 4047 | . . . . . 6 ⊢ ((𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑦 = ∩ 𝑥) → 𝑦 ⊆ ∪ 𝐴) |
16 | velpw 4627 | . . . . . 6 ⊢ (𝑦 ∈ 𝒫 ∪ 𝐴 ↔ 𝑦 ⊆ ∪ 𝐴) | |
17 | 15, 16 | sylibr 234 | . . . . 5 ⊢ ((𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑦 = ∩ 𝑥) → 𝑦 ∈ 𝒫 ∪ 𝐴) |
18 | 17 | rexlimiva 3153 | . . . 4 ⊢ (∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)𝑦 = ∩ 𝑥 → 𝑦 ∈ 𝒫 ∪ 𝐴) |
19 | 18 | abssi 4093 | . . 3 ⊢ {𝑦 ∣ ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)𝑦 = ∩ 𝑥} ⊆ 𝒫 ∪ 𝐴 |
20 | uniexg 7775 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → ∪ 𝐴 ∈ V) | |
21 | 20 | pwexd 5397 | . . 3 ⊢ (𝐴 ∈ 𝑉 → 𝒫 ∪ 𝐴 ∈ V) |
22 | ssexg 5341 | . . 3 ⊢ (({𝑦 ∣ ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)𝑦 = ∩ 𝑥} ⊆ 𝒫 ∪ 𝐴 ∧ 𝒫 ∪ 𝐴 ∈ V) → {𝑦 ∣ ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)𝑦 = ∩ 𝑥} ∈ V) | |
23 | 19, 21, 22 | sylancr 586 | . 2 ⊢ (𝐴 ∈ 𝑉 → {𝑦 ∣ ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)𝑦 = ∩ 𝑥} ∈ V) |
24 | 1, 5, 6, 23 | fvmptd3 7052 | 1 ⊢ (𝐴 ∈ 𝑉 → (fi‘𝐴) = {𝑦 ∣ ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)𝑦 = ∩ 𝑥}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 {cab 2717 ≠ wne 2946 ∃wrex 3076 Vcvv 3488 ∩ cin 3975 ⊆ wss 3976 ∅c0 4352 𝒫 cpw 4622 ∪ cuni 4931 ∩ cint 4970 ‘cfv 6573 Fincfn 9003 ficfi 9479 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-iota 6525 df-fun 6575 df-fv 6581 df-fi 9480 |
This theorem is referenced by: elfi 9482 fi0 9489 |
Copyright terms: Public domain | W3C validator |