MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fival Structured version   Visualization version   GIF version

Theorem fival 9363
Description: The set of all the finite intersections of the elements of 𝐴. (Contributed by FL, 27-Apr-2008.) (Revised by Mario Carneiro, 24-Nov-2013.)
Assertion
Ref Expression
fival (𝐴𝑉 → (fi‘𝐴) = {𝑦 ∣ ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)𝑦 = 𝑥})
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝑉
Allowed substitution hint:   𝑉(𝑦)

Proof of Theorem fival
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 df-fi 9362 . 2 fi = (𝑧 ∈ V ↦ {𝑦 ∣ ∃𝑥 ∈ (𝒫 𝑧 ∩ Fin)𝑦 = 𝑥})
2 pweq 4577 . . . . 5 (𝑧 = 𝐴 → 𝒫 𝑧 = 𝒫 𝐴)
32ineq1d 4182 . . . 4 (𝑧 = 𝐴 → (𝒫 𝑧 ∩ Fin) = (𝒫 𝐴 ∩ Fin))
43rexeqdv 3300 . . 3 (𝑧 = 𝐴 → (∃𝑥 ∈ (𝒫 𝑧 ∩ Fin)𝑦 = 𝑥 ↔ ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)𝑦 = 𝑥))
54abbidv 2795 . 2 (𝑧 = 𝐴 → {𝑦 ∣ ∃𝑥 ∈ (𝒫 𝑧 ∩ Fin)𝑦 = 𝑥} = {𝑦 ∣ ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)𝑦 = 𝑥})
6 elex 3468 . 2 (𝐴𝑉𝐴 ∈ V)
7 simpr 484 . . . . . . 7 ((𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑦 = 𝑥) → 𝑦 = 𝑥)
8 elinel1 4164 . . . . . . . . 9 (𝑥 ∈ (𝒫 𝐴 ∩ Fin) → 𝑥 ∈ 𝒫 𝐴)
98elpwid 4572 . . . . . . . 8 (𝑥 ∈ (𝒫 𝐴 ∩ Fin) → 𝑥𝐴)
10 eqvisset 3467 . . . . . . . . 9 (𝑦 = 𝑥 𝑥 ∈ V)
11 intex 5299 . . . . . . . . 9 (𝑥 ≠ ∅ ↔ 𝑥 ∈ V)
1210, 11sylibr 234 . . . . . . . 8 (𝑦 = 𝑥𝑥 ≠ ∅)
13 intssuni2 4937 . . . . . . . 8 ((𝑥𝐴𝑥 ≠ ∅) → 𝑥 𝐴)
149, 12, 13syl2an 596 . . . . . . 7 ((𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑦 = 𝑥) → 𝑥 𝐴)
157, 14eqsstrd 3981 . . . . . 6 ((𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑦 = 𝑥) → 𝑦 𝐴)
16 velpw 4568 . . . . . 6 (𝑦 ∈ 𝒫 𝐴𝑦 𝐴)
1715, 16sylibr 234 . . . . 5 ((𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑦 = 𝑥) → 𝑦 ∈ 𝒫 𝐴)
1817rexlimiva 3126 . . . 4 (∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)𝑦 = 𝑥𝑦 ∈ 𝒫 𝐴)
1918abssi 4033 . . 3 {𝑦 ∣ ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)𝑦 = 𝑥} ⊆ 𝒫 𝐴
20 uniexg 7716 . . . 4 (𝐴𝑉 𝐴 ∈ V)
2120pwexd 5334 . . 3 (𝐴𝑉 → 𝒫 𝐴 ∈ V)
22 ssexg 5278 . . 3 (({𝑦 ∣ ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)𝑦 = 𝑥} ⊆ 𝒫 𝐴 ∧ 𝒫 𝐴 ∈ V) → {𝑦 ∣ ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)𝑦 = 𝑥} ∈ V)
2319, 21, 22sylancr 587 . 2 (𝐴𝑉 → {𝑦 ∣ ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)𝑦 = 𝑥} ∈ V)
241, 5, 6, 23fvmptd3 6991 1 (𝐴𝑉 → (fi‘𝐴) = {𝑦 ∣ ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)𝑦 = 𝑥})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  {cab 2707  wne 2925  wrex 3053  Vcvv 3447  cin 3913  wss 3914  c0 4296  𝒫 cpw 4563   cuni 4871   cint 4910  cfv 6511  Fincfn 8918  ficfi 9361
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-iota 6464  df-fun 6513  df-fv 6519  df-fi 9362
This theorem is referenced by:  elfi  9364  fi0  9371
  Copyright terms: Public domain W3C validator