![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fival | Structured version Visualization version GIF version |
Description: The set of all the finite intersections of the elements of 𝐴. (Contributed by FL, 27-Apr-2008.) (Revised by Mario Carneiro, 24-Nov-2013.) |
Ref | Expression |
---|---|
fival | ⊢ (𝐴 ∈ 𝑉 → (fi‘𝐴) = {𝑦 ∣ ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)𝑦 = ∩ 𝑥}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-fi 9434 | . 2 ⊢ fi = (𝑧 ∈ V ↦ {𝑦 ∣ ∃𝑥 ∈ (𝒫 𝑧 ∩ Fin)𝑦 = ∩ 𝑥}) | |
2 | pweq 4617 | . . . . 5 ⊢ (𝑧 = 𝐴 → 𝒫 𝑧 = 𝒫 𝐴) | |
3 | 2 | ineq1d 4211 | . . . 4 ⊢ (𝑧 = 𝐴 → (𝒫 𝑧 ∩ Fin) = (𝒫 𝐴 ∩ Fin)) |
4 | 3 | rexeqdv 3323 | . . 3 ⊢ (𝑧 = 𝐴 → (∃𝑥 ∈ (𝒫 𝑧 ∩ Fin)𝑦 = ∩ 𝑥 ↔ ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)𝑦 = ∩ 𝑥)) |
5 | 4 | abbidv 2797 | . 2 ⊢ (𝑧 = 𝐴 → {𝑦 ∣ ∃𝑥 ∈ (𝒫 𝑧 ∩ Fin)𝑦 = ∩ 𝑥} = {𝑦 ∣ ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)𝑦 = ∩ 𝑥}) |
6 | elex 3490 | . 2 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ V) | |
7 | simpr 484 | . . . . . . 7 ⊢ ((𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑦 = ∩ 𝑥) → 𝑦 = ∩ 𝑥) | |
8 | elinel1 4195 | . . . . . . . . 9 ⊢ (𝑥 ∈ (𝒫 𝐴 ∩ Fin) → 𝑥 ∈ 𝒫 𝐴) | |
9 | 8 | elpwid 4612 | . . . . . . . 8 ⊢ (𝑥 ∈ (𝒫 𝐴 ∩ Fin) → 𝑥 ⊆ 𝐴) |
10 | eqvisset 3489 | . . . . . . . . 9 ⊢ (𝑦 = ∩ 𝑥 → ∩ 𝑥 ∈ V) | |
11 | intex 5339 | . . . . . . . . 9 ⊢ (𝑥 ≠ ∅ ↔ ∩ 𝑥 ∈ V) | |
12 | 10, 11 | sylibr 233 | . . . . . . . 8 ⊢ (𝑦 = ∩ 𝑥 → 𝑥 ≠ ∅) |
13 | intssuni2 4976 | . . . . . . . 8 ⊢ ((𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅) → ∩ 𝑥 ⊆ ∪ 𝐴) | |
14 | 9, 12, 13 | syl2an 595 | . . . . . . 7 ⊢ ((𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑦 = ∩ 𝑥) → ∩ 𝑥 ⊆ ∪ 𝐴) |
15 | 7, 14 | eqsstrd 4018 | . . . . . 6 ⊢ ((𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑦 = ∩ 𝑥) → 𝑦 ⊆ ∪ 𝐴) |
16 | velpw 4608 | . . . . . 6 ⊢ (𝑦 ∈ 𝒫 ∪ 𝐴 ↔ 𝑦 ⊆ ∪ 𝐴) | |
17 | 15, 16 | sylibr 233 | . . . . 5 ⊢ ((𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑦 = ∩ 𝑥) → 𝑦 ∈ 𝒫 ∪ 𝐴) |
18 | 17 | rexlimiva 3144 | . . . 4 ⊢ (∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)𝑦 = ∩ 𝑥 → 𝑦 ∈ 𝒫 ∪ 𝐴) |
19 | 18 | abssi 4065 | . . 3 ⊢ {𝑦 ∣ ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)𝑦 = ∩ 𝑥} ⊆ 𝒫 ∪ 𝐴 |
20 | uniexg 7745 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → ∪ 𝐴 ∈ V) | |
21 | 20 | pwexd 5379 | . . 3 ⊢ (𝐴 ∈ 𝑉 → 𝒫 ∪ 𝐴 ∈ V) |
22 | ssexg 5323 | . . 3 ⊢ (({𝑦 ∣ ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)𝑦 = ∩ 𝑥} ⊆ 𝒫 ∪ 𝐴 ∧ 𝒫 ∪ 𝐴 ∈ V) → {𝑦 ∣ ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)𝑦 = ∩ 𝑥} ∈ V) | |
23 | 19, 21, 22 | sylancr 586 | . 2 ⊢ (𝐴 ∈ 𝑉 → {𝑦 ∣ ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)𝑦 = ∩ 𝑥} ∈ V) |
24 | 1, 5, 6, 23 | fvmptd3 7028 | 1 ⊢ (𝐴 ∈ 𝑉 → (fi‘𝐴) = {𝑦 ∣ ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)𝑦 = ∩ 𝑥}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1534 ∈ wcel 2099 {cab 2705 ≠ wne 2937 ∃wrex 3067 Vcvv 3471 ∩ cin 3946 ⊆ wss 3947 ∅c0 4323 𝒫 cpw 4603 ∪ cuni 4908 ∩ cint 4949 ‘cfv 6548 Fincfn 8963 ficfi 9433 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 ax-un 7740 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-ral 3059 df-rex 3068 df-rab 3430 df-v 3473 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-int 4950 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5576 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-iota 6500 df-fun 6550 df-fv 6556 df-fi 9434 |
This theorem is referenced by: elfi 9436 fi0 9443 |
Copyright terms: Public domain | W3C validator |