![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fival | Structured version Visualization version GIF version |
Description: The set of all the finite intersections of the elements of 𝐴. (Contributed by FL, 27-Apr-2008.) (Revised by Mario Carneiro, 24-Nov-2013.) |
Ref | Expression |
---|---|
fival | ⊢ (𝐴 ∈ 𝑉 → (fi‘𝐴) = {𝑦 ∣ ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)𝑦 = ∩ 𝑥}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-fi 9354 | . 2 ⊢ fi = (𝑧 ∈ V ↦ {𝑦 ∣ ∃𝑥 ∈ (𝒫 𝑧 ∩ Fin)𝑦 = ∩ 𝑥}) | |
2 | pweq 4579 | . . . . 5 ⊢ (𝑧 = 𝐴 → 𝒫 𝑧 = 𝒫 𝐴) | |
3 | 2 | ineq1d 4176 | . . . 4 ⊢ (𝑧 = 𝐴 → (𝒫 𝑧 ∩ Fin) = (𝒫 𝐴 ∩ Fin)) |
4 | 3 | rexeqdv 3317 | . . 3 ⊢ (𝑧 = 𝐴 → (∃𝑥 ∈ (𝒫 𝑧 ∩ Fin)𝑦 = ∩ 𝑥 ↔ ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)𝑦 = ∩ 𝑥)) |
5 | 4 | abbidv 2806 | . 2 ⊢ (𝑧 = 𝐴 → {𝑦 ∣ ∃𝑥 ∈ (𝒫 𝑧 ∩ Fin)𝑦 = ∩ 𝑥} = {𝑦 ∣ ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)𝑦 = ∩ 𝑥}) |
6 | elex 3466 | . 2 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ V) | |
7 | simpr 486 | . . . . . . 7 ⊢ ((𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑦 = ∩ 𝑥) → 𝑦 = ∩ 𝑥) | |
8 | elinel1 4160 | . . . . . . . . 9 ⊢ (𝑥 ∈ (𝒫 𝐴 ∩ Fin) → 𝑥 ∈ 𝒫 𝐴) | |
9 | 8 | elpwid 4574 | . . . . . . . 8 ⊢ (𝑥 ∈ (𝒫 𝐴 ∩ Fin) → 𝑥 ⊆ 𝐴) |
10 | eqvisset 3465 | . . . . . . . . 9 ⊢ (𝑦 = ∩ 𝑥 → ∩ 𝑥 ∈ V) | |
11 | intex 5299 | . . . . . . . . 9 ⊢ (𝑥 ≠ ∅ ↔ ∩ 𝑥 ∈ V) | |
12 | 10, 11 | sylibr 233 | . . . . . . . 8 ⊢ (𝑦 = ∩ 𝑥 → 𝑥 ≠ ∅) |
13 | intssuni2 4939 | . . . . . . . 8 ⊢ ((𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅) → ∩ 𝑥 ⊆ ∪ 𝐴) | |
14 | 9, 12, 13 | syl2an 597 | . . . . . . 7 ⊢ ((𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑦 = ∩ 𝑥) → ∩ 𝑥 ⊆ ∪ 𝐴) |
15 | 7, 14 | eqsstrd 3987 | . . . . . 6 ⊢ ((𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑦 = ∩ 𝑥) → 𝑦 ⊆ ∪ 𝐴) |
16 | velpw 4570 | . . . . . 6 ⊢ (𝑦 ∈ 𝒫 ∪ 𝐴 ↔ 𝑦 ⊆ ∪ 𝐴) | |
17 | 15, 16 | sylibr 233 | . . . . 5 ⊢ ((𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑦 = ∩ 𝑥) → 𝑦 ∈ 𝒫 ∪ 𝐴) |
18 | 17 | rexlimiva 3145 | . . . 4 ⊢ (∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)𝑦 = ∩ 𝑥 → 𝑦 ∈ 𝒫 ∪ 𝐴) |
19 | 18 | abssi 4032 | . . 3 ⊢ {𝑦 ∣ ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)𝑦 = ∩ 𝑥} ⊆ 𝒫 ∪ 𝐴 |
20 | uniexg 7682 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → ∪ 𝐴 ∈ V) | |
21 | 20 | pwexd 5339 | . . 3 ⊢ (𝐴 ∈ 𝑉 → 𝒫 ∪ 𝐴 ∈ V) |
22 | ssexg 5285 | . . 3 ⊢ (({𝑦 ∣ ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)𝑦 = ∩ 𝑥} ⊆ 𝒫 ∪ 𝐴 ∧ 𝒫 ∪ 𝐴 ∈ V) → {𝑦 ∣ ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)𝑦 = ∩ 𝑥} ∈ V) | |
23 | 19, 21, 22 | sylancr 588 | . 2 ⊢ (𝐴 ∈ 𝑉 → {𝑦 ∣ ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)𝑦 = ∩ 𝑥} ∈ V) |
24 | 1, 5, 6, 23 | fvmptd3 6976 | 1 ⊢ (𝐴 ∈ 𝑉 → (fi‘𝐴) = {𝑦 ∣ ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)𝑦 = ∩ 𝑥}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1542 ∈ wcel 2107 {cab 2714 ≠ wne 2944 ∃wrex 3074 Vcvv 3448 ∩ cin 3914 ⊆ wss 3915 ∅c0 4287 𝒫 cpw 4565 ∪ cuni 4870 ∩ cint 4912 ‘cfv 6501 Fincfn 8890 ficfi 9353 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2708 ax-sep 5261 ax-nul 5268 ax-pow 5325 ax-pr 5389 ax-un 7677 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2890 df-ne 2945 df-ral 3066 df-rex 3075 df-rab 3411 df-v 3450 df-dif 3918 df-un 3920 df-in 3922 df-ss 3932 df-nul 4288 df-if 4492 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4871 df-int 4913 df-br 5111 df-opab 5173 df-mpt 5194 df-id 5536 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-iota 6453 df-fun 6503 df-fv 6509 df-fi 9354 |
This theorem is referenced by: elfi 9356 fi0 9363 |
Copyright terms: Public domain | W3C validator |