![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fival | Structured version Visualization version GIF version |
Description: The set of all the finite intersections of the elements of 𝐴. (Contributed by FL, 27-Apr-2008.) (Revised by Mario Carneiro, 24-Nov-2013.) |
Ref | Expression |
---|---|
fival | ⊢ (𝐴 ∈ 𝑉 → (fi‘𝐴) = {𝑦 ∣ ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)𝑦 = ∩ 𝑥}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-fi 9442 | . 2 ⊢ fi = (𝑧 ∈ V ↦ {𝑦 ∣ ∃𝑥 ∈ (𝒫 𝑧 ∩ Fin)𝑦 = ∩ 𝑥}) | |
2 | pweq 4620 | . . . . 5 ⊢ (𝑧 = 𝐴 → 𝒫 𝑧 = 𝒫 𝐴) | |
3 | 2 | ineq1d 4213 | . . . 4 ⊢ (𝑧 = 𝐴 → (𝒫 𝑧 ∩ Fin) = (𝒫 𝐴 ∩ Fin)) |
4 | 3 | rexeqdv 3324 | . . 3 ⊢ (𝑧 = 𝐴 → (∃𝑥 ∈ (𝒫 𝑧 ∩ Fin)𝑦 = ∩ 𝑥 ↔ ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)𝑦 = ∩ 𝑥)) |
5 | 4 | abbidv 2797 | . 2 ⊢ (𝑧 = 𝐴 → {𝑦 ∣ ∃𝑥 ∈ (𝒫 𝑧 ∩ Fin)𝑦 = ∩ 𝑥} = {𝑦 ∣ ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)𝑦 = ∩ 𝑥}) |
6 | elex 3492 | . 2 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ V) | |
7 | simpr 483 | . . . . . . 7 ⊢ ((𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑦 = ∩ 𝑥) → 𝑦 = ∩ 𝑥) | |
8 | elinel1 4197 | . . . . . . . . 9 ⊢ (𝑥 ∈ (𝒫 𝐴 ∩ Fin) → 𝑥 ∈ 𝒫 𝐴) | |
9 | 8 | elpwid 4615 | . . . . . . . 8 ⊢ (𝑥 ∈ (𝒫 𝐴 ∩ Fin) → 𝑥 ⊆ 𝐴) |
10 | eqvisset 3491 | . . . . . . . . 9 ⊢ (𝑦 = ∩ 𝑥 → ∩ 𝑥 ∈ V) | |
11 | intex 5343 | . . . . . . . . 9 ⊢ (𝑥 ≠ ∅ ↔ ∩ 𝑥 ∈ V) | |
12 | 10, 11 | sylibr 233 | . . . . . . . 8 ⊢ (𝑦 = ∩ 𝑥 → 𝑥 ≠ ∅) |
13 | intssuni2 4980 | . . . . . . . 8 ⊢ ((𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅) → ∩ 𝑥 ⊆ ∪ 𝐴) | |
14 | 9, 12, 13 | syl2an 594 | . . . . . . 7 ⊢ ((𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑦 = ∩ 𝑥) → ∩ 𝑥 ⊆ ∪ 𝐴) |
15 | 7, 14 | eqsstrd 4020 | . . . . . 6 ⊢ ((𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑦 = ∩ 𝑥) → 𝑦 ⊆ ∪ 𝐴) |
16 | velpw 4611 | . . . . . 6 ⊢ (𝑦 ∈ 𝒫 ∪ 𝐴 ↔ 𝑦 ⊆ ∪ 𝐴) | |
17 | 15, 16 | sylibr 233 | . . . . 5 ⊢ ((𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑦 = ∩ 𝑥) → 𝑦 ∈ 𝒫 ∪ 𝐴) |
18 | 17 | rexlimiva 3144 | . . . 4 ⊢ (∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)𝑦 = ∩ 𝑥 → 𝑦 ∈ 𝒫 ∪ 𝐴) |
19 | 18 | abssi 4067 | . . 3 ⊢ {𝑦 ∣ ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)𝑦 = ∩ 𝑥} ⊆ 𝒫 ∪ 𝐴 |
20 | uniexg 7751 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → ∪ 𝐴 ∈ V) | |
21 | 20 | pwexd 5383 | . . 3 ⊢ (𝐴 ∈ 𝑉 → 𝒫 ∪ 𝐴 ∈ V) |
22 | ssexg 5327 | . . 3 ⊢ (({𝑦 ∣ ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)𝑦 = ∩ 𝑥} ⊆ 𝒫 ∪ 𝐴 ∧ 𝒫 ∪ 𝐴 ∈ V) → {𝑦 ∣ ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)𝑦 = ∩ 𝑥} ∈ V) | |
23 | 19, 21, 22 | sylancr 585 | . 2 ⊢ (𝐴 ∈ 𝑉 → {𝑦 ∣ ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)𝑦 = ∩ 𝑥} ∈ V) |
24 | 1, 5, 6, 23 | fvmptd3 7033 | 1 ⊢ (𝐴 ∈ 𝑉 → (fi‘𝐴) = {𝑦 ∣ ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)𝑦 = ∩ 𝑥}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1533 ∈ wcel 2098 {cab 2705 ≠ wne 2937 ∃wrex 3067 Vcvv 3473 ∩ cin 3948 ⊆ wss 3949 ∅c0 4326 𝒫 cpw 4606 ∪ cuni 4912 ∩ cint 4953 ‘cfv 6553 Fincfn 8970 ficfi 9441 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-sep 5303 ax-nul 5310 ax-pow 5369 ax-pr 5433 ax-un 7746 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-ral 3059 df-rex 3068 df-rab 3431 df-v 3475 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4327 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-int 4954 df-br 5153 df-opab 5215 df-mpt 5236 df-id 5580 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-iota 6505 df-fun 6555 df-fv 6561 df-fi 9442 |
This theorem is referenced by: elfi 9444 fi0 9451 |
Copyright terms: Public domain | W3C validator |