Detailed syntax breakdown of Definition df-flf
Step | Hyp | Ref
| Expression |
1 | | cflf 23131 |
. 2
class
fLimf |
2 | | vx |
. . 3
setvar 𝑥 |
3 | | vy |
. . 3
setvar 𝑦 |
4 | | ctop 22087 |
. . 3
class
Top |
5 | | cfil 23041 |
. . . . 5
class
Fil |
6 | 5 | crn 5601 |
. . . 4
class ran
Fil |
7 | 6 | cuni 4844 |
. . 3
class ∪ ran Fil |
8 | | vf |
. . . 4
setvar 𝑓 |
9 | 2 | cv 1538 |
. . . . . 6
class 𝑥 |
10 | 9 | cuni 4844 |
. . . . 5
class ∪ 𝑥 |
11 | 3 | cv 1538 |
. . . . . 6
class 𝑦 |
12 | 11 | cuni 4844 |
. . . . 5
class ∪ 𝑦 |
13 | | cmap 8646 |
. . . . 5
class
↑m |
14 | 10, 12, 13 | co 7307 |
. . . 4
class (∪ 𝑥
↑m ∪ 𝑦) |
15 | 8 | cv 1538 |
. . . . . . 7
class 𝑓 |
16 | | cfm 23129 |
. . . . . . 7
class
FilMap |
17 | 10, 15, 16 | co 7307 |
. . . . . 6
class (∪ 𝑥
FilMap 𝑓) |
18 | 11, 17 | cfv 6458 |
. . . . 5
class ((∪ 𝑥
FilMap 𝑓)‘𝑦) |
19 | | cflim 23130 |
. . . . 5
class
fLim |
20 | 9, 18, 19 | co 7307 |
. . . 4
class (𝑥 fLim ((∪ 𝑥
FilMap 𝑓)‘𝑦)) |
21 | 8, 14, 20 | cmpt 5164 |
. . 3
class (𝑓 ∈ (∪ 𝑥
↑m ∪ 𝑦) ↦ (𝑥 fLim ((∪ 𝑥 FilMap 𝑓)‘𝑦))) |
22 | 2, 3, 4, 7, 21 | cmpo 7309 |
. 2
class (𝑥 ∈ Top, 𝑦 ∈ ∪ ran Fil
↦ (𝑓 ∈ (∪ 𝑥
↑m ∪ 𝑦) ↦ (𝑥 fLim ((∪ 𝑥 FilMap 𝑓)‘𝑦)))) |
23 | 1, 22 | wceq 1539 |
1
wff fLimf =
(𝑥 ∈ Top, 𝑦 ∈ ∪ ran Fil ↦ (𝑓 ∈ (∪ 𝑥 ↑m ∪ 𝑦)
↦ (𝑥 fLim ((∪ 𝑥
FilMap 𝑓)‘𝑦)))) |