Detailed syntax breakdown of Definition df-flim
Step | Hyp | Ref
| Expression |
1 | | cflim 22639 |
. 2
class
fLim |
2 | | vj |
. . 3
setvar 𝑗 |
3 | | vf |
. . 3
setvar 𝑓 |
4 | | ctop 21598 |
. . 3
class
Top |
5 | | cfil 22550 |
. . . . 5
class
Fil |
6 | 5 | crn 5528 |
. . . 4
class ran
Fil |
7 | 6 | cuni 4801 |
. . 3
class ∪ ran Fil |
8 | | vx |
. . . . . . . . 9
setvar 𝑥 |
9 | 8 | cv 1537 |
. . . . . . . 8
class 𝑥 |
10 | 9 | csn 4525 |
. . . . . . 7
class {𝑥} |
11 | 2 | cv 1537 |
. . . . . . . 8
class 𝑗 |
12 | | cnei 21802 |
. . . . . . . 8
class
nei |
13 | 11, 12 | cfv 6339 |
. . . . . . 7
class
(nei‘𝑗) |
14 | 10, 13 | cfv 6339 |
. . . . . 6
class
((nei‘𝑗)‘{𝑥}) |
15 | 3 | cv 1537 |
. . . . . 6
class 𝑓 |
16 | 14, 15 | wss 3860 |
. . . . 5
wff
((nei‘𝑗)‘{𝑥}) ⊆ 𝑓 |
17 | 11 | cuni 4801 |
. . . . . . 7
class ∪ 𝑗 |
18 | 17 | cpw 4497 |
. . . . . 6
class 𝒫
∪ 𝑗 |
19 | 15, 18 | wss 3860 |
. . . . 5
wff 𝑓 ⊆ 𝒫 ∪ 𝑗 |
20 | 16, 19 | wa 399 |
. . . 4
wff
(((nei‘𝑗)‘{𝑥}) ⊆ 𝑓 ∧ 𝑓 ⊆ 𝒫 ∪ 𝑗) |
21 | 20, 8, 17 | crab 3074 |
. . 3
class {𝑥 ∈ ∪ 𝑗
∣ (((nei‘𝑗)‘{𝑥}) ⊆ 𝑓 ∧ 𝑓 ⊆ 𝒫 ∪ 𝑗)} |
22 | 2, 3, 4, 7, 21 | cmpo 7157 |
. 2
class (𝑗 ∈ Top, 𝑓 ∈ ∪ ran Fil
↦ {𝑥 ∈ ∪ 𝑗
∣ (((nei‘𝑗)‘{𝑥}) ⊆ 𝑓 ∧ 𝑓 ⊆ 𝒫 ∪ 𝑗)}) |
23 | 1, 22 | wceq 1538 |
1
wff fLim =
(𝑗 ∈ Top, 𝑓 ∈ ∪ ran Fil ↦ {𝑥 ∈ ∪ 𝑗 ∣ (((nei‘𝑗)‘{𝑥}) ⊆ 𝑓 ∧ 𝑓 ⊆ 𝒫 ∪ 𝑗)}) |