MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  flffval Structured version   Visualization version   GIF version

Theorem flffval 23462
Description: Given a topology and a filtered set, return the convergence function on the functions from the filtered set to the base set of the topological space. (Contributed by Jeff Hankins, 14-Oct-2009.) (Revised by Mario Carneiro, 15-Dec-2013.) (Revised by Stefan O'Rear, 6-Aug-2015.)
Assertion
Ref Expression
flffval ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌)) → (𝐽 fLimf 𝐿) = (𝑓 ∈ (𝑋m 𝑌) ↦ (𝐽 fLim ((𝑋 FilMap 𝑓)‘𝐿))))
Distinct variable groups:   𝑓,𝐽   𝑓,𝑋   𝑓,𝑌   𝑓,𝐿

Proof of Theorem flffval
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 topontop 22384 . . 3 (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top)
2 fvssunirn 6914 . . . 4 (Fil‘𝑌) ⊆ ran Fil
32sseli 3976 . . 3 (𝐿 ∈ (Fil‘𝑌) → 𝐿 ran Fil)
4 unieq 4915 . . . . . 6 (𝑥 = 𝐽 𝑥 = 𝐽)
5 unieq 4915 . . . . . 6 (𝑦 = 𝐿 𝑦 = 𝐿)
64, 5oveqan12d 7415 . . . . 5 ((𝑥 = 𝐽𝑦 = 𝐿) → ( 𝑥m 𝑦) = ( 𝐽m 𝐿))
7 simpl 484 . . . . . 6 ((𝑥 = 𝐽𝑦 = 𝐿) → 𝑥 = 𝐽)
84adantr 482 . . . . . . . 8 ((𝑥 = 𝐽𝑦 = 𝐿) → 𝑥 = 𝐽)
98oveq1d 7411 . . . . . . 7 ((𝑥 = 𝐽𝑦 = 𝐿) → ( 𝑥 FilMap 𝑓) = ( 𝐽 FilMap 𝑓))
10 simpr 486 . . . . . . 7 ((𝑥 = 𝐽𝑦 = 𝐿) → 𝑦 = 𝐿)
119, 10fveq12d 6888 . . . . . 6 ((𝑥 = 𝐽𝑦 = 𝐿) → (( 𝑥 FilMap 𝑓)‘𝑦) = (( 𝐽 FilMap 𝑓)‘𝐿))
127, 11oveq12d 7414 . . . . 5 ((𝑥 = 𝐽𝑦 = 𝐿) → (𝑥 fLim (( 𝑥 FilMap 𝑓)‘𝑦)) = (𝐽 fLim (( 𝐽 FilMap 𝑓)‘𝐿)))
136, 12mpteq12dv 5235 . . . 4 ((𝑥 = 𝐽𝑦 = 𝐿) → (𝑓 ∈ ( 𝑥m 𝑦) ↦ (𝑥 fLim (( 𝑥 FilMap 𝑓)‘𝑦))) = (𝑓 ∈ ( 𝐽m 𝐿) ↦ (𝐽 fLim (( 𝐽 FilMap 𝑓)‘𝐿))))
14 df-flf 23413 . . . 4 fLimf = (𝑥 ∈ Top, 𝑦 ran Fil ↦ (𝑓 ∈ ( 𝑥m 𝑦) ↦ (𝑥 fLim (( 𝑥 FilMap 𝑓)‘𝑦))))
15 ovex 7429 . . . . 5 ( 𝐽m 𝐿) ∈ V
1615mptex 7212 . . . 4 (𝑓 ∈ ( 𝐽m 𝐿) ↦ (𝐽 fLim (( 𝐽 FilMap 𝑓)‘𝐿))) ∈ V
1713, 14, 16ovmpoa 7550 . . 3 ((𝐽 ∈ Top ∧ 𝐿 ran Fil) → (𝐽 fLimf 𝐿) = (𝑓 ∈ ( 𝐽m 𝐿) ↦ (𝐽 fLim (( 𝐽 FilMap 𝑓)‘𝐿))))
181, 3, 17syl2an 597 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌)) → (𝐽 fLimf 𝐿) = (𝑓 ∈ ( 𝐽m 𝐿) ↦ (𝐽 fLim (( 𝐽 FilMap 𝑓)‘𝐿))))
19 toponuni 22385 . . . . 5 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = 𝐽)
2019eqcomd 2739 . . . 4 (𝐽 ∈ (TopOn‘𝑋) → 𝐽 = 𝑋)
21 filunibas 23354 . . . 4 (𝐿 ∈ (Fil‘𝑌) → 𝐿 = 𝑌)
2220, 21oveqan12d 7415 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌)) → ( 𝐽m 𝐿) = (𝑋m 𝑌))
2320adantr 482 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌)) → 𝐽 = 𝑋)
2423oveq1d 7411 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌)) → ( 𝐽 FilMap 𝑓) = (𝑋 FilMap 𝑓))
2524fveq1d 6883 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌)) → (( 𝐽 FilMap 𝑓)‘𝐿) = ((𝑋 FilMap 𝑓)‘𝐿))
2625oveq2d 7412 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌)) → (𝐽 fLim (( 𝐽 FilMap 𝑓)‘𝐿)) = (𝐽 fLim ((𝑋 FilMap 𝑓)‘𝐿)))
2722, 26mpteq12dv 5235 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌)) → (𝑓 ∈ ( 𝐽m 𝐿) ↦ (𝐽 fLim (( 𝐽 FilMap 𝑓)‘𝐿))) = (𝑓 ∈ (𝑋m 𝑌) ↦ (𝐽 fLim ((𝑋 FilMap 𝑓)‘𝐿))))
2818, 27eqtrd 2773 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌)) → (𝐽 fLimf 𝐿) = (𝑓 ∈ (𝑋m 𝑌) ↦ (𝐽 fLim ((𝑋 FilMap 𝑓)‘𝐿))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1542  wcel 2107   cuni 4904  cmpt 5227  ran crn 5673  cfv 6535  (class class class)co 7396  m cmap 8808  Topctop 22364  TopOnctopon 22381  Filcfil 23318   FilMap cfm 23406   fLim cflim 23407   fLimf cflf 23408
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5281  ax-sep 5295  ax-nul 5302  ax-pow 5359  ax-pr 5423  ax-un 7712
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-nul 4321  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4905  df-iun 4995  df-br 5145  df-opab 5207  df-mpt 5228  df-id 5570  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-iota 6487  df-fun 6537  df-fn 6538  df-f 6539  df-f1 6540  df-fo 6541  df-f1o 6542  df-fv 6543  df-ov 7399  df-oprab 7400  df-mpo 7401  df-fbas 20915  df-topon 22382  df-fil 23319  df-flf 23413
This theorem is referenced by:  flfval  23463
  Copyright terms: Public domain W3C validator