MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  flffval Structured version   Visualization version   GIF version

Theorem flffval 23883
Description: Given a topology and a filtered set, return the convergence function on the functions from the filtered set to the base set of the topological space. (Contributed by Jeff Hankins, 14-Oct-2009.) (Revised by Mario Carneiro, 15-Dec-2013.) (Revised by Stefan O'Rear, 6-Aug-2015.)
Assertion
Ref Expression
flffval ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌)) → (𝐽 fLimf 𝐿) = (𝑓 ∈ (𝑋m 𝑌) ↦ (𝐽 fLim ((𝑋 FilMap 𝑓)‘𝐿))))
Distinct variable groups:   𝑓,𝐽   𝑓,𝑋   𝑓,𝑌   𝑓,𝐿

Proof of Theorem flffval
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 topontop 22807 . . 3 (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top)
2 fvssunirn 6894 . . . 4 (Fil‘𝑌) ⊆ ran Fil
32sseli 3945 . . 3 (𝐿 ∈ (Fil‘𝑌) → 𝐿 ran Fil)
4 unieq 4885 . . . . . 6 (𝑥 = 𝐽 𝑥 = 𝐽)
5 unieq 4885 . . . . . 6 (𝑦 = 𝐿 𝑦 = 𝐿)
64, 5oveqan12d 7409 . . . . 5 ((𝑥 = 𝐽𝑦 = 𝐿) → ( 𝑥m 𝑦) = ( 𝐽m 𝐿))
7 simpl 482 . . . . . 6 ((𝑥 = 𝐽𝑦 = 𝐿) → 𝑥 = 𝐽)
84adantr 480 . . . . . . . 8 ((𝑥 = 𝐽𝑦 = 𝐿) → 𝑥 = 𝐽)
98oveq1d 7405 . . . . . . 7 ((𝑥 = 𝐽𝑦 = 𝐿) → ( 𝑥 FilMap 𝑓) = ( 𝐽 FilMap 𝑓))
10 simpr 484 . . . . . . 7 ((𝑥 = 𝐽𝑦 = 𝐿) → 𝑦 = 𝐿)
119, 10fveq12d 6868 . . . . . 6 ((𝑥 = 𝐽𝑦 = 𝐿) → (( 𝑥 FilMap 𝑓)‘𝑦) = (( 𝐽 FilMap 𝑓)‘𝐿))
127, 11oveq12d 7408 . . . . 5 ((𝑥 = 𝐽𝑦 = 𝐿) → (𝑥 fLim (( 𝑥 FilMap 𝑓)‘𝑦)) = (𝐽 fLim (( 𝐽 FilMap 𝑓)‘𝐿)))
136, 12mpteq12dv 5197 . . . 4 ((𝑥 = 𝐽𝑦 = 𝐿) → (𝑓 ∈ ( 𝑥m 𝑦) ↦ (𝑥 fLim (( 𝑥 FilMap 𝑓)‘𝑦))) = (𝑓 ∈ ( 𝐽m 𝐿) ↦ (𝐽 fLim (( 𝐽 FilMap 𝑓)‘𝐿))))
14 df-flf 23834 . . . 4 fLimf = (𝑥 ∈ Top, 𝑦 ran Fil ↦ (𝑓 ∈ ( 𝑥m 𝑦) ↦ (𝑥 fLim (( 𝑥 FilMap 𝑓)‘𝑦))))
15 ovex 7423 . . . . 5 ( 𝐽m 𝐿) ∈ V
1615mptex 7200 . . . 4 (𝑓 ∈ ( 𝐽m 𝐿) ↦ (𝐽 fLim (( 𝐽 FilMap 𝑓)‘𝐿))) ∈ V
1713, 14, 16ovmpoa 7547 . . 3 ((𝐽 ∈ Top ∧ 𝐿 ran Fil) → (𝐽 fLimf 𝐿) = (𝑓 ∈ ( 𝐽m 𝐿) ↦ (𝐽 fLim (( 𝐽 FilMap 𝑓)‘𝐿))))
181, 3, 17syl2an 596 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌)) → (𝐽 fLimf 𝐿) = (𝑓 ∈ ( 𝐽m 𝐿) ↦ (𝐽 fLim (( 𝐽 FilMap 𝑓)‘𝐿))))
19 toponuni 22808 . . . . 5 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = 𝐽)
2019eqcomd 2736 . . . 4 (𝐽 ∈ (TopOn‘𝑋) → 𝐽 = 𝑋)
21 filunibas 23775 . . . 4 (𝐿 ∈ (Fil‘𝑌) → 𝐿 = 𝑌)
2220, 21oveqan12d 7409 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌)) → ( 𝐽m 𝐿) = (𝑋m 𝑌))
2320adantr 480 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌)) → 𝐽 = 𝑋)
2423oveq1d 7405 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌)) → ( 𝐽 FilMap 𝑓) = (𝑋 FilMap 𝑓))
2524fveq1d 6863 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌)) → (( 𝐽 FilMap 𝑓)‘𝐿) = ((𝑋 FilMap 𝑓)‘𝐿))
2625oveq2d 7406 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌)) → (𝐽 fLim (( 𝐽 FilMap 𝑓)‘𝐿)) = (𝐽 fLim ((𝑋 FilMap 𝑓)‘𝐿)))
2722, 26mpteq12dv 5197 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌)) → (𝑓 ∈ ( 𝐽m 𝐿) ↦ (𝐽 fLim (( 𝐽 FilMap 𝑓)‘𝐿))) = (𝑓 ∈ (𝑋m 𝑌) ↦ (𝐽 fLim ((𝑋 FilMap 𝑓)‘𝐿))))
2818, 27eqtrd 2765 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌)) → (𝐽 fLimf 𝐿) = (𝑓 ∈ (𝑋m 𝑌) ↦ (𝐽 fLim ((𝑋 FilMap 𝑓)‘𝐿))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109   cuni 4874  cmpt 5191  ran crn 5642  cfv 6514  (class class class)co 7390  m cmap 8802  Topctop 22787  TopOnctopon 22804  Filcfil 23739   FilMap cfm 23827   fLim cflim 23828   fLimf cflf 23829
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-fbas 21268  df-topon 22805  df-fil 23740  df-flf 23834
This theorem is referenced by:  flfval  23884
  Copyright terms: Public domain W3C validator