MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  flffval Structured version   Visualization version   GIF version

Theorem flffval 23048
Description: Given a topology and a filtered set, return the convergence function on the functions from the filtered set to the base set of the topological space. (Contributed by Jeff Hankins, 14-Oct-2009.) (Revised by Mario Carneiro, 15-Dec-2013.) (Revised by Stefan O'Rear, 6-Aug-2015.)
Assertion
Ref Expression
flffval ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌)) → (𝐽 fLimf 𝐿) = (𝑓 ∈ (𝑋m 𝑌) ↦ (𝐽 fLim ((𝑋 FilMap 𝑓)‘𝐿))))
Distinct variable groups:   𝑓,𝐽   𝑓,𝑋   𝑓,𝑌   𝑓,𝐿

Proof of Theorem flffval
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 topontop 21970 . . 3 (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top)
2 fvssunirn 6785 . . . 4 (Fil‘𝑌) ⊆ ran Fil
32sseli 3913 . . 3 (𝐿 ∈ (Fil‘𝑌) → 𝐿 ran Fil)
4 unieq 4847 . . . . . 6 (𝑥 = 𝐽 𝑥 = 𝐽)
5 unieq 4847 . . . . . 6 (𝑦 = 𝐿 𝑦 = 𝐿)
64, 5oveqan12d 7274 . . . . 5 ((𝑥 = 𝐽𝑦 = 𝐿) → ( 𝑥m 𝑦) = ( 𝐽m 𝐿))
7 simpl 482 . . . . . 6 ((𝑥 = 𝐽𝑦 = 𝐿) → 𝑥 = 𝐽)
84adantr 480 . . . . . . . 8 ((𝑥 = 𝐽𝑦 = 𝐿) → 𝑥 = 𝐽)
98oveq1d 7270 . . . . . . 7 ((𝑥 = 𝐽𝑦 = 𝐿) → ( 𝑥 FilMap 𝑓) = ( 𝐽 FilMap 𝑓))
10 simpr 484 . . . . . . 7 ((𝑥 = 𝐽𝑦 = 𝐿) → 𝑦 = 𝐿)
119, 10fveq12d 6763 . . . . . 6 ((𝑥 = 𝐽𝑦 = 𝐿) → (( 𝑥 FilMap 𝑓)‘𝑦) = (( 𝐽 FilMap 𝑓)‘𝐿))
127, 11oveq12d 7273 . . . . 5 ((𝑥 = 𝐽𝑦 = 𝐿) → (𝑥 fLim (( 𝑥 FilMap 𝑓)‘𝑦)) = (𝐽 fLim (( 𝐽 FilMap 𝑓)‘𝐿)))
136, 12mpteq12dv 5161 . . . 4 ((𝑥 = 𝐽𝑦 = 𝐿) → (𝑓 ∈ ( 𝑥m 𝑦) ↦ (𝑥 fLim (( 𝑥 FilMap 𝑓)‘𝑦))) = (𝑓 ∈ ( 𝐽m 𝐿) ↦ (𝐽 fLim (( 𝐽 FilMap 𝑓)‘𝐿))))
14 df-flf 22999 . . . 4 fLimf = (𝑥 ∈ Top, 𝑦 ran Fil ↦ (𝑓 ∈ ( 𝑥m 𝑦) ↦ (𝑥 fLim (( 𝑥 FilMap 𝑓)‘𝑦))))
15 ovex 7288 . . . . 5 ( 𝐽m 𝐿) ∈ V
1615mptex 7081 . . . 4 (𝑓 ∈ ( 𝐽m 𝐿) ↦ (𝐽 fLim (( 𝐽 FilMap 𝑓)‘𝐿))) ∈ V
1713, 14, 16ovmpoa 7406 . . 3 ((𝐽 ∈ Top ∧ 𝐿 ran Fil) → (𝐽 fLimf 𝐿) = (𝑓 ∈ ( 𝐽m 𝐿) ↦ (𝐽 fLim (( 𝐽 FilMap 𝑓)‘𝐿))))
181, 3, 17syl2an 595 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌)) → (𝐽 fLimf 𝐿) = (𝑓 ∈ ( 𝐽m 𝐿) ↦ (𝐽 fLim (( 𝐽 FilMap 𝑓)‘𝐿))))
19 toponuni 21971 . . . . 5 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = 𝐽)
2019eqcomd 2744 . . . 4 (𝐽 ∈ (TopOn‘𝑋) → 𝐽 = 𝑋)
21 filunibas 22940 . . . 4 (𝐿 ∈ (Fil‘𝑌) → 𝐿 = 𝑌)
2220, 21oveqan12d 7274 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌)) → ( 𝐽m 𝐿) = (𝑋m 𝑌))
2320adantr 480 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌)) → 𝐽 = 𝑋)
2423oveq1d 7270 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌)) → ( 𝐽 FilMap 𝑓) = (𝑋 FilMap 𝑓))
2524fveq1d 6758 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌)) → (( 𝐽 FilMap 𝑓)‘𝐿) = ((𝑋 FilMap 𝑓)‘𝐿))
2625oveq2d 7271 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌)) → (𝐽 fLim (( 𝐽 FilMap 𝑓)‘𝐿)) = (𝐽 fLim ((𝑋 FilMap 𝑓)‘𝐿)))
2722, 26mpteq12dv 5161 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌)) → (𝑓 ∈ ( 𝐽m 𝐿) ↦ (𝐽 fLim (( 𝐽 FilMap 𝑓)‘𝐿))) = (𝑓 ∈ (𝑋m 𝑌) ↦ (𝐽 fLim ((𝑋 FilMap 𝑓)‘𝐿))))
2818, 27eqtrd 2778 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌)) → (𝐽 fLimf 𝐿) = (𝑓 ∈ (𝑋m 𝑌) ↦ (𝐽 fLim ((𝑋 FilMap 𝑓)‘𝐿))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108   cuni 4836  cmpt 5153  ran crn 5581  cfv 6418  (class class class)co 7255  m cmap 8573  Topctop 21950  TopOnctopon 21967  Filcfil 22904   FilMap cfm 22992   fLim cflim 22993   fLimf cflf 22994
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-fbas 20507  df-topon 21968  df-fil 22905  df-flf 22999
This theorem is referenced by:  flfval  23049
  Copyright terms: Public domain W3C validator